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Abstract: Field spectroscopy has been suggested to be an efficient method for predicting soil
properties using quantitative mathematical models in a rapid and non-destructive manner. Traditional
multivariate regression algorithms usually regard the modeling of each soil property as a single task,
which means only one response variable is considered as the output during modeling. Therefore, these
algorithms are less suitable for the prediction of several key soil properties with low concentrations
or unobvious spectral absorption signals. In the current study, we investigated the performance
of a linear multi-task learning (LMTL) algorithm based on a regularized dirty model for modeling
and predicting several key soil properties using field spectroscopy (350–2500 nm) as an integrated
approach. We tested seven key soil properties including available nitrogen (N), phosphorus (P)
and potassium (K), pH, water content (WC), organic matter (OM), and electrical conductivity (EC)
in drylands. The model performances of LMTL models were compared with the commonly used
single-task algorithm of the partial least squares regression (PLS-R). Our results show that the
LMTL models outperformed the PLS-R models with the advantage of shared features; the ratio of
performance to deviation (RPD) values in the validation set improved by 10.24%, 4.93%, 25.77%,
11.76%, 6.74%, 53.13%, and 3.15% for N, P, K, pH, WC, OM, and EC, respectively. The best prediction
was obtained for OM with RPD = 2.29, indicating high accuracy (RPD > 2). The prediction results
of N, P, WC, and pH were categorized as of moderate accuracy (1.4 < RPD < 2), while K and EC
were categorized as of poor accuracy (RPD < 1.4). However, the explanatory power of the LMTL
models was moderate due to fewer features being selected by the regularization algorithm of the
LMTL approach, which should be further studied in the soil spectral analysis. Our results highlight
the use of LMTL in field spectroscopy analysis that can improve the generalization performance of
regression models for predicting soil properties.

Keywords: visible-near infrared and shortwave infrared (VNIR/SWIR); soil measurement; dirty
model; partial least squares regression (PLS-R); regularization; shared features

1. Introduction

The assessment and monitoring key soil properties are important processes for quantifying
soil quality and developing tools for soil management in general and precision agriculture in
particular. Conventional laboratory methods for detecting soil properties and quality are expensive
and time-consuming. An alternative approach, namely reflectance spectroscopy, has been proposed as
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a rapid, non-destructive, reproducible, and cost-effective analytical method for assessing soil properties
and quality [1]. Field spectroscopy conducts in-situ soil spectral measurements directly and omits
the steps of soil sampling and soil pretreatment, making it much faster and more effective than
laboratory-based spectroscopy. It is also much more suitable for soil mapping, large-scale monitoring
and making real-time predictions [2]. Stenberg et al. [3] stated in their review that visible-near
infrared and shortwave infrared (VNIR/SWIR, 350–2500 nm) spectroscopy is a feasible technique for
predicting several key soil properties in field conditions with various levels of prediction accuracy.
However, under the influence of external factors, such as ambient light, temperature, water content
and atmospheric distortions, field soil spectral reflectance would be greatly affected [4]. Moreover,
the multi-collinearity and redundancy in the spectral data also limit the model prediction accuracy [5].
One way to improve field spectroscopy accuracy in predicting soil properties is by applying advanced
multivariate regression algorithms [3].

The commonly used linear regressions such as principal component regression (PCR) [6] and
partial least squares regression (PLS-R) (e.g., [7–14] can decompose the original spectral matrix through
linear combinations to extract useful components and overcome the problems of collinearity with high
interpretable ability [15]. In addition to linear algorithms, there is a growing use of non-linear methods
by several machine learning algorithms such as the least square support vector machine (LS-SVM)
(e.g., [16]), artificial neural networks (ANNs) (e.g., [17–19]), multivariate adaptive regression splines
(MARS) (e.g., [20]), the random forest regression (e.g., [21]) and more, which have been proven to
enhance the prediction performance based on their excellent non-linear learning ability.

The multivariate regression algorithms mentioned above usually use all the predictor variables
(in spectroscopy, we refer to wavebands) to enhance learning ability. However, it is well known that a
large number of wavebands are not necessary since some of them are not correlated to the predicted
property, and may even contribute to interference during modeling, which can result in overfitting [22].
Feature selection can extract useful information from the spectral signal to reduce model complexity
and improve robustness [8,23,24]. However, soil VNIR/SWIR spectroscopy is largely nonspecific
due to the overlapping absorption of different soil constituents; thus, extracting specific features for
single soil constituents is quite problematic [19,25]. For example, soil water content (WC) (e.g., [10,20]),
organic matter (OM) (e.g., [26,27]) and some other high content soil properties could be relatively well
predicted using field VNIR/SWIR spectroscopy benefiting from well-recognized spectral absorption
signals [19,25]. However, several important soil nutrient properties, such as available nitrogen (N),
phosphorus (P), and potassium (K), do not have any obvious specific spectral feature signal, and they
usually exist in low concentrations in the soil, especially in dryland soils [16]. Chemical properties,
including pH and EC, also have no direct spectral absorption features. Previous studies attributed the
occasionally successful predictions of N, P, K, pH, and EC to chemical relations with WC, OM, iron
oxides, clay minerals, or other soil properties with sensitive absorption features (e.g., [25,28]).

