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Abstract: Mediterranean mountainous regions constitute a climate change hotspot where snow plays
a crucial role in water resources. The characteristic snow-patched distribution over these areas makes
spatial resolution the limiting factor for its correct representation. This work assesses the estimation
of snow cover area and the contribution of the patchy areas to the seasonal and annual regime of
the snow in a semiarid mountainous range, the Sierra Nevada Mountains in southern Spain, by
means of Landsat imagery combined with terrestrial photography (TP). Two methodologies were
tested: (1) difference indexes to produce binary maps; and (2) spectral mixture analysis (SMA) to
obtain fractional maps; their results were validated from “ground-truth” data by means of TP in
a small monitored control area. Both methods provided satisfactory results when the snow cover
was above 85% of the study area; below this threshold, the use of spectral mixture analysis is clearly
recommended. Mixed pixels can reach up to 40% of the area during wet and cold years, their
importance being larger as altitude increases, proving the usefulness of TP for assessing the accuracy
of remote data sources. Mixed pixels identification allows for determining the more vulnerable areas
facing potential changes of the snow regime due to global warming and climate variability.
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1. Introduction

In general, snowmelt-dominant regions are located in latitudes greater than 45◦ (North and
South). Intense efforts to study snow dynamics have been developed over these areas, in which a
continuous and deep snowpack can be usually found throughout large areas. However, there are many
mountainous regions located in lower and warmer latitudes, which are highly dependent of snow
water resources for agriculture and water supply, despite snow occurrence being non-uniform and
highly timing during the cold season. Over these areas, climate change effects are likely to be more
noticeable and, thus, they constitute a natural laboratory for their early detection and evaluation [1,2].
This is the case of semiarid mountainous regions, where high level of income solar radiation, mild
winters, and torrential precipitation regimes are usual intrinsic features of their climate [3,4]; water
scarcity and drought periods are found to be currently increasing, as many authors have stated [5–7].
In these regions, snow does not follow a single and somehow continuous accumulation-snowmelt cycle,
more commonly found in colder regions, being the spring season representative of a significant inflow
of melting water to the surface and groundwater bodies. A typical semiarid snowpack exhibits a very
strong spatiotemporal variability, and very often undergoes different accumulation-snowmelt cycles
during the cold season in a given year. The ablation process usually results in patched distribution of
snow around local singularities, such as rocks, vegetation bunches, depressions, among others [8–10].
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These snow patches evolve into a mosaic-type spatial pattern with alternating snow-covered and
snow-free areas, whose size ranges between one to dozens of square meters. Their local spatial
evolution is governed by two main drivers: microscale patterns (~1 m) conditioned by the interaction
between the snow and the micro-topography [8] and medium-sized patterns (~100 m) highly influenced
by wind, and terrain curvature [11].

In recent decades, remote sensing has been providing distributed information about the snowpack
all over the world and it is the major method for monitoring snow at medium–large scales,
complementing the traditional in situ field surveys and ground automatic measurements to cover
large areas. Snow cover fraction (SCF), snow albedo (SA), and snow water equivalent (SWE) are the
most common variables measured by using both optical and radar remote sensing imagery, based,
respectively, on the highly different brightness temperature between the visible and near-infrared
regions [12–15] and on the signal attenuation due to the water present in the snowpack [16,17]. Among
them, SCF is the most usually targeted information from which further variables are then derived,
especially in distributed modeling of the snow processes [18,19].

Within the great amount of remote sensing information (e.g., NOAA, daily images with
1 km × 1 km cell size; MODIS, daily images with 500 × 500 m cell size; Landsat Thematic Mapper,
16-day images with 30 m × 30 m cell size), the selection of the dataset is closely related to the scale of the
targeted processes. Spatial resolution is the limiting factor for the detection of snow in semiarid regions,
since the extremely changing conditions favor a particularly snow distribution, which usually appears
as medium-to-small sized patches [20,21]. Hence, those datasets with a higher spatial resolution, such
as Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) data, are recommended in
these studies [22–24], since, for example, MODIS snow products, with a 500 × 500 m spatial resolution,
are not capable to capture the significant sub-grid distribution currently found. Another alternative
for the study of the snow extension over these changeable areas is the use of terrestrial photography
(TP), that is, images taken from the Earth surface and whose spatial and temporal resolution can be
adapted to the study problem [8,9,18,25,26]. Despite the advantages of this technique, easy adaptation
to the temporal and spatial resolution of the studied processes under monitoring, its use over large and
abrupt mountainous areas is limited since, on one hand, a great number of images would be required,
and, on the other hand, there is some lack of information associated with the non-visible areas, which
can be significant in some cases.

However, the combination of both data sources may overcome their individual scale-related
limitations provided that a long-time series is available. For this, the high-resolution TP images
over a given area can be assumed as the ground-truth information associated to the snow cover area
distribution, against which snow detection algorithms to be applied to the lower resolution satellite
images, such as Landsat TM and ETM+.

