Comparison of Global Land Cover Datasets for Cropland Monitoring
Abstract
:1. Introduction
2. Datasets
2.1. Global Land Cover Datasets
2.2. Reference Global Land Cover Datasets
3. Methods
3.1. Legend Harmonization
3.2. Comparison of Datasets
3.3. Assessment with FAO Statistics
3.4. Accuracy Assessment
3.5. Recommendations at Country Level
3.6. Suitability of Datasets to Monitor Agricultural Land Based on Parcel Size
4. Results
4.1. Spatial Agreement and Discrepancies
4.2. Agreement with FAO Statistics
4.3. Accuracy Assessments
4.4. Suitability of Datasets to Monitor Agricultural Land Based on Parcel Size
4.5. Recommendations for the Use of Global Land Cover Maps for Agricultural Monitoring
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Rembold, F.; Meroni, M.; Urbano, F.; Lemoine, G.; Kerdiles, H.; Pérez-Hoyos, A.; Csak, G. ASAP- Anomaly hot Spots of Agricultural Production, a new early warning decision support system developed by the Joint Research Centre. In Proceedings of the AARSE Conference, Kampala, Uganda, 24–28 October 2016. [Google Scholar]
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- López-Lozano, R.; Duveiller, G.; Seguini, L.; Meroni, M.; Garcia-Condado, S.; Hooker, J.; Leo, O. Towards regional grain yield forecasting with 1-km resolution EO biophysical products: Strengths and limitation at pan-European level. Agric. For. Meteorol. 2015, 206, 12–32. [Google Scholar] [CrossRef]
- FSIN (Food Security Information Network). Global Report on Food Crises 2017. March 2017. Available online: https://ec.europa.eu/europeaid/global-report-food-crises-2017_en (accessed on 13 June 2017).
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuioka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Loveland, T.; Schlesinger, P.; Ohlen, D.; Zhu, Z.; Yang, L.; Merchant, J. Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, N.; Ramankutty, A.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algortithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. The most detailed portrait of Earth. ESA Bull. 2008, 136, 25–31. [Google Scholar]
- Defourny, P.; Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M. Land Cover CCI: Product User Guide Version 2, 2016. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf (accessed on 10 June 2017).
- Tateishi, R.; Hoan, N.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Pong, D. Production of Global Land Cover Data—GLCNMO2008. J. Geogr. Geol. 2014, 6, 99–122. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; Schill, C.; Obersteiner, M.; van der Velde, M.; Boettcher, H.; Havlik, P.; Achard, F. Highlighting continued uncertainty in global land cover maps for the user community. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Gong, P.; Wang, L.; Yu, L.; Zhao, Y.L.; Zhao, L.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of GLC: First mapping results with Landsat TM and ETM+data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; García-Haro, J.; San-Miguel-Ayanz, J. A methodology to generate a synergetic land-cover map by fusion of different land-cover products. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 72–87. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecth, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latham, J.R.; Cumani, R.; Rosati, I.; Bloise, M. Global Land Cover-Share of year 2014- Beta-Release 1.0 FAO Global Land Cover Network (GLCN), 2014. Available online: http://www.fao.org/uploads/media/glc-share-doc.pdf (accessed on 2 November 2017).