The current multivariate regression algorithms in soil spectroscopy are usually applied as
single-task modeling, for each soil property, although some algorithms such as PLS-R, ANN, etc.,
could also provide a mode with multiple response variables. This means that only one dependent
variable is considered as the output during the development of a regression model with a soil spectral
matrix as the input independent variables. Since there are relations between the modeling of several
soil properties, it can be advantageous to build all of the regression models simultaneously using
the approach of multi-task learning instead of following the more traditional approach of learning
each single task independently from the others [29]. Considering the underlying cross-relatedness
between different dependent variables, multi-task learning aims to improve the generalization by
using the shared information contained in the training data of related tasks [30]. This approach is
particular efficient for high-dimensional data [31], such as high-resolution spectroscopy. It has recently
received increasing attention in machine learning, artificial intelligence, and computer vision [32,33].
Daniel et al. [19] proposed an ANN model with OM, P, and K as simultaneous outputs and attained
satisfactory results; however, in their research, the underlying correlation was not fully interpreted.
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The overarching aim of the study was to explore the performance of (linear multi-task learning)
LMTL algorithms based on a regularized dirty model (composed of shared and non-shared features)
for modeling and predicting several key soil properties using field spectroscopy (350–2500 nm).
The specific objectives are three-fold: (1) investigate the predictive ability of field spectroscopy to
predict soil N, P, K, WC, pH, EC, and OM in dryland regions; (2) compare the prediction performance
of LMTL via a regularized dirty model with traditional single-task learning via the PLS-R; and (3) study
the shared features between different soil properties in LMTL as compared to single-task learning.

2. Materials and Methods

2.1. Study Area

The soil samples were collected from four small watersheds located in the central Negev
Highlands of Israel (30◦54′N, 34◦49′E). The mean annual rainfall in this area is 95 mm and is limited to
the winter season, with a high annual variability (ranging from 20–180 mm). The study site included
watersheds containing runoff harvesting systems (RHSs), which are used for increasing agricultural
production or for developing afforestation systems in drylands. RHSs are designed to collect runoff
water and nutrients from small rocky watersheds into ponds bounded by soil dikes (termed limans)
that are used as afforestation groves. Geologically, the area is composed of limestone and chalk of the
Turonian age. The hillslopes are relatively steep (up to 29 degrees) and subdivided into two distinct
sections: (1) the upper parts are mainly barren, with steep limestone rocky outcrops and shallow
patches of soil cover; and (2) the lower parts consist of colluvium embedded with unconsolidated
rocks [34,35]. A similar subdivision is also observed along the channels. The upper part of the channel
is rocky while the lower part is covered with an alluvial fill [34]. Lithology across the study site
consists of limestone dominantly covering the area, frequently mixed with dolomite, chalk and marl.
The stream channels characterized by loessial soils, and are composed of clay, silt, and gravel alluvial
soil. In general, the RHSs are located in the downstream area of the watershed where there is a
relatively high volume of alluvial soil. In the current study, the differences in soil properties at different
locations resulted from the proximity to the RHSs (upstream, downstream, and RHS).

2.2. Soil Field Spectroscopy Measurements

The soil spectra were acquired under field conditions (undisturbed samples) before soil sampling
with the portable analytical spectral device (ASD) Field Spec® Pro spectrometer, with a 25◦ field of
view. During the field campaigns, the skies were clear, and the soil spectral samples were taken on
exposed bare soil. The field spectral measurement was vertical in relation to the soil surface using a
bare fiber with a height interval of about 1 m, and exposed to the sun as illumination. The instrument
was repeatedly calibrated to spectral reflectance using a standard white reference panel (Spectralon
Labsphere Inc., North Sutton, NH, USA). To reduce spectral noise and the effects of micro-topography
shadowing, four spectral readings for each soil sample were measured and averaged to a final value
representing the field sample. The ASD covers a spectral range of 350–2500 nm with a spectral
resolution that varies from 3 nm in the VIS-NIR range to 8–10 nm in the SWIR range. We resampled
the ASD’s spectral band to 5 nm uniformly along the entire spectral region.