The traditional classification algorithms for snow detection are based on normalized indexes
which provide a binary classification as snow and no-snow pixels throughout the study area [15,27];
this simple classification may result in large error in heterogeneous and transitional areas within
the snow-dominated domain [14]. Alternatively, the spectral mixture analysis (SMA) approach
provides fraction of snow cover within each pixel and thus, constitutes a step forward to characterize
heterogeneous and patchy snow areas in semiarid regions. This method requires an external dataset,
with higher spatial resolution, to calibrate and validate the algorithms used. In [28] calculated snow
cover fraction values from MODIS (500 × 500 m2) using Landsat scenes (30 × 30 m2) as calibration and
validation dataset in Sierra Nevada (USA), Rocky Mountains, high plains of Colorado and Himalaya,
and obtained a mean relative error in the analyzed scenes of 5%, ranging from 1% to 13%. Nevertheless,
the significant patch size scales of the snow distribution in Mediterranean regions require the use of
Landsat imagery as primary source when the evolution of this patchy snowpack is the targeted goal
on the mid and long term.

This work assesses the estimation of snow cover area in semiarid regions during different stages
in the snow season by means of Landsat imagery and the contribution of the patchy areas in these
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regions to the seasonal and annual regime of the snow. For this, a 14-year series of snow cover maps
(30 × 30 m) was obtained from Landsat imagery in the Sierra Nevada Mountains in southern Spain.
Two methodologies were tested for the estimation of the SCF: (1) the use of difference indexes to
obtain binary maps (covered and non-covered pixels); and (2) a spectral mixture analysis model to
calculate fractional snow cover maps (fraction of coverage inside each pixel). The performance of both
methodologies is assessed by means of SCF maps (10 × 10 m) obtained from TP in a small monitored
control area in the study site.

2. Study Site and Available Data

This study is carried out in Sierra Nevada Mountains, Southern Spain (Figure 1A,B). They are a
linear mountain range of 90-km length, that running parallel to the coastline of Mediterranean Sea,
where the Alpine and Mediterranean climate conditions can be found in just a 40-km distance. Strong
altitudinal gradients with marked differences between the south (directly affected to the sea) and the
north faces are found in the area. Its high summits make snow the main factor that conditions most
of the hydrological and ecological processes over the area. The particular characteristics make Sierra
Nevada a rich reservoir of endemic wildlife species. It is considered the most important center of
biodiversity in the western Mediterranean region, with over 2100 different vascular plant taxa recorded,
accounting for nearly 30% of the vascular flora of the entire Iberian Peninsula [29,30]. The region is
also environmentally protected, the highest elevations of the range were declared a part of a UNESCO
Biosphere Reserve in 1986, a Natural Park in 1989, and a National Park in 1999.
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Figure 1. (A) Location of Sierra Nevada Mountain in Spain; (B) Sierra Nevada Mountain range, limits 
of the Natural and National Parks (dark and light blue respectively) and 1500 m a.s.l. elevation line 
(black line); (C) Location of the control area monitored by terrestrial photography at Durcal hillside. 

The snow usually appears above 2000 m a.s.l. during winter and spring even though the 
snowmelt season generally lasts from April to June. The typically mild Mediterranean winters 
produce several snowmelt cycles before the final melting phase, which distributes the snow in 
patches over the terrain. Precipitation is heterogeneously distributed over the area because of the 
steep orography, with a high annual variability (400–1500 mm). The average temperature during the 
snow season can range from −5 °C to 5 °C, reaching values as low as −20 °C at certain times and 
location during winter [31]. Table 1 shows some statistical descriptors of the most relevant 
meteorological variables on an annual basis. 

Table 1. Mean and standard deviation, in brackets, of the main meteorological variables in Sierra 
Nevada Mountains from 2009 to 2013, calculated over both south and north faces and for low areas 
(below 2000 m a.s.l.) and high areas (above 2000 m a.s.l.). 

Facing Elevation 
Precipitation Temperature Radiation Wind Speed

(mm) (°C) (MJ m‒2 day‒1) (ms‒1) 

South face High areas 783.3 (35.8) 7.8 (6.9) 11.1 (1.1) 8.2 (0.5) 
Low areas 503.7 (14.8) 14.8 (7.4) 9.5 (1.5) 3.2 (1.4) 

North face 
High areas - 6.8 (5.6) 10.9 (0.3) 5.1 (2.2) 
Low areas 526.7 (116.3) 9.7 (4.5) 9.4 (1.2) 2.4 (1.3) 

For this study, a total number of 132 Landsat TM and ETM+ scenes (temporal resolution of 16 
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Figure 1. (A) Location of Sierra Nevada Mountain in Spain; (B) Sierra Nevada Mountain range, limits
of the Natural and National Parks (dark and light blue respectively) and 1500 m a.s.l. elevation line
(black line); (C) Location of the control area monitored by terrestrial photography at Durcal hillside.

