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Abstract: An increasing number of end-users looking for ground data about fire activity in regions
where accurate official datasets are not available adopt a free-of-charge global burned area (BA) and
active fire (AF) products for applications at the local scale. One of the pressing requirements from
the user community is an improved ability to detect small fires (less than 50 ha), whose impact on
terrestrial environments is empirically known but poorly quantified, and is often excluded from
global earth system models. The newest generation of BA algorithms combines the capabilities of both
the BA and AF detection approaches, resulting in a general improvement of detection compared to
their predecessors. Accuracy assessments of these products have been done in several ecosystems; but
more complex ones, such as regions that are characterized by frequent small fires and steep terrain has
never been assessed. This study contributes to the understanding of the performance of global BA and
AF products with a first assessment of four selected datasets: MODIS-based MCD45A1; MCD64A1;
MCD14ML; and, ESA’s Fire_CCI in a mountainous region of northwest Yunnan; P.R. China. Due to
the medium to coarse resolution of the tested products and the reduced sizes of fires (often smaller
than 50 ha) we used a polygon intersection assessment method where the number and locations of
fire events extracted from each dataset were compared against a reference dataset that was compiled
using Landsat scenes. The results for the two sample years (2006 and 2009) show that the older,
non-hybrid products MCD45A1 and, MCD14ML were the best performers with Sørensen index
(F1 score) reaching 0.42 and 0.26 in 2006, and 0.24 and 0.24 in 2009, respectively, while producer’s
accuracies (PA) were 30% and 43% in 2006, and 16% and 47% in 2009, respectively. All of the four
tested products obtained higher probabilities of detection when smaller fires were excluded from
the assessment, with PAs for fires bigger than 50 ha being equal to 53% and 61% in 2006, 41% and
66% in 2009 for MCD45A1 and MCD14ML, respectively. Due to the technical limitations of the
satellites’ sensors, a relatively low performance of the four products was expected. Surprisingly, the
new hybrid algorithms produced worse results than the former two. Fires smaller than 50 ha were
poorly detected by the products except for the only AF product. These findings are significant for
the future design of improved algorithms aiming for increased detection of small fires in a greater
diversity of ecosystems.
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1. Introduction

Since its first appearance soon after plants colonized the bare earth, fire has been an important
natural disturbance and evolutionary force, playing a key role in shaping the spatial distribution of
ecosystems and their composition [1–3]. Without fire, the vegetation cover of our planet would be very
different to its current condition, with almost double the forest cover but less diverse ecosystems [4].
For this reason, it is very important to include fire in ecosystem modeling and to understand the
past, present, and future role of fire regimes under changing climate conditions [5]. Fire regime is
becoming a key concept in many scientific domains and its definition and interpretation is still a
source of debates between scientists, in particular about which parameter in describing fire regimes
should be taken into account [6]. The main parameters needed to understand the fire regimes of a
given region are the spatial and temporal distribution patterns of burning, for which accurate data
about the location and the date of fire events is required. Before the advent of satellite data, several
countries have systematically recorded fire events in local, provincial, and national registries, and then
organized those events in centralized databases, for example the Canadian National Fire Database
(http://cwfis.cfs.nrcan.gc.ca/ha/nfdb, last accessed on 25 September 2017) or Switzerland’s Swissfire
database (http://www.wsl.ch/swissfire/index_EN, last accessed on 25 September 2017). Official fire
inventories are in general owned by government agencies and, unfortunately, not always freely
accessible by the public. Moreover, especially for remote and less populated areas, data about historic
fire events are often incomplete or inaccurate [7]. In China, the only official and publicly available
ground-based data from the government is published in the China Statistical Yearbooks and China
Forestry Statistical Yearbooks (partially available at http://www.stats.gov.cn/english/Statisticaldata/
AnnualData/, last accessed on 25 September 2017). Basic information, such as total burned area,
number of fire events, severity rank, and ignition sources are grouped yearly at the provincial level.
However, locations are not provided except for a few particularly severe fire events. Unfortunately,
the provincial scale of this data is not suitable for regional or local studies. Besides, past research
comparing data found in Statistical Yearbooks with data extracted from satellite reported considerable
differences in the estimations of burned areas, with a general tendency for underestimation by the
Statistical Yearbooks [8].