2.3. Soil Sampling and Physicochemical Lab Analysis

The soil sampling included 10 replicates in each sampling location in the watershed in the
upstream, downstream and RHS sites (n = 30 replicates in a watershed) with a total of 120 soil
samples collected in September 2015, which is at the end of the dry season, at a depth of 0–0.15 m.
All soil samples were transferred to the laboratory and were stored unopened at room temperature
until they were analyzed. Soil was air dried, passed through a 2-mm sieve, and analyzed for soil
physiochemical properties. The soil properties included the following: N was measured by potassium
chloride extractions [36]; P was measured by the Olsen method [37]; K was measured by a flame
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photometer [38]; WC was measured by drying the soil in 105 ◦C; pH was measured in a saturation
paste using a handheld portable probe; EC was measured in the extracts from the saturation paste
by a handheld portable probe; and OM was measured by drying the soil for two hours at 500 ◦C.
The results of the soil physiochemical properties were tested for their statistical variation. The outliers
were determined by boxplot [39], and 12 samples with extremely large N or K concentrations beyond
the upper whisker were removed. Thus, the remaining 108 samples were used for further study in
this work.

2.4. Spectral Preprocessing and Transformations

We removed the low signal-to-noise ratio wavebands at both ends and the atmospheric water
absorption wavebands ranging from 1350–1420 and 1800–1960 nm. The resultant reflectance spectrum
of 355 wavebands (400–2400 nm) was henceforth used. In addition, several commonly used
preprocessing methods and transformations were sequentially applied to the soil spectral reflectance in
this study, including: the Savitzky–Golay filtering algorithm (SG) [40] with a second-order polynomial
that was selected to smooth spectral reflectance; a standard normal variate (SNV) [41,42] that was
performed to correct additive and multiplicative effects; and a first derivative (FD) that was conducted
to remove the baseline and improve the linear trend [43,44].

2.5. Learning Algorithms

To compare the performance of multi-task and single-task algorithms, the regression models were
built upon the same dataset. As a commonly used single-task algorithm, the PLS-R is particularly useful
for predicting a set of dependent variables from a large set of independent variables [45]. To overcome
the problem of collinearity between predictors, the PLS-R decomposed independent variables and
dependent variables by linear combinations to extract latent variables (LVs, or components) and
built the regression model based on the LVs instead of the original training variables [15]. To avoid
overfitting or underfitting, a leave-one-out cross-validation was used to determine the number of
LVs with the smallest mean squared error in calibration. The variable importance for projection
(VIP) scores [46] obtained by PLS-R has been recognized as a useful measure to identify important
wavelengths when the score is more than 1 [47,48].

Regularization is commonly used as a shrinkage method in least square linear regression modeling
to avoid overfitting [49]. The main idea of multi-task learning in multiple linear regressions is to take
advantage of the shared feature structure (block-sparse) between each task and model all the tasks
simultaneously with L1/Lq norm block-sparse regularization, particularly with L1/L∞ [50,51]. Since
non-shared features might have existed for several specific tasks, the regression coefficient matrix W
(features × tasks) cannot fall cleanly into any one structural bracket. To overcome this, a dirty model
was proposed to decompose the matrix W into a block-sparse matrix Wb (corresponding to the shared
features) and an elementwise sparse matrix We (corresponding to the non-shared features); details can
be found in [31]. The object function is:

min
W

t

∑
i=1
‖Wi

TXi −Yi ‖2
2 +λb ‖Wb ‖1,∞ +λe ‖We ‖1 (1)

subject to : W = Wb + We (2)

where Xi is the spectral matrix of task i that is the same for each task, Yi is the predicted variable
of task i, and λb and λe are regularization parameters to control the degree of penalty on Wb and
We, respectively.

For the calibration and validation of the regression models (multi-task learning and single-task
learning), 108 soil samples were divided into two parts with a split ratio of 0.7 to 0.3, respectively,
based on the Kennard–Stone algorithm [52], conducted on the preprocessed spectral matrix. Thus,
76 samples were selected as the calibration set (also used for cross-validation during training) and the
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remaining 32 as the validation set (independent testing for the established model). To avoid attributes
in the higher numerical ranges dominating those in the lower numerical ranges, both the calibration
and validation sets were standardized by mapping their mean and standard deviations to 0 and 1,
respectively, before calibration and validation [53].

2.6. Accuracy Comparison

In this study, the prediction accuracy of the regression models was validated and compared with
the ratio of performance to deviation (RPD) of the validation set that was calculated as:

RPD = SD/RMSE =

√
m

m

∑
i=1

(yi − y)2/
m

∑
i=1

( f (Xi)− yi)
2
/
(m− 1) (3)

where m is the number of testing samples in the validation set, yi is the real value of sample i, f (Xi) is
the predicted value of sample i, and y is the average value of y. According to [54], the following three
categories of predictability were adopted: Category A (RPD > 2.0) with good accuracy; Category B
(1.4 < RPD < 2.0) with moderate accuracy; and Category C (RPD < 1.4) with poor accuracy. The ratio
between the interpretable sum squared deviation and the real sum squared deviation (SSR/SST),
which was calculated as:

SSR/SST =
m

∑
i=1

( f (Xi)− y)2
/ m

∑
i=1

(yi − y)2 (4)

was recognized as the proportion of the variability of the dependent variable explained by the
regression model [55–59]. A good model should have both high RPD and SSR/SST [13]. Usually,
the SSR/SST should be greater than 0.5 to ensure the model stability. All mathematical analysis
methods mentioned above were conducted in MATLAB (MathWorks, Natick, MA, USA). The process
of single-task learning and multi-task learning were carried out with MALSAR Version 1.1 [60].