The snow usually appears above 2000 m a.s.l. during winter and spring even though the snowmelt
season generally lasts from April to June. The typically mild Mediterranean winters produce several
snowmelt cycles before the final melting phase, which distributes the snow in patches over the terrain.
Precipitation is heterogeneously distributed over the area because of the steep orography, with a high
annual variability (400–1500 mm). The average temperature during the snow season can range from
−5 ◦C to 5 ◦C, reaching values as low as −20 ◦C at certain times and location during winter [31]. Table 1
shows some statistical descriptors of the most relevant meteorological variables on an annual basis.

Table 1. Mean and standard deviation, in brackets, of the main meteorological variables in Sierra
Nevada Mountains from 2009 to 2013, calculated over both south and north faces and for low areas
(below 2000 m a.s.l.) and high areas (above 2000 m a.s.l.).

Facing Elevation
Precipitation Temperature Radiation Wind Speed

(mm) (◦C) (MJ m-2 day-1) (ms-1)

South face
High areas 783.3 (35.8) 7.8 (6.9) 11.1 (1.1) 8.2 (0.5)
Low areas 503.7 (14.8) 14.8 (7.4) 9.5 (1.5) 3.2 (1.4)

North face
High areas - 6.8 (5.6) 10.9 (0.3) 5.1 (2.2)
Low areas 526.7 (116.3) 9.7 (4.5) 9.4 (1.2) 2.4 (1.3)



Remote Sens. 2017, 9, 995 4 of 17

For this study, a total number of 132 Landsat TM and ETM+ scenes (temporal resolution of
16 days; spatial resolution of 30 × 30 m) were selected during the period (2000–2013) from the available
cloud-free scenes (Table 2) to obtain 30 × 30 m snow cover maps of the study area by two different
algorithms. Additionally, the available daily series of TP taken with a conventional digital camera
from 2009 to 2013 covering an approximately 2-km2 control area, located in the western part of Sierra
Nevada Mountains (Figure 1C) were used to extract a sub-set of images on the selected Landsat dates
(Figure 2) from which validation of the resulting snow cover maps. This control area comprises a flat
hillslope facing west with altitudes ranging from 1900 to 3011 m a.s.l. (the Caballo peak).

Table 2. Snow cover area calculated from Landsat-binary (ABIN), Landsat-fractional (AFRAC) and TP
(ATP), and absolute and relative error associated to each Landsat map and date at the 2-km2 validation
control area.

Date ABIN
(km2)

AFRAC
(km2)

ATP
(km2)

(ABIN − ATP)
(km2)

(ABIN−ATP)
ATP

(AFRAC − ATP)
(km2)

(AFRAC−ATP)
ATP

4 May 2009 1.90 1.88 1.71 0.19 0.111 0.17 0.099
29 June 2009 0.06 0.04 0.04 0.02 0.500 0.00 0.000
15 May 2010 1.90 1.88 1.67 0.23 0.138 0.21 0.126
31 May 2010 1.58 1.35 1.24 0.34 0.274 0.11 0.089
8 June 2010 1.03 0.80 0.82 0.21 0.256 −0.02 −0.024
18 July 2010 0.04 0.02 0.02 0.02 1.000 0.00 0.000

9 December 2010 1.64 1.33 1.45 0.19 0.131 −0.12 −0.083
10 January 2011 1.86 1.83 1.83 0.03 0.016 0.00 0.000
3 February 2011 1.79 1.75 1.83 −0.04 −0.022 −0.08 −0.044
31 March 2011 1.90 1.90 1.83 0.07 0.038 0.07 0.038
8 April 2011 1.88 1.81 1.81 0.07 0.039 0.00 0.000
10 May 2011 1.67 1.03 1.45 0.22 0.152 −0.42 −0.290
19 June 2011 0.17 0.10 0.17 0.00 0.000 −0.07 −0.412
12 May 2012 1.31 1.01 0.91 0.40 0.440 0.10 0.110

7 January 2013 1.83 1.69 1.83 0.00 0.000 −0.14 −0.077
24 February 2013 1.83 1.81 1.83 0.00 0.000 −0.02 −0.011

13 April 2013 1.90 1.88 1.83 0.07 0.038 0.05 0.027
31 May 2013 1.73 1.46 1.08 0.65 0.602 0.38 0.352
16 June 2013 0.74 0.46 0.36 0.38 1.056 0.10 0.278
18 July 2013 0.02 0.02 0.00 0.02 0.02

Remote Sens. 2017, 9, 995  4 of 17 

 

algorithms. Additionally, the available daily series of TP taken with a conventional digital camera 
from 2009 to 2013 covering an approximately 2-km2 control area, located in the western part of Sierra 
Nevada Mountains (Figure 1C) were used to extract a sub-set of images on the selected Landsat dates 
(Figure 2) from which validation of the resulting snow cover maps. This control area comprises a flat 
hillslope facing west with altitudes ranging from 1900 to 3011 m a.s.l. (the Caballo peak).  

