Fusion of Multi-Source Satellite Data and DEMs to Create a New Glacier Inventory for Novaya Zemlya
Abstract
:1. Introduction
2. Study Region
3. Data Sets
3.1. Satellite Data
3.2. Digital Elevation Models
3.3. Randolph Glacier Inventory (RGI) 5.0
4. Methods
4.1. Glacier Mapping, Change Assessment, Quality Assessment and RGI Acquisition Date Determination
4.2. SAR Processing (Fringes)
4.3. DEM Processing
4.3.1. DEM Fusion
4.3.2. Drainage Divides
4.3.3. Topographic Parameters
5. Results
5.1. Glacier Characteristics
5.2. Glacier Changes
6. Discussion
6.1. The New Inventory
6.2. Interpretation of the Results
6.3. Comparison with Other Studies
6.4. DEM Quality
6.5. Uncertainties and Limitations
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ALOS | Advanced Land Observing Satellite |
a.s.l. | above sea level |
ASTER | Advanced Spacebourne Thermal Emission and reflection Radiometer |
DEM | Digital Elevation Model |
GDEM | Global DEM |
GLIMS | Global Land Ice Measurements from Space |
GRACE | Gravity Recovery And Climate Experiment |
IDEM | Intermediate DEM |
NVZ | Novaya Zemlya |
OLI | Operational Land Imager |
PALSAR | Phased Array L-Band SAR |
SAR | Synthetic Aperture Radar |
SWIR | Shortwave Infrared |
SPOT | Satellite Pour l’ Observation de la Terre |
UTM | Universal Transverse Mercator |
References
- Machguth, H.; Huss, M. The length of the world’s glaciers—A new approach for the global calculation of center lines. Cryosphere 2014, 8, 1741–1755. [Google Scholar] [CrossRef]
- Abermann, J.; Lambrecht, A.; Fischer, A.; Kuhn, M. Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006). Cryosphere 2009, 3, 205–215. [Google Scholar] [CrossRef]
- Winsvold, S.H.; Andreassen, L.M.; Kienholz, C. Glacier area and length changes in Norway from repeat inventories. Cryosphere 2014, 8, 1885–1903. [Google Scholar] [CrossRef] [Green Version]
- Machguth, H.; Paul, F.; Hoelzle, M.; Haeberli, W. Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring. Ann. Glaciol. 2006, 43, 335–343. [Google Scholar] [CrossRef]
- Huss, M.; Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. 2012, 117, F04010. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef]
- Marzeion, B.; Champollion, N.; Haeberli, W.; Langley, K.; Leclercq, P.; Paul, F. Observation-Based Estimates of Global Glacier Mass Change and Its Contribution to Sea-Level Change. Surv. Geophys. 2017, 38, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.G.; Comiso, J.C.; Allison, J.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 317–382. [Google Scholar]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef]
- Haeberli, W.; Hoelzle, M.; Paul, F.; Zemp, M. Integrated monitoring of mountain glaciers as key indicators of global climate change: The European Alps. Ann. Glaciol. 2007, 46, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moholdt, G.; Wouters, B.; Gardner, A.S. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Carr, J.R.; Stokes, C.; Vieli, A. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. J. Glaciol. 2014, 60, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Melkonian, A.K.; Willis, M.J.; Pritchard, M.E.; Stewart, A.J. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sens. Environ. 2016, 174, 244–257. [Google Scholar] [CrossRef]
- Strozzi, T.; Paul, F.; Wiesmann, A.; Schellenberger, T.; Kääb, A. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sens. 2017, 9, 947. [Google Scholar] [CrossRef]
- Grant, K.L.; Stokes, C.R.; Evans, I.S. Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic. J. Glaciol. 2009, 55, 960–972. [Google Scholar] [CrossRef] [Green Version]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef]
- Kotlyakov, V.M.; Dyakova, A.M.; Koryakin, V.S.; Kravtsova, V.I.; Osipova, G.B.; Varnakova, G.M.; Vinogradov, V.N.; Vinogradov, O.N.; Zverkova, N.M. Glaciers of the former Sowiet Union. In Glaciers of Asia; Williams, R.S., Jr., Ferrigno, J.G., Eds.; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- Zeeberg, J.; Forman, S.L.; Polyak, L. Glacier extent in a Novaya Zemlya fjord during the “Little Ice Age” inferred from glaciomarine sediments records. Polar Res. 2003, 22, 385–394. [Google Scholar]
- Zeeberg, J.; Forman, S.L. Climate and glacial history of the Novaya Zemlya Archipelago, Russian Arctic: With notes on the Region’s history of exploration. Holocene 2001, 11, 161–175. [Google Scholar] [CrossRef]
- Hengl, T.; Reuter, H. How accurate and usable is GDEM? A statistical assessment of GDEM using LiDAR data. Geomorphometry 2011, 2, 45–48. [Google Scholar]
- Li, P.; Shi, C.; Li, Z.; Muller, J.-P.; Drummond, J.; Li, X.; Li, T.; Li, Y.; Liu, J. Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China. Int. J. Remote Sens. 2013, 34, 1744–1771. [Google Scholar] [CrossRef]
- ASTER GDEM Validation Team. ASTER Global DEM Validation Summary Report. Available online: https://lpdaac.usgs.gov/sites/default/files/public/aster/docs/ASTER_GDEM_Validation_Summary_Report.pdf (accessed on 4 November 2017).