3. Results

3.1. Soil Properties and Spectral Response

Table 1 shows the descriptive statistics of the measured concentrations of the seven soil properties
in the 108 samples used for calibrating and validating the regression models. The results showed
high variation in the soil properties, indicating that the data could be used for the regression analysis.
Table 2 shows the Pearson correlation coefficients (R) between different soil properties. The highest
positive correlation was found between OM and WC (R = 0.74). Moderately positive correlations were
found between N and P (R = 0.69), N and K (R = 0.58), P and K (R = 0.57), and OM and K (R = 0.51).
In addition, it was found that pH has a low negative correlation with every other soil property.

Table 1. Descriptive statistics of the seven studied soil properties.

Soil Properties Units Mean STD Min Median Max

N mg/Kg 27.42 15.57 5.73 22.66 72.56
P mg/Kg 19.36 9.70 7.00 16.70 55.20
K mg/Kg 25.44 13.49 7.30 23.45 64.80

WC % 5.61 1.81 3.01 4.92 10.77
pH 7.20 0.21 6.78 7.14 7.87
EC µS/cm 0.50 0.22 0.18 0.46 1.77

OM % 4.29 1.92 1.73 3.68 9.58

Abbreviations used: available nitrogen (N), available phosphorous (P), available potassium (K), water content (WC),
pH, electrical conductivity (EC), and organic matter (OM).
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Table 2. Pearson correlation coefficients between the seven soil properties.

Soil Properties N P K WC pH EC OM

N 1.00
P 0.69 1.00
K 0.58 0.57 1.00

WC 0.24 0.15 0.22 1.00
pH −0.25 −0.27 −0.24 −0.30 1.00
EC 0.30 0.19 0.28 0.25 −0.38 1.00
OM 0.45 0.39 0.51 0.74 −0.26 0.31 1.00

Abbreviations used: available nitrogen (N), available phosphorous (P), available potassium (K), water content (WC),
pH, electrical conductivity (EC), and organic matter (OM).

Figure 1 shows the field spectral reflectance of 108 soil samples. The spectra show large variations
between different samples that are caused by soil color, soil composition, water content, particle size,
and the coverings on the soil surface, such as residual dry vegetation, rock particles, and mineral
deposits [61]. The obvious spectral signatures near 930 nm may be related to the absorption of hydroxyl
in Fe oxides [25], the ones near 940 nm, 1150 nm and 1450 nm may be influenced by the absorption
of the atmospheric water content [62]; the ones near 1765 nm may be related to the signal jump
of the spectral instrument; the ones near 2205 nm may be related to the absorption of Al-OH [25].
The spectral signatures ranging from 2300–2400 nm may be related to several other clay minerals and
soil organics [63].
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3.2. Model Performance of PLS-R

3.2.1. Prediction Results

Table 3 shows the prediction results of the PLS-R models for the seven soil properties. The numbers
of LVs were determined by leave-one-out cross-validations, which are also shown in Table 3. Among all
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soil properties, OM was the most accurately predicted with a RPD = 2.22, and with a model prediction
accuracy categorized as A (RPD > 2). The prediction accuracies of P, WC, and pH were categorized as
B (1.4 < RPD < 2) with RPD = 1.42, 1.53, and 1.78, respectively, indicating moderate prediction ability.
All properties in Category A or B achieved SSR/SST values that were more than 0.5, confirming the
model stability for predicting P, WC, pH, and OM. However, the prediction accuracies of N, K, and EC
were categorized as C (RPD < 1.4) with RPD = 1.27, 0.97, and 0.64, respectively, demonstrating poor
prediction ability. In addition, it is worth mentioning that the SSR/SST of N was 0.66, but the SSR/SSTs
of K and EC were over 1 and related to low prediction accuracy and overfitting of the models.

Table 3. The used parameters and prediction results of the partial least squares regression (PLS-R) and
linear multi-task learning (LMTL) models for predicting seven soil properties.