Table 2. Snow cover area calculated from Landsat-binary (ABIN), Landsat-fractional (AFRAC) and TP 
(ATP), and absolute and relative error associated to each Landsat map and date at the 2-km2 validation 
control area. 

Date 
 ۼ۰۷ۯ

(km2) 

 ۱ۯ܀۴ۯ
(km2) 

۾܂ۯ
(km2) 

ۼ۰۷ۯ) − (۾܂ۯ
(km2) 

ۼ۰۷ۯ) − ۾܂ۯ(۾܂ۯ  
۱ۯ܀۴ۯ) −  (۾܂ۯ

(km2) 
۱ۯ܀۴ۯ) − ۾܂ۯ(۾܂ۯ  

4 May 2009 1.90 1.88 1.71 0.19 0.111 0.17 0.099 
29 June 2009 0.06 0.04 0.04 0.02 0.500 0.00 0.000 
15 May 2010 1.90 1.88 1.67 0.23 0.138 0.21 0.126 
31 May 2010 1.58 1.35 1.24 0.34 0.274 0.11 0.089 
8 June 2010 1.03 0.80 0.82 0.21 0.256 −0.02 −0.024 
18 July 2010 0.04 0.02 0.02 0.02 1.000 0.00 0.000 

9 December 2010 1.64 1.33 1.45 0.19 0.131 −0.12 −0.083 
10 January 2011 1.86 1.83 1.83 0.03 0.016 0.00 0.000 
3 February 2011 1.79 1.75 1.83 −0.04 −0.022 −0.08 −0.044 
31 March 2011 1.90 1.90 1.83 0.07 0.038 0.07 0.038 

8 April 2011 1.88 1.81 1.81 0.07 0.039 0.00 0.000 
10 May 2011 1.67 1.03 1.45 0.22 0.152 −0.42 −0.290 
19 June 2011 0.17 0.10 0.17 0.00 0.000 −0.07 −0.412 
12 May 2012 1.31 1.01 0.91 0.40 0.440 0.10 0.110 

7 January 2013 1.83 1.69 1.83 0.00 0.000 −0.14 −0.077 
24 February 2013 1.83 1.81 1.83 0.00 0.000 −0.02 −0.011 

13 April 2013 1.90 1.88 1.83 0.07 0.038 0.05 0.027 
31 May 2013 1.73 1.46 1.08 0.65 0.602 0.38 0.352 
16 June 2013 0.74 0.46 0.36 0.38 1.056 0.10 0.278 
18 July 2013 0.02 0.02 0.00 0.02  0.02  

 
Figure 2. Landsat scenes, TM (grey dots) and ETM+ (black crosses) analyzed throughout the study 
period 2000–2013 over Sierra Nevada Mountain. Available Terrestrial Photography (TP) used as 
validation dataset (red dots) over the control area throughout the validation period (2009–2013). 

3. Methods 
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Figure 2. Landsat scenes, TM (grey dots) and ETM+ (black crosses) analyzed throughout the study
period 2000–2013 over Sierra Nevada Mountain. Available Terrestrial Photography (TP) used as
validation dataset (red dots) over the control area throughout the validation period (2009–2013).

3. Methods

Binary and fractional snow cover maps were derived, respectively, from (1) normalized difference
indexes analysis and (2) spectral mixture analysis for each one of the selected Landsat scenes showed
in Figure 2. These images were pre-processed following the standard methods used in this area by
Pimentel et al. (2012) [24].
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3.1. Landsat Pre-Processing

The different stages in this pre-processing include a radiometric calibration, and atmospheric,
saturation and topographic corrections. Angular correction is not applied since the surface is
considered Lambertian. Although in reality snow surface is not Lambertian, this assumption does not
introduce significant errors when the remote sensors are nadir viewing with a fixed direction. This is
the case of TM and ETM+ sensor, which are nadir viewing and have an fixed incident, approximately
30◦, being the anisotropy coefficient close to 1 [32–34].

The radiometric coefficients summarized in [35] were applied for the radiometric calibration.
The atmospheric correction was performed by the Dark Object Subtraction (DOS) method used in
many similar analyses [36,37]. This method retrieves the surface reflectance by assuming a Lambertian
surface and cloudless atmospheric conditions, and it considers all the scattering effects in the scene to be
the same as those of a blackbody present in the scene [38]; the dark object is selected from the minimum
radiance value of the histogram made up from at least a 200-pixel sub-set in the scene [39] that must
exclude those pixels shadowed by the terrain roughness. Moreover, fixed values for the downwelling
transmittance parameters of the atmosphere for each band are adopted [40], being both the upwelling
atmospheric transmittance and the diffuse irradiance neglected. DOS-based methods constitute a good
alternative to the more complex Radiative Transference Codes (RTCs) when the atmospheric optical
properties that they require are not fully available or have a questionable quality [41].