In recent years, earth observation using sensors on board space-borne satellites has provided
useful raw data to detect and monitor active fires and extract burned land patches, not only at national
or larger geographic scales but also at the continental and global scales [9–11]. The availability of
free-of-charge, global scale active fire (AF) and burned area (BA) products such as the MODIS derived
products [12] has significantly increased the interest of global community end-users in their adoption
for regional to local applications, especially in areas where ground data are lacking or are not publicly
available [9]. Global AF algorithms use thermal sensors to detect unusual thermal signatures from
ongoing fires, and, when this signal is very strong, they are quite reliable. However, detection is
only possible during satellite overpass over the area that is burning, while clouds and dense smoke
caused by fires may compromise their detection [13,14]. Examples of global AF detection products
include the ATSR Word Fire Atlas product [15] and MODIS MCD14 [16,17]. Global BA products
algorithms are designed to capture abrupt changes between pre- and post- fire reflectances that are
caused by the altering effect of burning on the biomass and the deposit of char and ash on the ground.
The resulting burn scars are more persistent in time than the thermal signatures of ongoing fires,
but not always easy to detect or distinguish from other disturbances when burn severities are low.
Among global BA products, the European Space Agency (ESA) produced GLOBSCAR for the year
2000, using data from the ERS-2 and ATSR-2 sensors [18]. ESA also developed the GBA2000 project [19]
and its modified version, the L3JRC project [20], based on SPOT-VEGETATION data at 1 km resolution.
The algorithms of these two products were combined with the GLOBSCAR algorithm to produce the
GlobCarbon BA [21,22], a multi-sensor approach that covers a longer time period (1998–2007). ESA’s
most recent BA algorithm was designed for ENVISAT’s MERIS sensor, which offers spectral bands
in the visible and near infrared spectrum at a spatial resolution of 300 m. This latter BA product is
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called Fire_CCI [23]. Furthermore, NASA’s satellites Terra and Aqua are equipped with the MODIS
sensors, whose data has been used to produce the MCD45 [13,24] and MCD64 [25] global BA products.
The latter was integrated in the Global Fire Emission Database version 4 (GFED4), which is widely
used for atmospheric and biogeochemical models [26,27]. The MODIS fire products are appreciated by
the end-user for their user-friendly access and manipulation, their relatively high spatial resolution
(500–1000 m), and their reliability [9,28]. Several alternative, hybrid, multi-sensor approaches can be
found in the literature [29–32], but, for the moment, those methods have not yet delivered a final,
ready-to-use product.

Satellite images are acquired using different types of sensors having different specs in terms of
spatial, spectral, and temporal resolution. Consequently, the interpretation of burned vs. unburned
pixels can potentially be very different among BA and AF algorithms. Comparative analyses and
validation research have shown that, in dissimilar ecosystems, the performance of global AF, and
BA products varies considerably [27,33–37]. To improve the regional discrimination of burned land,
some authors proposed ecosystem specific algorithms that have adapted to these medium to coarse
resolution sensors. For example, Bastarrika et al. [38] developed a new automatic burned area mapping
algorithm based on MODIS time series for the Mediterranean ecosystem, obtaining higher accuracy
(kappa = 0.846) and a lower omission error (17.1%) than the standard MCD45 product (kappa = 0.704,
omission error = 38.6%). Chuvieco et al. [39] produced a 23-years long time series of burned land using
10-day composites of NOAA-AVHRR data in boreal forests; Merino-de-Miguel et al. used MODIS
products in Galicia [40]; and, other studies employed MODIS products in western United States, Latin
America, and northeast China [41–44].