- Vancutsem, C.; Marinho, E.; Kayitakire, F.; See, L.; Fritz, S. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sens. 2013, 5, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Hoyos, A.; García-Haro, F.J.; San-Miguel-Ayanz, J. Conventional and fuzzy comparisons of large-scale land cover products: Application to CORINE, GLC2000, MODIS and GlobCover in Europe. ISPRS J. Photogramm. Remote Sens. 2012, 74, 185–201. [Google Scholar] [CrossRef]
- Kaptué-Tchuenté, A.T.; Roujean, J.L.; De Jong, S.M. Comparison and relative quality assessment of the GLC2000, GlobCover, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf. 2011, 113, 207–219. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Rembold, F. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. Int. J. Remote Sens. 2010, 31, 2237–2256. [Google Scholar] [CrossRef]
- Fritz, S.; You, L.; Bun, A.; See, L.; McCallum, I.; Schill, C.; Perger, C.; Liu, J.; Hansen, M.L.; Obersteinr, M. Cropland for sub-Saharan Africa: A synergistic approach using five land cover datasets. Geophys. Res. Lett. 2011, 38, 155–170. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km data sets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Meroni, M.; Rembold, F.; Urbano, F.; Csak, G.; Lemoine, G.; Hervé, K.; Pérez-Hoyos, A. The Warning Classification Scheme of ASAP—Anomaly Hot Spots of Agricultural Production; JRC Technical Reports; Publications Office of the European Union: Luxemburg, 2016; ISBN 978-92-79-64529-7. [Google Scholar]
- Rembold, F.; Meroni, M.; Urbano, F.; Lemoine, G.; Kerdiles, H.; Pérez-Hoyos, A.; Csak, G. ASAP- Anomaly hot Spots of Agricultural Production, a new early warning decision support system developed by the Joint Research Centre. In Proceedings of the Multitemp 2017 Conference, Bruges, Belgium, 27–29 June 2017. [Google Scholar]
- See, L.; Schepaschenko, D.; Lesiv, M.; McCallum, S.; Fritz, S.; Comber, A.; Perger, C.; Schill, C.; Zhao, Y.; Maus, M.A.; et al. Building a Hybrid Land Cover Map with Crowdsourcing and Geographically Weighted Regression. ISPRS J. Photogramm. Remote Sens. 2015, 103, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, A.; Jansen, L.J.M. Land Cover Classification System (LCCS): Classification Concepts and User Manual; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2000. [Google Scholar]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Agrawal, S.; Naumov, S.; De Miranda, E.E.; Di Bella, C.M.; Ordoyne, C.; et al. Validation of the Global Land Cover Map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1739. [Google Scholar] [CrossRef]
- Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Aboel Ghar, M.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Thanh Hoan, N.; Shalaby, A.; Alsaaideh, B.; et al. Production of global land cover data—GLCMO. Int. J. Digit. Earth 2011, 4, 22–49. [Google Scholar] [CrossRef]
- Bicheron, P.; Huc, M.; Henry, C.; Bontemps, S.; Lacaux, J.P. GlobCover Products Description Manual; European Space Agency: Paris, France, 2008; 25p. [Google Scholar]
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Arino, O.; Kalogirou, V.; Ramos Pérez, J. GlobCover 2009. Products Description and Validation Report. Available online: http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf (accessed on 2 November 2017).
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- ESA—European Space Agency. CCI Land Cover Product User Guide Version 2.4; ESA CCI LC Project; European Space Agency: Paris, France, 2014. [Google Scholar]
- CCI—Climate Change Initiative. Land Cover Newsletter 7. Available online: https://www.esa-landcover-cci.org/index.php?q=webfm_send/88 (accessed on 18 April 2017).
- McIver, D.K.; Friedl, M.A. Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1959–1968. [Google Scholar] [CrossRef]
- Pekkarinen, A.; Reithmaier, L.; Strobl, P. Pan-European forest/non-forest mapping with Landsat ETM+ and CORINE Land Cover 2000 data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 171–183. [Google Scholar] [CrossRef]
- GOFC-GOLD. GOFC-Gold Reference Data Portal. Available online: http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php (accessed on 1 July 2017).
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Neweel, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki. Org: The use of crowd-sourcing to improve global land cover. Remote Sens. 2009, 1, 345–354. [Google Scholar]
- Tsendbazar, N.E.; de Bruin, S.; Herold, M. Assessing global land cover reference datasets for different user communities. ISPRS J. Photogramm. Remote Sens. 2015, 103, 93–114. [Google Scholar] [CrossRef]
- Comber, A.; See, L.; Fritz, S.; Van der Velde, M.; Perger, C.; Foodyc, G. Using control data to determine the reliability of volunteered geographic information about land cover. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 37–48. [Google Scholar] [CrossRef]
- JECAM. Guidelines for Cropland and Crop Type Definition and Field Data Collection Version 1. 2014. Available online: http://www.jecam.org/JECAM_Guidelines_for_Field_Data_Collection_v1_0.pdf (accessed on 6 July 2017).