Several bands of Landsat scenes are radiometric-saturated due to the radiometric configuration
of the sensors. Snow constitutes at most a 5% of the analyzed Landsat scenes and thus, the sensors
are not specifically calibrated for snow, whatever the main land use is. This saturation is especially
relevant during the winter, when the highest differences between the snow and the rest of land covers
in the scene are found. To correct this saturation, a multivariable correlation analysis between bands is
employed to recover the snow saturated pixels [42].

A C-correction algorithm [43] by means of a land cover separation [44] was applied as topographic
correction to remove the effects of the terrain roughness on the image. Again, the Lambertian surface
assumption allows the obtaining of a linear fit between the illumination angle and the different bands
reflectance. Additionally, the diffuse irradiance is taken into account by a semi-empirical estimation
of the C factor. In order to consider the multiple reflective properties of the different soil covers, the
pixels are classified as bare soil or vegetated areas by using the Normalized Difference Vegetation
Index (NDVI).

3.2. Snow Cover Maps

3.2.1. Binary Snow Cover Maps

The algorithm for deriving binary snow cover maps is based on the physical properties of a snow
cover throughout the electromagnetic spectrum. Snow has very different extreme values in the visible
(high reflectance) and infrared regions (low reflectance), so that a Normalized Difference Snow Index
(NDSI) has been defined for each pixel over a threshold altitude (linked to the minimum height in
which snow can be found) by comparing the individual electromagnetic responses in these two regions
of a given pixel [45]. For Landsat TM and ETM+ scenes, the spectral bands that correspond with these
two regions are band 2 (0.52–0.60 µm) and band 5 (1.55–1.75 µm). The index is defined as follows:

NDSI =
band2 − band5
band2 + band5

(1)

The discrimination between covered and non-covered pixels is done based on two threshold
values: NDSI > 0.15 and band1 > 0.06 (0.45–0.52 µm), adopted to detect snow under the particular
characteristics of snow in Mediterranean regions [46].
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3.2.2. Fractional Snow Cover Maps from Spectral Mixture Analysis

This alternative algorithm provides an estimated value of the snow cover fraction (SCF) in each
pixel, based on the assumption of the global reflectance of a mixed pixel (a pixel made up of different
types of surfaces) being a linear combination of the individual reflectance values of the surfaces present
in the pixel (endmembers). Thus, this endmembers-spectral mixture analysis (SMA) [21,47] expresses
the reflectance in each pixel after the pre-processing, as the linear combination of the reflectance values
from each spectral endmember given by Equation (2),

NDSIRS,λ =
N

∑
i

FiRλ,i + ελ (2)

where Fi is the fraction of the area of endmember i in a given pixel; Rλ,i is the reflectance of endmember i
at wavelength λ obtained after the pre-processing steps; N is the number of spectral endmembers taken
into account; and ελ is the residual error at the wavelength λ associated to the fit of the N endmembers
considered in the analysis. The method requires, first, to select the significant endmembers in the study
area and obtain their individual spectrum, and second, to solve the Fi values for each pixel in the scene.

Three significant endmembers were identified in the study area: (a) pure snow, (b) vegetation (brush
creeping vegetation) and (c) rocks (predominantly, phyllites). Their spectrums were obtained from a
digital spectral library (http://speclab.cr.usgs.gov/) (Figure 3). The least-squares fit to Fi is solved in
each pixel with a reflective Newton method. The results from the SMA go beyond the discrimination of
snow, since it allows identification of mixed pixels (when they occur and where they are located) and the
study of their contribution to the snow cover area in the study site on different time scales.
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3.2.3. Snow Cover Maps Validation

The results from both snow cover retrieval methods from Landsat TM and ETM+ were validated
using the 10-m snow cover maps estimated from TP over the control area (Figure 1C) selected in the
study area.

http://speclab.cr.usgs.gov/
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High Resolution Snow Cover Maps from Terrestrial Photography

Snow cover maps from TP are usually obtained in a two-step process [9]: (a) georeferencing
and (b) snow detection. The first one is achieved following some basic principles of computing
design [48,49] with the support of a Digital Elevation Model (DEM) of the target area. The result is a
function that relates the two-dimensional elements (pixels) in the photo with the three-dimensional
elements (points, centers of each cell) in the DEM [26]. The second step involves an unsupervised
k-means algorithm that distinguishes between covered and non-covered pixels. The final result is a
snow cover maps time series with the same spatial resolution of the DEM and the temporal resolution
of the TP acquisition process. TP images can be a powerful data source that is easily adapted to the
temporal and spatial resolution of the studied processes under monitoring.