All of the above-mentioned global BA and AF products have been widely validated for the
main fire-prone biomes, such as boreal forests, Mediterranean scrub and pine forests, tropical forests,
woody savannas, and grasslands [29,35,42,45–49], but alpine ecosystems have never been assessed.
The major difficulty and biggest challenge for remote sensing analysts working in alpine environments
is presented by the rugged terrain, featuring different degrees of slope and aspect, and heterogeneous
landscapes. When modeling mountainous environments on 2-dimensional surfaces, important
distortions are inevitably introduced. For example, linear distances on slopes are different than
on flat land, affecting density maps, area calculations, and cost-distance analysis. Sun angle and relief
affect illumination patterns, creating shadows that greatly reduce the intensity of spectral signals.
Moreover, the extremely diversified and patchy landcover/land use mosaics which characterize remote
and mountainous regions make their classification very difficult, requiring finer resolution data [50,51].

In this study, we assess the performance of selected global AF and BA products in a mountainous
region of northwest Yunnan (NWY), China. Remote and mountainous areas provide high values of
ecosystem services, which are also the most highly vulnerable due to human-induced threats [52].
NWY is one of the most biologically diverse temperate regions on earth, hosting a high variety
of climates and natural habitats. Because of the rich biodiversity, high rate of endemism, and
rare ecosystems, the region has been recognized as a global biodiversity hotspot [53,54] and
one of its protected areas complex, the Three Parallel Rivers of Yunnan Protected Areas, is
inscribed in the UNESCO World Heritage Sites list (http://whc.unesco.org/en/list/1083, last
accessed on 25 September 2017). Among the most famous flag-species, we mention the endemic
Yunnan Snub-nosed Monkey (Rhinopithecus bieti) and migratory birds like the Black-necked Crane
(Grus nigricollis). The region is also known for its rich cultural heritage. More than 14 ethnic minority
groups inhabit the region and interact with the environment in different ways, varying from shifting
cultivation, intensive agriculture, fishing and hunting, gathering of forest products, and transhuman
grazing. As the human population grows, threats to environment and biodiversity continue to
increase [55]. Among the main impacting factors, forest fires cause direct destruction of forests
and increase habitat fragmentation. The long-term impact of forest fires in this delicate ecosystem
is largely unknown and no rigorous assessment of historical fire activity in the region has been
done yet. The fire season in NWY lasts from December to May, during the dry and windy season.

http://whc.unesco.org/en/list/1083
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About 99% of forest fires whose ignition sources have been identified are human-caused, mainly
due to the use of fire in agriculture and accidental starts, fire for heating and cooking, burning
incense in graveyards, etc. [56,57]. Because of the complexity of topography and the mosaic of
landscapes, the size of fires is often very small compared to other areas of China [56,58–63]. Similarly,
the natural habitats of the region are highly fragmented or reduced to small niches, highly vulnerable
to disturbances. Consequently, even small fires can have disastrous effects such as potentially wipe
away entire ecosystems.

In order to improve the resources management and maintain the ecosystem services in the steep
mountainous region of NWY, there is the pressing need to set up a database of historical fire events that
will be used as input data for effective risk assessment models. To serve this purpose, we evaluated the
potential of global fire products to detect fire events in NWY. We selected those products with the most
suitable features in terms of spatial resolution and temporal span, and compared them with a reference
dataset based on visual interpretation of Landsat TM scenes. The chosen products were: MODIS’s
MCD45A1, MCD64A1, MCD14ML; and, ESA’s Fire_CCI. A detailed description of each product is
provided in the next section. Based on our results, we cross-compared burned areas obtained from the
best BA product with those obtained from the only pure AF products (MCD14ML), in order to evaluate
the potential use of a merged AF and BA product similar to the ones proposed by Randerson et al. [32]
or Tsela et al. [29]. Because of the medium-to-coarse resolution of the selected datasets, a relatively
big rate of errors of detection of small fires (<50 ha) is very likely to occur. Small fires may cover
only a fraction of the product’s pixel and the heterogeneity of burn severities may reduce the spectral
signal left by the burn scar, reducing the probability of detection. In the case of the products using AF
approaches, small fires’ duration may be too short to be detected. Previous studies reported larger
errors of omission for small fires (e.g., [25,29,45,47,56]). The main aim of this study is to identify which
product performs the best and to judge its suitability for applications that require a more accurate and
quantified measure of fire activity. The best dataset could be used to generate seeds or as a control data
for the accuracy assessment of future regions-specific algorithms.