Algorithm Property Parameter 1 n 2 Calibration Validation Accuracy Category
RPD SSR/SST RPD SSR/SST

PLS-R

N 5 355 2.15 0.78 1.27 0.66 C
P 5 355 1.85 0.71 1.42 0.80 B
K 6 355 2.71 0.86 0.97 - C

WC 4 355 1.99 0.75 1.53 0.72 B
pH 6 355 2.78 0.87 1.78 0.83 B
EC 6 355 2.33 0.81 0.64 - C
OM 5 355 2.58 0.85 2.22 0.82 A

LMTL

N 40 20 81 1.94 0.53 1.40 0.58 B
P 20 21 114 2.18 0.54 1.49 0.64 B
K 160 26 11 1.56 0.29 1.22 0.52 C

WC 30 7 75 2.30 0.61 1.71 0.55 B
pH 20 3 79 3.45 0.76 1.90 0.92 B
EC 60 20 66 1.42 0.21 0.98 - C
OM 40 25 75 2.31 0.68 2.29 0.70 A

1 Note: The parameter for PLS-R is the number of latent variables; for LMTL, there are two regularization
parameters, λb and λe. 2 Note: n is the number of features used in the model. Category A: RPD > 2.0, Category B:
1.4 < RPD < 2.0, Category C: RPD < 1.4. Abbreviations used: available nitrogen (N), available phosphorous (P),
available potassium (K), water content (WC), pH, electrical conductivity (EC), and organic matter (OM), the ratio
of performance to deviation (RPD), the ratio between the interpretable sum squared deviation and the real sum
squared deviation (SSR/SST).

3.2.2. Feature Importance in PLS-R

Figure 2 shows the distribution of the VIP scores of different soil properties over the entire
wavelength range (400–2400 nm). We used all of the 355 wavebands in the VNIR/SWIR region
in the PLS-R models, which was necessary to evaluate the feature importance in the prediction of
each soil property. We identified four feature-block regions with high importance existing in the
entire VNIR/SWIR region whose properties were associated with soil OM, WC, clay minerals and
Fe oxides [64]. The first region, ranging from 410 to 650 nm, is mostly related to the Fe oxides [19,25],
with the 560 nm waveband related to OM [24,65]. The second region ranges from 850 to 1075 nm;
of this, the 850–930 nm range is related to hydroxyl in Fe oxides [19,25], the 970 nm waveband
is related to the soil water absorption waveband [66], the 1010 nm waveband is a hydrate-related
absorption feature [67], and the 1025–1075 nm range is mostly related to the electronic transition bands
of Fe2+ or Fe3+ [19]. The third region, ranging from 1530 to 1770 nm, is almost entirely related to soil
organics [19,25]. The fourth region, ranging from 2005 to 2400 nm, may be connected to water, organics
and clay minerals [19,25,68].

Besides the four feature-block regions, several important individual wavebands with significantly
high VIP scores still could be seen in Figure 2. The 730 nm waveband in the prediction of K, WC and EC
may be related to the sensitive absorption of soil salinity [67]. The 805 nm waveband is related to the
red-edge, which is known to be sensitive to biomass [69], and the predictions of P, K, pH and OM were
found to be correlated. The 1120 and 1155 nm wavebands may be related to the v S–O stretching bands
of sulfate [70], which can be used to predict P and K. The 1225 nm [71] and 1315 nm [72] wavebands
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were found to be important bands for predicting soil organics; here, several properties are correlated.
The 1450 nm waveband in the prediction of OM may be related to the carboxylic acids in organics [25].
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3.3. Model Performance of LMTL

3.3.1. Effects of Regularization Parameters on Modeling

The range of λb was set to 0–200 with a gradient of 10, and the range of λe was set to 0–50
with a gradient of 1. Figure 3 shows the sparsity (the number of non-zero elements in the regression
coefficients) of the block-sparse matrix (Wb), the elementwise sparse matrix (We), and the combined
regression coefficients matrix (W) of the regression model generated from LMTL for predicting N when
changing λb and λe; other properties had similar characteristics (Supplementary Material, Figure S1)
and can be seen in the Appendix. According to Figure 3, the sparsity of Wb decreased significantly
with increasing λb, especially in the low λb values ranging from 0 to 75. The sparsity of We decreased
significantly with increasing λe, especially in the low λe values ranging from 0 to 3.5. However,
the sparsity of Wb was also affected by λe in the range of 0–20, and the sparsity of We was also affected
by λb in the range of 0–10. Therefore, λb and λe controlled the degree of penalty on Wb and We,
respectively, but also interacted with each other. Both regularization parameters greatly affected the
sparsity of W. The degree of effects gradually weakened with the increase of λb or λe.
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Figure 3. Sparsity (the number of non-zero elements) of the block-sparse matrix Wb (a); the elementwise
sparse matrix We (b); and the combined regression coefficients matrix W (c) of the model generated
from linear multi-task learning for predicting available nitrogen.