Performance Indicators of the Snow Cover Map Algorithms

Virtual fractional 30 × 30 m2 snow maps are obtained from the binary 10 × 10 m2 snow
maps resulting from the TP analysis, and they are used as “ground truth” to test the 30 × 30 m2

snow cover maps obtained from Landsat analysis by both algorithms, binary and spectral mixture
approaches. The different metrics employed to evaluate the performance of each method [28] are given
by Equations (3)–(6). Firstly, metrics to test the correct location of the pixels are used:

precision =
RP

RP + WP
(3)

recall =
RP

RP + WN
(4)

accuracy =
RP + WN

RP + RN + WP + WN
(5)

where RP represents the number of right positives (snow in both TP and Landsat pixels); RN represents
the number of right negatives (no snow in both TP and Landsat pixels); WP represents the number
of wrong positives (snow in the Landsat pixel and no-snow in the TP pixel); and WN represents the
number of wrong negatives (no-snow in the Landsat Pixel and snow in the terrestrial pixel).

Finally, the Root Mean Square Error (RMSE) is also provided in the analysis of the SMA:

RMSE =

√√√√ 1
N

N

∑
j=1

[SCFTP(j)− SCFLandsat(j)]
2 (6)

All these metrics are calculated for the area in each Landsat image associated to the mask
calculated using TP over the control area (Figure 1C).

4. Results

This section shows the SCF evolution in the study area during the study period using both binary
and fractional analysis. The results of the validation of both methodologies using TP at the control
area are also described.

4.1. Snow Cover Map Series from Landsat Analysis

Figure 3 shows the average (Figure 3A) and standard deviation (Figure 3B) of the SCF during the
study period in the study area (altitudes above 1500 m). SCF average and standard deviation follow
parallel trends for both methodologies, with mean values of 0.13 m2 m−2 and 0.11 m2 m−2 for the
average SCF, and 0.20 m2 m−2 and 0.23 m2 m−2 for the standard deviation, for the binary and fractional
approaches, respectively. A general overestimation of the binary method can be observed, being higher
during the accumulation phases, especially for heavy snowfall events that affect areas where snow in
not usually found, which reaches areas where the snow is not usually present (e.g., 12 January 2003 and
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6 March 2005 with differences between both methodologies about 0.1 m2 m−2). The threshold values
used to discriminate the presence of snow were obtained in the southern face in the study area [46] ,with
higher altitude predominance; this very likely overestimates the presence of snow on the whole domain
of Sierra Nevada. These differences are smaller during the melting periods, in which the average SCF
seems to be more equally represented by both methodologies. Nevertheless, the standard deviation
over these periods (Figure 3B) shows a variable value, with a general overestimation of the binary maps,
with a mean difference of 0.04 m2 m−2. Despite the observed overestimation, both methodologies
produce similar average values during the study period that stem from different spatial distributions,
whose mean and standard deviation values are shown in Figure 4.
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during the study period 2000–2013 using a binary and a fractional algorithm.

The local mean SCF value shows similar spatial patterns from both methodologies. In general,
fractional maps present lower SCF values, being the higher differences between both approached
found at the higher elevations located in the southwestern area, and at the lower elevations in the
northeastern area; the binary methodology results in excess snow in the small valleys. On one hand,
the first zone represents an area where the snow persistence is higher; consequently, longer melting
cycles take place and there is a higher probability of occurrence of mixed pixels (pixels composed
by snow and no snow). On the other hand, the second zone constitutes and area where the snow is
very sporadic and associated to heavy snowfalls, which enhances the presence of mixed pixels, too.
The local standard deviation distribution for the study period confirm this hypothesis, and shows a
high spatial variability for the fractional method; it also provides a clear elevation fringe where the
appearance of mixed pixels dominates the distribution of the snow in this mountainous range.

4.2. Snow Cover Map Validation from Terrestrial Photography

Landsat SCF maps were validated from the analysis of terrestrial pictures (assumed as “ground
truth”) obtained over a control area (Figure 1C) during 2009–2013, following the method described
in Section 3. Figure 5A shows three different examples of the SCF maps obtained from the three
methods (binary and fractional algorithms, and terrestrial picture) for representative stages of the
snow season: complete snow cover, beginning of the spring melting, and end of the melting cycle. The
improvement in the snow cover detection is clearly observed from the left to the right of the figure
(binary-fractional-TP), being the TP capable of capturing small patched patterns, which are commonly
found in these mountain regions. Figure 5A also shows the loss of accuracy of the binary method as
the melting period evolves. Three spatial distribution metrics are calculated to numerically validate
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the performance of the Landsat maps using as “ground truth” TP maps: precision, recall and accuracy
(Figure 5B).
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Figure 5. (A) Selected examples of different stages during the snow season: accumulation—complete
cover (10 January 2011), beginning of the spring melting (16 June 2013) and end of the melting
(29 June 2009), using the Landsat (binary and fractional) methodologies and TP at the control area.
(B) Evolution of the three metrics (precision, recall and accuracy) used during the validation period
(2009–2013) for both methodologies (right); distribution function (boxplot, the central line and the
upper and lower edges of the box represent the median, 75th and 25th percentiles respectively; the
black whiskers extend to the extreme values considered in the analysis; and the red crosses are the
outliers) of each metric for each method (left).