2. Data and Methodology

2.1. Description of Study Site

There is not a strict definition of the geographical limits of northwest Yunnan (NWY). In broad
terms, NWY comprises the territories of four prefectures of the Yunnan province, in the People’s
Republic of China: Deqing, Nujiang, Lijiang, and Dali. In a more restrictive definition, the
southernmost counties belonging to the latter prefecture (Yongping, Yangbi, Weishan, Nanjian, Midu,
and Xiangyun) and two counties in the eastern part of Lijiang (Yongsheng and Huaping) are not
included in the region. In this study, we refer to NWY as the broader area, which covers a surface
of about 86,700 km2. NWY is situated in the transitional region between the Qinghai-Tibet and the
Yunnan-Guizhou Plateaus in the south-easternmost edge of the East Himalayas. Four major rivers
(Salween, Mekong, Yangtze, and a tributary of the Irrawaddy) run in parallel across the region,
separating high and narrow mountain ranges that reach more than 6000 m of elevation in the northern
side of the region. Most of these mountain ranges are a part of the Hengduan Mountains but NWY
includes other smaller complexes. The climate is under the influence of the Asian monsoon system
with most of the precipitation falling from June to August, but due to the contrasting topography
and the subtropical latitude, NWY hosts very particular climates and a great variety of landscapes,
natural habitats, and biota. Vegetation types include subtropical evergreen broadleaf and coniferous
forests, semi-savannas in hot-dry valleys, alpine and sub-alpine coniferous and mixed forests, alpine
meadows, high plateau grasslands, etc. In general, annual precipitation is higher in the west, with
maxima around 4000 mm in the Dulong valley, and decreases while moving to the east, with minima
below 600 mm in the dry valleys [64–66]. A description of NWY and southwest China geology, climate,
and vegetation can be found in [67].
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Because of the large amount of time needed to manually map burned areas from Landsat scenes
(see Section 2.2.5), for this analysis we selected one sample area corresponding to Landsat WRS-2
(Worldwide Reference System) path 131, row 42, and excluded the portions that are outside of the NWY
boundary (see Figure 1). We chose this area because of its high frequency of fires and the availability
of cloud-free satellite images for the accuracy assessment (see Section 2.2.5), due to the lower amount
of annual precipitation, compared to other areas. Moreover, the variety of ecosystems that it contains,
appropriately represent NWY.
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Figure 1. Location of the study area. The most restrictive boundaries of northwest Yunnan and a
broader definition of the region, as well as the Landsat coverage selected for the accuracy assessment are
represented. The large map shows the main landcover classes according to MODIS MCD12Q1 product
for 2011 over a shaded relief. The four major rivers flowing across the region in a parallel manner on
the northern section, from West to East: the Dulongjiang (tributary of the Irrawaddy), the Nujiang
(upper Salween), the Lancangjiang (upper Mekong), and the Jinshajiang (upper Yangtze). (MCD12Q1
reference: (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1, last
accessed on 25 September 2017).

2.2. Data Processing

In this study, we aim to test the ability of the chosen products in the detection of forest fires,
which we consider as objects. We are interested in the number of fires and their location, and not in a
subpixel analysis of burned area accuracy (more details in Section 2.3). Therefore, the main processing
task consists in the aggregation of raw burned pixels to form consistent objects with unique id and
attributes, called ‘fire events’. To guide the aggregation, spatial and temporal rules need to be defined,
so that pixels spatially and temporally adjacent belonging to the same fire event are grouped. We chose
to produce datasets that are tailored to the spatial and temporal resolution of the sensor from which
they were originated. Spatial and temporal accuracies of each product were considered individually.
This approach has the advantage to be more flexible to later treatments if fire events need to be further
aggregated to satisfy user requirements.