Figure 4 shows the RPD and SSR/SST performance of the LMTL prediction models for predicting
the seven soil properties of the validation set when changing λb and λe. According to Figure 4,
the SSR/SSTs of all the properties showed an obviously decreasing trend with increasing λb and λe,
which is similar to the changing characteristics of model sparsity shown in Figure 3c. The RPD
performances generally increased with λb and λe in the low-value range and decreased in the
high-value range. The aim of the object function of LMTL is to minimize the overall squared error of the
seven soil properties (see Equation (2)). Thus, obtaining the individual maximum RPD for every soil
property simultaneously is a difficult task. The locations of the high RPDs and the decreasing trends of
N, P, and OM are similar and are dependent on λb, representing the shared features. The locations of
the high RPDs of WC, pH and EC are determined by both λb and λe, representing both the shared and
non-shared features. The location of the high RPD of K is almost on the border of the regularization
parameters, indicating that few features are used. This means that the best prediction of different
properties may depend on the special combination of shared and non-shared features; thus, different
combinations of λb and λe were selected to obtain the best RPDs for different properties under the
condition of SSR/SST values higher than 0.5 (Table 3).
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Figure 4. The ratio of performance to deviation (RPD) (left) and the ratio between the interpretable
sum squared deviation and the real sum squared deviation (SSR/SST) (right) performance of linear
multi-task learning prediction models for predicting: available nitrogen (a); available phosphorous (b);
available potassium (c); water content (d); pH (e); electrical conductivity (f); and organic matter (g) in
a validation set when changing the regularization parameters (λb and λe ).

3.3.2. Prediction Results and Used Features

Table 3 shows the selected regularization parameters, the numbers of used features and the
prediction results of LMTL models for predicting seven soil properties. Figure 5 shows the distributions
of the features that were used in the models with different combinations of λb and λe (The distributions
of the features with specific λb = 40 and λe = 10 could be seen in Supplementary Material, Figure S2).
The regularization algorithm reduced the numbers of used features to a large extent and selected a few
wavebands as optimal features, which made the distributions of the used features sparse. Nevertheless,
the RPD performances of all the soil properties increased compared to the single-task models built by
PLS-R (Table 3): N increased to 1.40 from 1.27; P increased to 1.49 from 1.42; K increased to 1.22 from
0.97; WC increased to 1.71 from 1.53; pH increased to 1.90 from 1.78; EC increased to 0.98 from 0.64;
OM increased to 2.29 from 2.22. Consequently, the prediction accuracy of OM was categorized as A;
Category B included pH, WC, P, and N; and K and EC were categorized as C. However, the SSR/SSTs
of all properties expect P, decreased due to regularization (Table 3). Despite this, the SSR/SST results
were still more than 0.5, which can confirm the model stability, except EC which had an inappropriately
large value.

According to Figure 5, the used features of N, P, and OM were all in the block-sparse matrix,
indicating shared features. Some of the used features of WC, pH, and EC were in the block-sparse
matrix, and others were in the elementwise sparse matrix, indicating that both shared features and
non-shared features were used for modeling. The used features of K were all in the elementwise sparse
matrix, indicating non-shared features. These results agree with the analysis results in Figure 4. Shared
features can be seen in Figure 5a, with most of them in the four feature-block regions. Out of these
four regions, important features, such as 805, 1225, and 1315 nm, with large VIP scores that were used
in the PLS-R were also recognized as shared features. Some less important features with small VIP
scores, such as 1105, 1275, and 1965 nm (Figure 2), were also shared to provide more information.
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The distribution positions of the non-shared features used by K, WC, pH, and EC are shown in
Figure 5b and are similar to the shared features in Figure 5a. These indicated that the predictions of
the seven soil properties were correlated. However, because different regularization degrees of Wb
and We were implemented for different models, the features were divided into either the block-sparse
matrix or the elementwise sparse matrix.
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Figure 5. Used features (non-zero items in the transpose of block-sparse matrix Wb (a); and elementwise
sparse matrix We (b)) of the linear multi-task learning models for predicting available nitrogen (N),
available phosphorous (P), available potassium (K), water content (WC), pH, electrical conductivity
(EC), and organic matter (OM), respectively. (1), (2), (3), and (4) represent four feature-block regions.

4. Discussion

We investigated the performances of the LMTL algorithm for modeling several soil properties
simultaneously using field VNIR/SWIR spectroscopy. To the best of our knowledge, most studies
dealing with quantitative soil spectroscopy analysis focus on building regression models via individual
single-task learning algorithms with only one response variable as the output. PLS-R could also work
in a multiple-response mode, but features could not be shared during modeling. In this study, we
used PLS-R to represent single-task learning algorithms for comparing the performance of LMTL.
Our results show that the use of LMTL algorithms with multiple response variables as output improves
the RPD in all of the seven tested soil properties. We found that shared features can be used to improve
the generalization performance of regression models for predicting these seven key soil properties.
In addition, we found that low concentration soil properties such as K and EC, with few spectral
absorption signals are usually difficult to predict with current optical methods.