Precision describes the fraction of positive snow mapping results pixels that truly identified
snow), that is, the ratio between the pixels detected as snow in Landsat and the snow pixels in TP.
During the study period, its values range from 0.15 to 1, with a mean value of 0.75, for the binary
maps, and from 0 to 1, with a mean value of 0.79, for the fractional maps. Similar precision values
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are obtained using both methodologies during the winter period, which is a slightly higher for the
fractional maps. There is not a clear behavior of this metric during the melting period.

Recall describes the fraction of snow in all the scene that is identified by each method, that is,
what fraction of the pixels detected as snow in TP are also detected by Landsat. It ranges from 0 to
1, with a mean value of 0.79, for the binary maps, and from 0.15 to 1, with a mean value of 0.86, in
the case of the fractional maps. Recall values are again higher during the winter, but in this case the
fractional maps shows better metric practically in all of the dates.

Finally, accuracy represents all the pixels correctly identified, whatever the situation is (snow or
no-snow); so, this metric also takes into account the no-snow pixels. Accuracy ranges from 0.55 to
1, with a mean of 0.85, for the binary maps, and from 0.8 to 1, with a mean of 0.96, for the fractional
maps. Fractional maps exhibit a clear better accuracy than binary maps, not only during winter but
also during the melting periods. This is particularly relevant in regions where the persistence of
the snowpack is not continuous, and different snow accumulation/melting cycles occur during a
given season.

Figure 6 shows the evolution of the average SCF value over the control area from the Landsat
maps and the validation TP dataset, together with the associated dispersion graph. Landsat binary
and fractional maps present global RMSE values of 0.12 m2 m−2 and 0.09 m2 m−2, respectively, during
the study period. Table 2 shows the absolute and relative error values for each Landsat map and date.
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Figure 6. Evolution of SCF over the control area throughout the validation period (2009–2013) (right).
Dispersion graph comparing the evaluated SCF obtained from Landsat with the validation dataset
obtained calculated using TP (left).

Generally, the fractional method results have a lower error than the binary, being this more
relevant for snow cover area lower than 85% of the control area. The late melting stages obtain the
worst representation, as expected, whatever algorithm is selected; however, the binary approach can
produce large overestimations of the snow cover, which is not found with the fractional method.

4.3. Snow Cover Evolution from SMA Snow Maps

According to the previous results, the SMA method provides a better spatial representation of the
snow throughout the study area. Moreover, the quick changes in the snowpack usually found in these
latitudes are adequately represented by the resulting mixed pixels, with a realistic evolution of the
snow captured by the sequence of fractional maps.

Figure 7 represents the evolution of the average SCF for different elevation bands over the Sierra
Nevada mountainous range using fractional maps. The relationship between SCF and elevation at the
study area can be assessed, both locally and globally, from these results. Below 1750 m a.s.l., snow
very rarely approaches an average SCF value of 0.5; between 1750–2250 m a.s.l., SCF values are higher
but never reach the complete cover of the area. 2250 m a.s.l. is estimated as the threshold elevation
for which SCF equal or very close to 1 are found every year, with snow persistence increasing with
altitude; the influence of high slopes that conditions the snow accumulation stability in the highest
bands, especially when complete cover is reached, can also be observed from the results, proving the
SMA approach to be capable of capturing these local conditions.
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Figure 7 also identifies a threshold elevation band (2750–3000) above which the annual SCF
pattern follows a clear accumulation phase during autumn, a consolidation period in winter, and a
melting period during spring; values different to zero can be found every year, too. The duration
of these phases and their evolution rate change depending on the elevation band, following the
expected pattern: at higher elevations, the accumulation phase starts earlier and it evolves faster; snow
consolidation is longer and melting is slow, which leaves remaining isolated snow-patched areas even
during the summer. Below 2750 m a.s.l., there is not a distinct seasonal evolution of the snow pack,
except for the absence of snow every summer; rather, a highly variable range of SCF values can be
found during all the snow season, from autumn to spring.