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
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The specifications and processing of the selected AF and BA products and the reference dataset,
as well as the spatial and temporal rules for the aggregation of burned pixels are described in detail
in the following subsections. Main products’ characteristics are summarized in Table 1. All data
manipulations were performed using geoprocessing techniques within the free GIS software QGIS
(http://www.qgis.org, last accessed on 25 September 2017).

2.2.1. MODIS Burned Area Collection 5.1 (MCD45A1)

MCD45A1 is one of the MODIS land products suite generated with global MODIS imagery from
the Terra and Aqua satellites [68]. The algorithm used to generate this product relies on a bi-directional
reflectance model change detection approach to map rapid changes in daily surface reflectance time
series data, at a pixel size of 500 m. Fires occurred in previous seasons or years are excluded and
only recent fires are mapped. MCD45A1 information and data access can be found on a dedicated
website that is maintained by the University of Maryland (http://modis-fire.umd.edu/, last accessed
on 25 September 2017). The data are delivered as monthly composites depicting per-pixel approximate
Julian day of burning with an eight-day precision interval before and after the date of detection,
confidence of detection, surface type, and other information. We selected this product for its relatively
high spatial and temporal resolution, and for its good performance [49,69,70].

We downloaded monthly composites of MCD45A1 from 2001 to 2015, clipped to the extent of
NWY (large) and reprojected to the local UTM zone, conserving the 500 m pixel size. To maximize
the probability of detection, we kept fire pixels having both high and low confidence of detection
levels, but we excluded fire pixels that are mapped over agricultural areas, as recommended in the
product’s documentation. MCD45A1 retrieves landcover classes from the MODIS MCD12 Land Cover
Type Yearly global product (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_
table/mcd12q1, last accessed on 25 September 2017). The burned pixels were then aggregated to form
consistent fire events using the intersection (logical AND) of the following two rules:

• Spatial rule: pixels should be directly adjacent to each other or within a maximum distance of
1 pixel. We chose a 1 pixel buffer to minimize inaccuracies due to the coarse spatial resolution of
the sensor, such as partially burned pixels that remain undetected.

• Temporal rule: pixels should have burning dates within a maximum temporal distance of 16 days.
This rule is based on the 8-days precision interval before and after the date of detection proper to
the product’s algorithm.

The resulting fire events were finally organized in a vector database.

2.2.2. MODIS Active Fire Collection 6 (MCD14ML)

The MODIS Active Fire product is produced using a contextual algorithm that applies thresholds
to the brightness temperatures from the middle-infrared and thermal infrared channels of the MODIS
instrument. Active fires are mapped at 1 km resolution during satellite overpass and, in order to limit
false detections, potential burning pixels undergo a series of tests, masking operations, and further
rejection tests. MCD14ML is a global monthly fire location product that is delivered as a plain ASCII
files. It contains the geographic location, date, and some additional information for each fire pixel
detected by the sensors. Data download, description, user manuals, and algorithm details can be
found on the MODIS Active fire and Burned Area products website (http://modis-fire.umd.edu/,
last accessed on 25 September 2017). We chose this product for the potential of its different approach
and the relatively high resolution. In fact, even if the product’s pixel size is 1000 m, under very good
observing conditions, a smaller fire of 100 m2 or even 50 m2 can be detected (see the user guide on
http://modis-fire.umd.edu/pages/manuals.php, last accessed on 25 September 2017). Indeed, cloud
coverage is the main factor compromising the good detection of active fires and fires may last too
shortly to be detected during the next satellite overpass.

http://www.qgis.org
http://modis-fire.umd.edu/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
http://modis-fire.umd.edu/
http://modis-fire.umd.edu/pages/manuals.php
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Monthly composites of MCD14ML from 2001 to 2015 were downloaded, clipped to the extent of
our study region, and reprojected to the local UTM zone. Agriculture fires were masked using MCD12
landcover product. Because MCD14ML hotspots represent fires at 1 km resolution that could be located
anywhere within the pixel, the whole pixel was considered as burned. We calculated a 500 m buffer
around each point and aggregated the resulting polygons when they were touching or intersecting,
and with AF dates differing less than four days, to form consistent fire events. The temporal distance
is reduced when compared to MCD45A1 because the thermal sensor detects fires when they are active,
with a high temporal accuracy.