- FAO. Arable Land and Permanent Crops. 2014. Available online: http://www.fao.org/faostat/en/#data/RL (accessed on 3 July 2017).
- Herold, M.; Hubald, R.; Di Gregorio, A. Translating and Evaluating Land Cover Legends Using the UN Land Cover Classification System (LCCS); GOFC-GOLD Report Series; No. 43; Land Cover Project Office: Jena, Germany, 2009. [Google Scholar]
- Lambin, E.F.; Geist, H. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer: Berlin, Germany, 2006; pp. 130–131. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; EUR#22156, Office for Official Publications of the European Communities: Luxembourg, 2006; p. 51. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Latifovic, R.; Olthof, I. Accuracy assessment using sub-pixel fractional error matrices of global land cover products drived from satellite data. Remote Sens. Environ. 2004, 90, 153–165. [Google Scholar] [CrossRef]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef] [Green Version]
- Committee on Earth Observation Satellites. CEOS Acquisition Strategy for GEOGLAM Phase 1. Available online: http://geoglam.org/pdf/CEOS-Acquisition-Strategy-for-GEOGLAM-Phase-1.pdf (accessed on 4 July 2017).
- Schepaschenko, D.; McCallum, I.; Shvidenko, A.; Fritz, S.; Kraxner, F.; Obersteiner, M. A new hybrid land cover dataset for Russia: A methodology for integrating statistics, remote sensing and in-situ information. J. Land Use Sci. 2011, 6, 245–259. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wanga, J.; Menarguez, M.A.; Birandar, C. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef] [PubMed]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Clark, M.L.; Aide, T.M.; Riner, G. Land change for all municipalities in Latin America and the Caribbean assessed from 250-m MODIS imagery (2001–2010). Remote Sens. Environ. 2012, 126, 84–103. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Lambert, M.-J.; Waldner, F.; Defourny, P. Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sens. 2016, 8, 232. [Google Scholar] [CrossRef]
- Fuller, R.M.; Smith, G.M.; Devereux, B.J. The characterization and measurement of land cover change through remote sensing: Problems in operational applications? J. Appl. Earth Obs. Geoinf. 2003, 4, 243–253. [Google Scholar] [CrossRef]
- FAO. Assessing Country Capacity to Produce Agricultural and Rural Statistics. 2012. Available online: http://www.fao.org/fileadmin/templates/ess/global_strategy/documents/CA_In_deth_assessment.pdf (accessed on 2 November 2017).
- FAO. Global Strategy to improve Agricultural and Rural Statistics. 2010. Available online: http://www.fao.org/docrep/015/am082e/am082e00.pdf (accessed on 2 November 2017).
- Tsendbazar, N.; de Bruin, S.; Fritz, S.; Herold, M. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sens. 2015, 7, 15804–15821. [Google Scholar] [CrossRef]
- Laso Bayas, J.C.; Lesiv, M.; Walder, F.; Schucknecht, A.; Duerauer, M.; See, L.; Fritz, S.; Fraisl, D.; Moorthy, I.; McCallum, I.; et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Sci. Data 2017, 4, e170136. [Google Scholar] [CrossRef] [PubMed]
DATASET—Producer | Spatial Resolution | Period of Data Acquisition | Sensor | Classification Method | Classification Scheme | Overall Accuracy |
---|---|---|---|---|---|---|
FAO-GLCshare [16] | 1 km | Various Depending on data | Various Depending on data | Data fusion | FAO LCCS 11 Classes | 80.2% |
Geowiki Hybrid 1-IIASA [27] | 300 m | 2000–2005 | MODIS, SPOT4, MERIS FR | GWR | FAO LCCS 10 classes | 87.9% |
GLC2000-JRC [7] | 1 km | November 1999–December 2000 | SPOT4/VGT | Unsupervised | FAO LCCS 22 classes | 68.6% |