4.1. Comparison of Two Algorithms

The PLS-R models explained most of the variance in the dependent variable with several latent
variables obtained from the spectral matrix, and they recognized the important wavebands for each
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soil property efficiently. Therefore, the SSR/SST values of the PLS-R models were very high, indicating
strong explanatory power (Table 2). However, the low RPD values in the validation set indicating
prediction accuracy were not satisfactory due to the large number of used features and the high
complexity of the PLS-R models. In comparison, the LMTL based on the dirty model algorithm
regularized the overall wavebands and built the regression models with selected shared and non-shared
features (Figure 5), which led to certain degrees of improvement of the RPD values in the validation
set, indicating higher prediction accuracy and stronger generalization performance. We found that the
RPD values improved by 10.24%, 4.93%, 25.77%, 11.76%, 6.74%, 53.13%, and 3.15% for N, P, K, pH, WC,
OM, and EC, respectively. It is worth mentioning that the prediction accuracy category of N improved
from C to B, and the prediction ability of K was highly improved. Regrettably, the explanatory power
of the LMTL models correspondingly decreased as fewer features were used, increasing the model
sparsity (Table 2). The SSR/SST of pH increased with the LMTL model, this result might be because
the redundant information was successfully removed by the regularization and the useful information
was kept.

4.2. The Shared Features

Correlations between the modeling of different soil properties have been suggested by various
studies (e.g., [25,28]). Our study also showed that the distributions of the important wavebands with
high VIP scores for the seven key soil properties were quite similar, especially in the four feature-block
regions (Figure 2). In addition, the features used in the LMTL models illustrated the existence of
correlations between the different soil properties (Figure 5). The correlations were mostly attributed
to the soil Fe oxides, water content, organics and clay minerals, which constitute the basis of the
feature-block regions and shared features in soil spectroscopy. With the advantage of shared features,
the prediction accuracies of several soil properties with low concentrations or unobvious spectral
absorption signals improved. For example, the 1105, 1275, and 1965 nm wavebands obtained low VIP
scores in the prediction of N with the PLS-R model, but were useful with the LMTL model as they
were shared by P, WC and OM. The 650 nm waveband in the prediction of N, P and OM was shared
by WC, the 1195 nm waveband in the prediction of P was shared by OM, the 1500 nm and 1985 nm
wavebands in the prediction of P were shared by pH, and so on (Figure 5).

4.3. Assessing the Performance of Field VNIR/SWIR Spectroscopy

The application of field VNIR/SWIR spectroscopy for quantitative soil property prediction is not
a new idea, and great effort has been made toward the goal of improving the prediction accuracy of
regression models, especially during the past two decades [3]. Table 4 summarizes the results of past
studies for predicting seven key soil properties using the field spectroscopy analysis approach. Many
studies conducted field spectral measurements using either a contact probe to touch the soil surface
(or soil profile) (e.g., [16]) or a mobile subsoiler to penetrate the soil (e.g., [7]), both with a built-in
light source. The performance results of non-contact field VNIR/SWIR spectroscopy were usually
not as accurate as those obtained using contact spectroscopy due to the effects of atmospheric water
absorption, residual coverings on the soil surface, and scattering [73].
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Table 4. Summary of previous research results for predicting the soil properties used in this study.

Property Range
(nm)

Measurement
Method

Regression
Algorithm RPD R2 Accuracy

Category Literature

N
500–1600 Mobile PLS-R 1.60 0.69 B [8]
350–2500 Contact probe LS-SVM 1.91 0.76 B [16]

P

920–1718 Mobile PCR - 0.65 B [6]
306.5–1710.9 Mobile PLS-R 1.80 0.69 B [7]
500–1600 Mobile PLS-R 1.80 0.72 B [8]
350–2500 Contact probe PLS 1.33 0.43 C [16]
400–1050 Non-contact ANN - 0.87 A [17]
350–2500 Contact probe MPLS-R 1.70 0.65 B [26]

1100–2300 Mobile PLS-R 1.27 0.41 C [23]

K

920–1718 Mobile PCR - 0.26 C [6]
350–2500 Contact probe LS-SVM 0.91 0.14 C [16]
400–1050 Non-contact ANN - 0.85 A [17]
350–2500 Contact probe MPLS-R 2.90 0.88 A [26]

1100–2300 Mobile PLS-R 1.08 0.19 C [23]

WC

920–1718 Mobile PCR - 0.40 C [6]
306.5–1710.9 Mobile PLS-R 3.00 0.89 A [7]
500–1600 Mobile PLS-R 3.60 0.93 A [8]
305–2200 Mobile PLS-R 3.54 - A [10]
305–2200 Mobile MARS 3.25 0.72 A [20]

pH

920–1718 Mobile PCR - 0.43 C [6]
306.5–1710.9 Mobile PLS-R 2.14 0.71 A [7]
500–1600 Mobile PLS-R 1.6 0.69 B [8]
350–2500 Contact probe LS-SVM 2.23 0.80 A [16]

1100–2300 Mobile PLS-R 1.88 0.71 B [23]

EC 500–1600 Mobile PLS-R 1.30 0.60 C [8]

OM

920–1718 Mobile PCR - 0.67 B [6]
500–1600 Mobile PLS-R 2.90 0.90 A [8]
350–2500 Contact probe LS-SVM 2.18 0.81 A [16]
400–1050 Non-contact ANN - 0.84 A [17]
350–2500 Contact probe MPLS-R 2.80 0.86 A [26]
350–2500 Contact probe PLS-R 1.94 0.79 B [74]