- Hayakawa, Y.S.; Oguchi, T.; Lin, Z. Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3. Geophys. Res. Lett. 2008, 35, L17404. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.; Oimoen, M.; Zhang, Z.; Danielson, J.; Krieger, T.; Curtis, B.; Haase, J. ASTER Global Digital Elevation Model Version 2-Summary of Validation Results; The National Aeronautics and Space Administration: Washington, DC, USA, 2011; pp. 1–27.
- Dlr, E.O.C. TanDEM-X Ground Segment DEM Products Specification Document; Issue 3.0; Deutsches Zentrum für Luft und Raumfahrt: Cologne, Germany, 2013. [Google Scholar]
- Arendt, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Pfeffer, W.T.; Moholdt, G.; Paul, F.; et al. Randolph Glacier Inventory [v5.0]: A Dataset of Global Glacier Outlines. 2015. Technical Report, Global Land Ice Measurements from Space, Colorado, USA Digital Media. Available online: https://doi.org/10.7265/N5-RGI-50 (accessed on 16 February 2017).
- Pfeffer, W.T.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; Miles, E.S.; et al. The Randolph Consortium The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Andreassen, L.M. A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: Challenges and change assessment. J. Glaciol. 2009, 55, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.L.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and Interferometric Processing Software. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 2000; pp. 16–20. [Google Scholar]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef]
- Falaschi, D.; Bolch, T.; Rastner, P.; Lenzano, M.G.; Lenzano, L.; Lo Vecchio, A.; Moragues, S. Mass changes of alpine glaciers at the eastern margin of the Northern and Southern Patagonian Icefields between 2000 and 2012. J. Glaciol. 2016, 1–15. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Kienholz, C.; Hock, R.; Arendt, A.A. A new semi-automatic approach for dividing glacier complexes into individual glaciers. J. Glaciol. 2013, 59, 913–925. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 113, 1–19. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef]
- Paul, F.; Barry, R.G.; Cogley, J.G.; Frey, H.; Haeberli, W.; Ohmura, A.; Ommanney, C.S.L.; Raup, B.; Rivera, A.; Zemp, M. Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol. 2009, 50, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; Le Bris, R.; Paul, F. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 2012, 6, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Mölg, N. Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. J. Glaciol. 2014, 60, 1033–1043. [Google Scholar] [CrossRef]
- Braithwaite, R.J.; Raper, S.C.B. Estimating equilibrium-line altitude (ELA) from glacier inventory data. Ann. Glaciol. 2009, 50, 127–132. [Google Scholar] [CrossRef]
- Ohmura, A.; Kasser, P.; Funk, M. Climate at the equilibrium line of glaciers. J. Glaciol. 1992, 38, 397–411. [Google Scholar] [CrossRef]
- Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 2012, 6, 1295–1322. [Google Scholar] [CrossRef] [Green Version]
- Le Bris, R.; Paul, F.; Frey, H.; Bolch, T. A new satellite-derived glacier inventory for western Alaska. Ann. Glaciol. 2011, 52, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Dowdeswell, J.A.; Williams, M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. J. Glaciol. 1997, 43, 489–494. [Google Scholar] [CrossRef]
