Temporal Evolution of Regional Drought Detected from GRACE TWSA and CCI SM in Yunnan Province, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. GRACE Total Water Storage
2.2.2. CCI SM
2.2.3. Ground-Based Observation Data
2.3. Methods
2.3.1. Meteorological Drought
2.3.2. Trends and Transition Dates between Different Periods of TWSA
2.3.3. Correlation between TWSA and CCI SM
2.3.4. Contribution of SMA to TWSA
3. Results
3.1. TWSA Trend of Whole Yunnan Province
3.2. TWSA Trends from Three Typical Sites
3.3. Spatial Distribution of Transition Dates
3.4. Spatial Distribution of Trends of TWSA
3.5. Relationship between TWSA and CCI SMA
4. Discussion
4.1. Drought Derived from Precipitation, CCI SMA and TWSA
4.2. Contribution of SMA to TWSA
5. Conclusions
- (1)
- The whole study period can be divided into four segments, including two water loss periods, one water gain period, and one fluctuating period, from 2002 to 2014. The water loss lasted one year longer in the north and east parts, than in other parts of Yunnan Province. The spatial patterns of TWSA trends at each segment varied greatly, indicating that drought evolution processes are complex. The west and south parts eventually lost more water, while the central, north and east parts received more water during the period from 2002 to 2014.
- (2)
- There were significant correlations between CCI SMA and TWSA. The drought detected from CCI SMA had a one-month lag, while TWSA had a two-month lag, compared to the meteorological drought. Both the de-seasonalized TWSA and CCI SMA effectively captured and indicated early signs of droughts from 2009 to 2010 in Yunnan. Furthermore, the spatial patterns of CCI SMA and TWSA were found to be consistent as well, indicating that their grid products can be used to effectively analyze the spatial patterns of drought evolution processes, which is a weakness of in situ observations of soil moisture.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. Drought A Glob. Assess. 2000, 1, 3–18. [Google Scholar]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil moisture drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Damberg, L.; Aghakouchak, A. Global trends and patterns of drought from space. Theor. Appl. Climatol. 2014, 117, 441–448. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater Resources in Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 229–269. [Google Scholar]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Dai, A.; Wei, Y.; Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Chang. 2017, 7, 417–422. [Google Scholar] [CrossRef]
- Qiu, J. China drought highlights future climate threats. Nature 2010, 465, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yu, Z.G.; Xu, C.Y.; Anh, V. Multifractal analysis of measure representation of flood/drought grade series in the Yangtze Delta, China, during the past millennium and their fractal model simulation. Int. J. Climatol. 2010, 30, 450–457. [Google Scholar] [CrossRef]
- Zhang, Q.; Jing, T.; Chen, Y.Q.; Chen, X.H. Changing properties of hydrological extremes in south China: Natural variations or human influences? Hydrol. Process. 2010, 24, 1421–1432. [Google Scholar] [CrossRef]
- Long, D.; Shen, Y.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.; Li, B.; Chen, L. Drought and flood monitoring for a large karst plateau in southwest China using extended GRACE data. Remote Sens. Environ. 2014, 155, 145–160. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Xu, X.; Lei, H. Copula based drought frequency analysis considering the spatio-temporal variability in southwest China. J. Hydrol. 2015, 527, 630–640. [Google Scholar] [CrossRef]
- Heim, R.R.J. A review of twentieth-century drought indices used in the united states. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drinc: A software for drought analysis based on drought indices. Earth Sci. Inf. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Heim, R.R.J. Drought indices: A review. In Drought: A Global Assessment; Wilhite, D.A., Ed.; Routledge: Abingdon, UK, 2000; pp. 159–267. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Mckee, T.B.; Doeskin, N.J.; Kleist, J. Drought monitoring with multiple time scales. In Proceedings of the 9th AMS Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995; pp. 233–236. [Google Scholar]
- Ma, X.; Li, N.; Xie, Y.; Hong, C.C.; Guo, T.; Guan, L.; Xu, H.; Zhang, Q.; Tao, Q. Relationships between soil moisture and precipitation and study on assessment techniques of resist droughts. Chin. Agric. Sci. Bull. 2014, 30, 193–198. [Google Scholar]
- Hollinger, S.E.; Isard, S.A.; Welford, M.R. A new soil moisture drought index for predicting crop yields. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 187–190. [Google Scholar]