Figure 8 shows the cumulative distribution function (cdf) of the average SCF in the study area for
the 2000–2013 period, together with the spatial distribution of selected percentiles of the pixel-SCF
cdfs. The areas with less occurrence or persistence of snow can be easily identified at the surrounding
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of 1500 m a.s.l., especially in the northeastern area, together with the snow domain, mainly located in
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Figure 8. (A) Cumulative distribution function (cdf) of the average SCF in the study area for the
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Additionally, the importance of the mixed pixels can be assessed from the fractional maps. Figure 9
shows the fraction of mixed pixels in the study area during the 2000–2013 period, both globally and
distributed within altitudinal bands. Mixed pixels can reach up to 40% of the area (Figure 9A) during
wet and cold years, being the annual maximum values usually found at the early stages of the melting
phases. As expected, the fraction of mixed pixels increases with the altitude, being frequently found
in the highest areas, where complete cover is reached every year and persistence can be longer, the
snowpack evolving following patchy but persistent patterns well into the spring and even the summer
season. On the contrary, in the low altitude bands, where few snowfalls take place and the snow
cover may quickly disappear, the mixed pixels are only significant for the extreme events that can take
place in certain years. Over 2750 m a.s.l., mixed pixels might reach the 100% of the area during some
spring days.
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5. Discussion

The results show the importance of patchy areas in semiarid regions such as the study site, and
their persistence during the late spring and early summer during specific years; the use of Landsat
imagery is key to accurately assess the snow regime in these regions during the periods where the
snow cover is not complete. The availability of TP images provided efficient information to estimate
the uncertainty of each algorithm and assess their adequacy to approximate the snow cover area in
these sites.
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Moreover, the results provide some basis to identify criteria on which to make decisions regarding
the adoption of each kind of approach. The SMA provided generally better results than the binary
approach, since the latter generally overestimated the presence of snow. However, from Table 2 it can
be noted that the error associated with each method is quite similar (a maximum value of 11.1% and
9.9% for the binary and fractional approaches, respectively) when the snow presence is important,
and the SCA is higher than the 85% of the study area. Below a 33% threshold, the performance of
both methods is less accurate, those from the binary approach offering the most limited results due to
large overestimation. In the intermediate range, the SMA proves to be the best approach. Additionally,
both methods showed 1% of the study area as the detection limit for snow cover area. Despite these
thresholds having been obtained over a limited number of images and further work being needed
to validate such ranges and thresholds, they represent a varied set of dates and stages during the
snow season, and they show the usefulness of combining TP and satellite data to assess the snow
cover evolution in semiarid regions. Another important aspect to mention related to uncertainty is
the spatial resolution of the remote sensing source; the selection of a greater cell size, as for example
MODIS [28], in Painter et al. (2009), could reduce the global errors. Nevertheless, due to the size scale
of the snow patches characteristic of snow distribution over these regions, the use of Landsat or any
other high-resolution sources is required.

The use of SMA also allows for the spatial assessment of areas where snowfalls can be significant
and/or frequent but persistence is not enhanced by the local conditions. The results indicate the
areas in which patchy conditions prevail; the availability of SCF maps with a reasonably high spatial
resolution is key for the calibration and validation of snow models, and hydrological models, and
further assessment of water resources. The seasonal analysis distributed over altitude bands is
particularly relevant to identify the more vulnerable areas facing potential changes of the snow regime
due to global warming and climate variability, and trace such changes. The future shifts of the
occurrence and prevailing of snow patches (i.e., mixed pixels in the images) in these regions can be a
powerful indicator for an early detection of changes in the snow regime and its associated services in
mountainous regions.

6. Conclusions

In this work, the distribution of the snow cover under highly variable conditions was obtained
using Landsat imagery. Two methodologies, binary and fractional approaches, were tested against
high-resolution snow cover maps obtained from terrestrial pictures. SCF maps estimated by SMA
proved to be a powerful tool for providing time map series, even using spectral signatures from general
libraries, showing an improvement larger as the snow cover becomes more discontinuous. The SMA
allowed for an adequate estimation of the coverage of snow on a 30-m pixel basis, which avoids large
overestimations that may result from a simple binary covered/non-covered classification analysis
during melting periods. This is especially important in these semiarid mountainous regions where the
particular snow dynamics favors the appearance of patchy areas.

The importance of mixed pixels was satisfactorily quantified from the results of SMA distributed
within altitudinal bands in the study area, being their occurrence more representative as altitude
increases. A threshold altitude of 2750 m a.s.l. over which mixed pixels may reach the total area of the
altitudinal band was identified; this highlights the importance of applying fractional methods to trace
the snowpack evolution in these semiarid regions, and its spatial patterns.

The combination of terrestrial and satellite imagery allows for a cost-effective method to obtain
snow map series with adequate accuracy. Not only the uncertainty assessment but also the variety of
stages identified in the TP led to a first estimation to discriminate operational domains for algorithm
selection. Both binary and SMA methods provided satisfactory results when the snow cover was above
85% of the study area; below this threshold, the use of SMA is clearly recommended. This is particularly
relevant when the SCF maps are used to calibrate and validate snow and hydrological models, since
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the propagation of errors from the binary approach might result in too large overestimation of the
snow amount and distribution.
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