- Bhambri, R.; Bolch, T. Glacier mapping: A review with special reference to the Indian Himalayas. Prog. Phys. Geogr. 2009, 33, 672–704. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.R.; Bell, H.; Killick, R.; Holt, T. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013. Cryosphere 2017, 11, 2149–2174. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf. 2011, 18, 480–490. [Google Scholar] [CrossRef]
- Kääb, A. Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS J. Photogramm. Remote Sens. 2002, 57, 39–52. [Google Scholar] [CrossRef]
- Granshaw, F.D.; Fountain, A.G. Glacier change (1958–1998) in the north Cascades national park complex, Washington, USA. J. Glaciol. 2006, 52, 251–256. [Google Scholar] [CrossRef]
Scene ID | Date | Path/Row | Comment |
---|---|---|---|
A | 19 August 2013 | 176/005 | raw mapping |
B | 10 September 2015 | 176/006 | cloud cover |
C | 19 August 2013 | 176/006 | cloud cover |
D | 5 August 2015 | 180/006 | front position update |
E | 29 August 1998 | 181/006 | raw mapping |
F | 3 August 2013 | 176/007 | raw mapping |
G | 29 July 2015 | 179/007 | front position update |
H | 29 August 1998 | 181/007 | raw mapping |
I | 10 August 2016 | 178/008 | raw mapping |
Sensor | Date1–Date2 | Perpendicular Baseline Elevation |
---|---|---|
ALOS-1 PALSAR-1 | 11 December 2008–26 January 2009 | 723 m |
ALOS-1 PALSAR-1 | 2 January 2009–17 February 2009 | 766 m |
ALOS-1 PALSAR-1 | 4 January 2009–19 February 2009 | 725 m |
ALOS-1 PALSAR-1 | 14 January 2009–1 March 2009 | 705 m |
ALOS-1 PALSAR-1 | 16 January 2009–3 March 2009 | 697 m |
ALOS-1 PALSAR-1 | 18 January 2009–5 March 2009 | 709 m |
ALOS-1 PALSAR-1 | 14 March 2010–29 April 2010 | 356 m |
ALOS-1 PALSAR-1 | 11 December 2008–26 January 2009 | 723 m |
DEM | Type | Resolution | Date | Source |
---|---|---|---|---|
ArcticDEM | Optical | 5 m | 2013–2015 | Polar Geospatial Center (PGC) |
ASTER GDEM V2 | Optical | 30 m | 2000–2012 | Reverb/ECHO; NASA’s Earth Observing System data and Information System |
TanDEM X IDEM | Radar | 90 m | 12 December 2010 | Deutsches Zentrum für Luft- und Raumfahrt (DLR) |
26 March 2012 |
DEM | Glacier | Min (m) | Max (m) | Range (m) | Mean (m) | STDEV (m) |
---|---|---|---|---|---|---|
ARCTIC DEM | A | 335.6 | 904.4 | 568.9 | 640.6 | 121.2 |
ARCTIC DEM | B | 204.0 | 600.9 | 396.8 | 432.7 | 81.1 |
ASTER GDEM V2 | A | 332.0 | 889.0 | 557.0 | 624.1 | 120.0 |
ASTER GDEM V2 | B | 189.0 | 603.0 | 414.0 | 429.1 | 82.1 |
Difference (m) | A | 3.6 | 15.4 | 11.9 | 16.5 | 1.2 |
Difference (m) | B | 15.0 | −2.1 | −17.2 | 3.6 | −1.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastner, P.; Strozzi, T.; Paul, F. Fusion of Multi-Source Satellite Data and DEMs to Create a New Glacier Inventory for Novaya Zemlya. Remote Sens. 2017, 9, 1122. https://doi.org/10.3390/rs9111122
Rastner P, Strozzi T, Paul F. Fusion of Multi-Source Satellite Data and DEMs to Create a New Glacier Inventory for Novaya Zemlya. Remote Sensing. 2017; 9(11):1122. https://doi.org/10.3390/rs9111122
Chicago/Turabian StyleRastner, Philipp, Tazio Strozzi, and Frank Paul. 2017. "Fusion of Multi-Source Satellite Data and DEMs to Create a New Glacier Inventory for Novaya Zemlya" Remote Sensing 9, no. 11: 1122. https://doi.org/10.3390/rs9111122
APA StyleRastner, P., Strozzi, T., & Paul, F. (2017). Fusion of Multi-Source Satellite Data and DEMs to Create a New Glacier Inventory for Novaya Zemlya. Remote Sensing, 9(11), 1122. https://doi.org/10.3390/rs9111122