- Owe, M.; Jeu, R.D.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113, 196–199. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ers scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2002, 39, 1729–1735. [Google Scholar] [CrossRef]
- Liu, Y.Y. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; Jeu, R.A.M.D.; Wagner, W.; Mccabe, M.F.; Evans, J.P.; Van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Wagner, W.; Dorigo, W.; De Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Ann. 2012, I-7, 315–321. [Google Scholar]
- Dorigo, W.A.; Gruber, A.; Jeu, R.A.M.D.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.Q.; Wang, J. Evaluation of satellite and reanalysis soil moisture products over southwest China using ground-based measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, 339–356. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Steeledunne, S.C.; Gunter, B.C.; Ditmar, P.G.; Weerts, A.H. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrol. Earth Syst. Sci. 2015, 19, 2079–2100. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, T. Terrestrial water storage anomalies associated with drought in southwestern USA from GPS observations. Surv. Geophys. 2016, 37, 1–18. [Google Scholar] [CrossRef]
- Yirdaw, S.Z.; Snelgrove, K.R.; Agboma, C.O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian prairie. J. Hydrol. 2008, 356, 84–92. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Longuevergne, L.; Yang, Z.L.; Scanlon, B.R. Recent La Plata basin drought conditions observed by satellite gravimetry. J. Geophys.Res. Atmos. 2010, 115, 1842–1851. [Google Scholar] [CrossRef]
- Houborg, R.; Rodell, M.; Li, B.; Reichle, R.; Zaitchik, B.F. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 2012, 48, 2515–2521. [Google Scholar] [CrossRef]
- Xie, Z.Y.; Huete, A.; Restrepo-Coupe, N.; Ma, X.L.; Devadas, R.; Caprarelli, G. Spatial partitioning and temporal evolution of Australia’s total water storage under extreme hydroclimatic impacts. Remote Sens. Environ. 2016, 183, 43–52. [Google Scholar] [CrossRef]
- Li, Y.G.; He, D.; Hu, J.M.; Cao, J. Variability of extreme precipitation over Yunnan Province, China 1960–2012. Int. J. Climatol. 2015, 35, 245–258. [Google Scholar] [CrossRef]
- Wang, L.P.; Wang, S.F.; Zhang, L.D.; Wang, F.l.; Long, X.M. Spatial-temporal characteristics of precipitation in Yunnan Province from 1960 to 2013. Water Resour. Power 2016, 34, 20–24. [Google Scholar]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, 2006. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 4531. [Google Scholar] [CrossRef]
- Sakumura, C.; Bettadpur, S.; Bruinsma, S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 2014, 41, 1389–1397. [Google Scholar] [CrossRef]
- National Meteorological Information Center of the China Meteorological Administration (CMA). Available online: http://data.cma.cn/ (accessed on 1 July 2017).
- China Meteorological Administration. Classification of Meteorological Drought; Standards Press of China: Beijing, China, 2006. [Google Scholar]
- Gardner, E. Forecasting: Methods and applications (second edition). J. Forecast. 1984, 3, 457–460. [Google Scholar] [CrossRef]
- Fisher, R. On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1921, 1, 3–32. [Google Scholar]
- Owe, M.; Van de Griend, A.A. Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing. Water Resour. Res. 1998, 34, 2319–2327. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999. [Google Scholar] [CrossRef] [PubMed]
- Chong, D.; Li, H.J.; Fan, S.; Li, J.J.; Wang, J.; Zhang, S.Q. Inversion of chlorophyll-a concentration in nine plateau lakes in Yunnan based on MODIS data. Chin. J. Ecol. 2017, 36, 277–286. [Google Scholar]
Terms | TWSA (cm) | CCI SM (m3/m3) | In Situ SM (m3/m3) | ||
---|---|---|---|---|---|
10 cm | 20 cm | 40 cm | |||
Ratio | −0.450 | −0.002 | −0.006 | −0.008 | −0.007 |
Duration (months) | 15 | 13 | 12 | 11 | 10 |
Total change | −6.750 | −0.031 | −0.066 | −0.091 | −0.073 |
Equivalent thickness (cm) | - | −0.157 | −0.330 | −0.91 | −1.46 |
Contribution rate | - | 2.32% | 7.21% | 20.55% | 41.94% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Wu, Q.; Wang, J.; Zhang, S. Temporal Evolution of Regional Drought Detected from GRACE TWSA and CCI SM in Yunnan Province, China. Remote Sens. 2017, 9, 1124. https://doi.org/10.3390/rs9111124
Ma S, Wu Q, Wang J, Zhang S. Temporal Evolution of Regional Drought Detected from GRACE TWSA and CCI SM in Yunnan Province, China. Remote Sensing. 2017; 9(11):1124. https://doi.org/10.3390/rs9111124
Chicago/Turabian StyleMa, Siyu, Qianxin Wu, Jie Wang, and Shiqiang Zhang. 2017. "Temporal Evolution of Regional Drought Detected from GRACE TWSA and CCI SM in Yunnan Province, China" Remote Sensing 9, no. 11: 1124. https://doi.org/10.3390/rs9111124
APA StyleMa, S., Wu, Q., Wang, J., & Zhang, S. (2017). Temporal Evolution of Regional Drought Detected from GRACE TWSA and CCI SM in Yunnan Province, China. Remote Sensing, 9(11), 1124. https://doi.org/10.3390/rs9111124