1100–2300 Mobile PLS-R 1.59 0.61 B [23]

Category A: RPD > 2.0, Category B: 1.4 < RPD < 2.0, Category C: RPD < 1.4. Abbreviations used: available nitrogen
(N), available phosphorous (P), available potassium (K), water content (WC), pH, electrical conductivity (EC),
and organic matter (OM), the ratio of performance to deviation (RPD), coefficient of determination (R2), partial
least squares regression (PLS-R), least squares support vector machine (LS-SVM), principal components regression
(PCR), artificial neural network (ANN), modified partial least squares regression (MPLS-R).

It is well-known that soil OM can be successfully predicted by VNIR/SWIR spectroscopy because
of its sensitivity to broad overtones and combination absorptions, such as O–H, C–H, and N–H [75].
Our results show that the prediction performance of OM had the highest accuracy among all of
the seven soil properties, with RPD = 2.29, which is categorized as good accuracy (RPD > 2) and is
comparable to previous studies that used contact spectroscopy. The prediction accuracy of pH varies
among different studies, possibly due to the fact that pH is related to many soil properties but has no
direct spectral absorptions [25]. The RPD of pH was 1.90, indicating moderate accuracy (1.4 < RPD < 2).
The removal of the atmospheric water absorption wavebands (350–1420 and 1800–1960 nm) caused the
loss of several useful features, especially for soil WC, which has significant absorption bands at around
1400 and 1900 nm [76]. Therefore, the prediction performance of WC in this study is not high with an
RPD = 1.71, which can only be categorized as moderate accuracy. We found that among the three soil
available nutrients, P has been relatively well studied with different levels of predication accuracy; this
could be attributed to the chemical measurement method of P, which can greatly affect its prediction [3].
The prediction accuracies of N, P and K in this study (RPD = 1.40, 1.49, and 1.22, respectively) were
low, perhaps because of their extremely low concentrations in dryland soils. The prediction of EC in
this study was unreliable possibly due to the wavebands sensitive to several key soil salinities, such as
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NaCl at 1930 nm and Na2SO4 at 1825 nm [77], which were removed along with the atmospheric water
absorption wavebands.

4.4. Next Steps

We have shown that using a LMTL algorithm based on a regularized dirty model can improve
the prediction accuracies of seven key soil properties with the advantage of shared features and
regularization. A larger dataset of soil samples may improve the performances of LMTL algorithms
and enhance the shared features. The concentrations of soil Fe oxides and clay minerals should also
be considered as outputs to enhance the learning ability of the LMTL models. Previous studies have
argued that a nonlinear correlation exists between soil properties and spectral features (e.g., [16–20]).
A future study should be conducted to apply nonlinear multi-task learning algorithms, such as a
deep neural network [78,79], focusing on optimizing these algorithms to improve both the prediction
accuracy and the explanatory power. In addition, airborne and satellite-based hyperspectral remote
sensing should also be an important research area in which LMTL could be used to develop large-scale
soil property monitoring and mapping.

5. Conclusions

Our study illustrates that LMTL algorithms can improve the prediction accuracies of seven
key soil properties by field VNIR/SWIR spectroscopy in the drylands. Our results demonstrate
that: (1) The used features for predicting different soil properties are correlated and most of them are
attributed to soil Fe oxides, WC, OM and clay minerals. (2) In the current study, OM was predicted with
good accuracy (RPD > 2); N, P, WC and pH were predicted with moderate accuracy (1.4 < RPD < 2);
K and EC were predicted with poor accuracy (RPD < 1.4). (3) Compared to the PLS-R, LMTL models
based on regularization algorithms usually have slightly higher prediction accuracy (with respect
to the RPD values) and lower explanatory power (with respect to the SSR/SST values) as the used
features are sparse. (4) LMTL could use the advantages of the shared features in the soil spectroscopy
of different soil properties and improve the model generalization performance. Our study provides
a novel analysis method for in-deep research on the underlying correlations in the soil spectroscopy
of different soil properties, which can be used in future studies of soil property prediction and soil
quality assessment based on spectroscopy.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/11/1099/s1.
Figure S1: Sparsity (the number of non-zero elements) of: the block-sparse matrix Wb (1); the elementwise sparse
matrix We (2); and the combined regression coefficients matrix W (3), of the model generated from linear multi-task
learning for predicting available nitrogen (a); available phosphorous (b); available potassium (c); water content (d);
pH (e); electrical conductivity (f); and organic matter (g). Figure S2: Used features (non-zero items in the transpose
of the block-sparse matrix Wb (a); the elementwise sparse matrix We (b); and the combined regression coefficients
matrix W (c)) of linear multi-task learning models with λb = 40 and λe = 10.
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