GLCNMO v2-ISCGM [11] | 500 m | 2008 | MODIS | Supervised classification | FAO LCCS 20 classes | 77.9% |
GlobeLand30-UN/NASG [33] | 30 m | 2010 | Landsat TM, ETM7, HJ-A1/B | Supervised | 10 classes | 80.3% |
GlobCover 2009-ESA [31] | 300 m | 2009 | MERIS FR | Supervised & Unsupervised | FAO LCCS 22 classes | 67.5% |
LC-CCI 2010-ESA [34] | 300 m | 2008–2012 | MERIS FR/SPOT VGT | Supervised & Unsupervised Change detection | FAO LCCS 22 classes | 74.4% |
LC-CCI 2015 [35] | 300 m | 2015 | MERIS FR/PROBA-V/SPOT VGT/AVHRR HRPT | Supervised & Supervised Change detection | FAO LCCS | ---- |
MODISLC 2010-NASA [8] | 500 m | Since 2001 | MODIS | Supervised | IGBP 17 | 71.6% |
Source | Validation Datasets | Geometry | Legend (Cropland Classes) |
---|---|---|---|
Global Observation for Forest Cover and Land Dynamics (GOFC-GOLD) http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php | GLC2000con [7] | Points | 11-class (8. Cultivated and managed vegetation/agriculture) |
GlobCover2005con [28] | 5 × 5 MERIS pixels (225 ha) | 20-class Globcover (GlobCover legend details in Table 3) | |
System for Terrestrial Ecosystem Parameterization (STEP) [8] | Polygon (4 × 4 km) | 17-class International Geosphere-Biosphere Programme (IGBP) (MODIS legend details in Table 3) | |
Visible Infrared Imaging Radiometer Suite (VIIRS) [8] | Polygon 5 × 5 km | 17-class IGBP (MODIS legend details in Table 3) | |
GLCNMO 2008 [11] | Polygon | 20 classes (GLCNMO legend details in Table 3) | |
Geowiki https://www.geo-wiki.org/downloads/ | IIASA experts [17] | Polygon (1 × 1 km) | % of cropland |
Competition II [43] | Polygon (1 × 1 km) | 10-class legend (4. Cultivated and managed/Cropland) | |
Zhao et al. http://data.ess.tsinghua.edu.cn/ | FROM-GLC [40] | Point | 11-class legend (10. Cropland) |
Dataset | Classes | Description | Cropland (%) (Weight × 100) |
---|---|---|---|
FAO-GLCshare | 2. Cropland | Herbaceous crops: the class is composed of a main layer of cultivated herbaceous plants. It includes herbaceous crops used for hay. All the non-perennial crops that do not last for more than two growing seasons and crops like sugar cane in which the upper part of the plant is regularly harvested while the root system can remain for more than one year in the field are included in this class. Woody crops: the class is composed of a main layer of permanent crops and includes all types of orchards and plantations. Multiple or Layered crops: this class combines different land cover situations: two layers of different crops and the presence of one important layer of natural vegetation that covers one layer of cultivated crops. | 1–100 |
Geowiki IIASA-Hybrid 1 | 4. Cultivated managed 5. Mosaic cultivated | 100 20–50 | |
GLC2000 | 7. Mosaic forest/cropland | The vegetation found here is formed by a complex of secondary regrowth, fallow, home gardens, food crops, and village plantations. | 15–50 |
18. Croplands | Areas with over 50% crops or pastures. Regions of intensive cultivation and/or sown pasture fall in this class. | 100 | |
19. Croplands mixed with open vegetation | Mosaic of agriculture and non-forest vegetation. South of the Sahelian belt, croplands are mixed with natural vegetation and represent up to 30% of the cover. | 15–30 | |
20. Irrigated agriculture | Agriculture depending on artificial water supply. | 100 | |
21. Tree crops | Orchards near the Nile delta were identified as a specific class. | 100 | |
GlobCover | 11. Post-flooding or irrigated croplands 14. Rainfed croplands | Post-flooding or irrigated shrubs, tree crops, and herbaceous crops Rainfed herbaceous, shrub, or tree crops (cash crops, vineyards, olive trees, orchards, ) | 100 100 |
20. Mosaic cropland (50% to 70%) and vegetation (20% to 50%) | Cultivated and managed terrestrial areas with primarily natural and semi-natural terrestrial vegetation. | 50–70 | |
30. Mosaic vegetation (50–70%)/croplands (20–50%) | Natural and semi-natural terrestrial vegetation primarily with cultivated and managed terrestrial areas. | 20–50 | |
LC-CCI 2010 LC-CCI2015 | 10. Cropland, rainfed | 100 | |
11. Herbaceous cover | 100 | ||
12. Tree or shrub cover | 100 | ||
20. Cropland, irrigated or post-flooding | 100 | ||
30. Mosaic cropland (>50%) and natural vegetation (tree, shrub, herbaceous cover) (<50%) | 50–70 | ||
40. Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) and cropland (<50%) | 20–50 | ||
MODISLC | 12. Croplands | Land covered with temporary crops followed by harvest and a bare soil period. Note that the perennial woody crops will be the appropriate forest or shrub land cover type. | 100 |
14. Cropland/natural vegetation mosaic | Land with a mosaic of croplands, forest, shrublands, and grassland in which no one component compromises more than 60% of the landscape. | 15–60 | |
GlobeLand30 | 10. Cultivated land | Land use for agriculture, horticulture, and gardens, including paddy fields, irrigated and dry farmland, vegetation, fruit gardens, etc. | 100 |
GLCNMO2008 | 11. Cropland | A defined area is covered by herbaceous crops. This class excludes paddy fields and pastures. | 100 |
12. Paddy field | A defined area is covered with graminoid crops, and another one is covered with non-graminoid crops. The main cover types are rice paddy fields influenced by the presence of water. This class includes water hyacinth as fodder, lotus root as food crop, and so on. | 100 | |
13.Cropland/Other Vegetation mosaic | Land with a mosaic of croplands, forest, shrubland, and grassland in which no one component compromises more than 60% of the landscape. | 15–60 |
GeoWiki Field Size | Geoglam Field Size | Resolution Requirements (m) |
---|---|---|
Large | >15 ha | 100–500 |
Medium | 1.5–15 ha | 20–100 |
Small | <1.5 ha | 5–10 |
Very Small | <0.15 ha | <5 |
Dataset | AFRICA (n = 5058) | AMERICA (n = 587) | ASIA (n = 1688) | |||
---|---|---|---|---|---|---|
OA | F-Score | OA | F-Score | OA | F-Score | |
LC-CCI 2010 | 0.42 | 0.37 | 0.50 | 0.30 | 0.53 | 0.5 |
LC-CCI 2015 | 0.62 | 0.35 | 0.70 | 0.37 | 0.59 | 0.53 |
GLC-Share | 0.70 | 0.48 | 0.69 | 0.37 | 0.73 | 0.63 |
Geowiki | 0.61 | 0.43 | 0.55 | 0.34 | 0.69 | 0.58 |
GLC2000 | 0.66 | 0.40 | 0.51 | 0.27 | 0.56 | 0.49 |
GLCNMO2008 | 0.67 | 0.29 | 0.61 | 0.35 | 0.71 | 0.54 |
GlobCover | 0.53 | 0.34 | 0.51 | 0.23 | 0.47 | 0.46 |
GlobeLand30 | 0.80 | 0.57 | 0.80 | 0.52 | 0.79 | 0.69 |
MODISLC | 0.71 | 0.35 | 0.65 | 0.37 | 0.73 | 0.62 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sens. 2017, 9, 1118. https://doi.org/10.3390/rs9111118
Pérez-Hoyos A, Rembold F, Kerdiles H, Gallego J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sensing. 2017; 9(11):1118. https://doi.org/10.3390/rs9111118
Chicago/Turabian StylePérez-Hoyos, Ana, Felix Rembold, Hervé Kerdiles, and Javier Gallego. 2017. "Comparison of Global Land Cover Datasets for Cropland Monitoring" Remote Sensing 9, no. 11: 1118. https://doi.org/10.3390/rs9111118
APA StylePérez-Hoyos, A., Rembold, F., Kerdiles, H., & Gallego, J. (2017). Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sensing, 9(11), 1118. https://doi.org/10.3390/rs9111118