2.2.3. MODIS Direct Broadcast Burned Area Collection 6 (MCD64A1)

MCD64 is the latest product of the MODIS Burned Area suite of products. It has been adopted
as the standard MODIS burned area product for collection 6, replacing the former MCD45 suite,
which will not be generated beyond Collection 5.1. It is based on a hybrid approach that exploits the
potential of both MODIS 1 km active fires and 500 m surface reflectance input data. A burn-sensitive
vegetation index is calculated from MODIS time series using the short-wave infrared channels, and
dynamic thresholds are applied to detect persistent spectral changes. Afterwards, cumulative active
fire maps are used to generate regional probability density functions for the classification of burned
and unburned training samples that will guide the final determination of burned and unburned pixels.
More information and a complete description of the algorithm can be found in [25]. MCD64A1 presents
a general improvement in burned area detection over past collections. In particular, a significantly
better detection of small fires, and the adaptability to different regional conditions across multiple
ecosystems are among the main positive aspects of this product.

In the same manner as the previously introduced MODIS products, we retrieved and processed
MCD64A1 GeoTIFF series. MCD12 landcover mask was applied to exclude burns over agricultural
land and fire events were generated using the same spatial and temporal rules used for MCD45A1.
Veraverbeke et al. [71] assessed the temporal accuracy of the MCD64A1 product to be more than
4 days before and after the date of detection. We opted for a 16-day temporal window to be consistent
with MCD45A1.

2.2.4. ESA’s Fire_CCI

ESA’s Fire_CCI product provides the burned area metric used to quantify the Fire Disturbance
variable of the Essential Climate Variables within the ESA’s Climate Change Initiative (ESA-CCI).
ESA-CCI program details can be found on its webpage (http://cci.esa.int/, last accessed on
25 September 2017) and in [72]. The product was developed in an effort to meet end-users’
requirements of a higher resolution BA product. The developing team opted for the capabilities
of the Envisat-MERIS 300 m resolution images, which are collected approximately every three days,
depending on the latitude. Because the MERIS sensor was mainly designed for ocean color applications
and not for land observations, its application to fire disturbance assessment is scarce [23]. To overcome
these limitations, MERIS data was combined with daily hotspot locations from the MODIS thermal
anomalies product (MCD14ML), also contributing to the reduction of commission errors related to the
approaches that are entirely based on reflectance changes. The algorithm follows a hybrid two-phase
approach: a seed selection phase from MODIS hotspots followed by a region growing analysis phase
over the MERIS’s NIR band and a NIR-derived spectral index. The resulting product is offered in two
forms: a Pixel BA product at 300 m resolution and a Grid BA product at 0.25 degrees resolution.

We downloaded monthly composites of Fire_CCI Pixel BA version 4.1 from http://www.esa-
fire-cci.org (last accessed on 25 September 2017). The product time coverage spans from 2005 to 2011
but, as stated on the official website (http://www.esa-fire-cci.org/content/products-description, last
accessed on 25 September 2017), in the near future, the product will cover the time series 2000–2017. It
contains the date of the first detection layer, a confidence level layer, and a landcover layer for only the
burned pixels, extracted from the CCI Landcover maps (https://www.esa-landcover-cci.org/, last

http://cci.esa.int/
http://www.esa-fire-cci.org
http://www.esa-fire-cci.org
http://www.esa-fire-cci.org/content/products-description
https://www.esa-landcover-cci.org/
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accessed on 25 September 2017). Sub-setting, reprojection, and landcover masking operations were
performed, and the same spatial rules as MCD45A1 were applied. Because for regions with high cloud
coverage the date of detection may be several days or even weeks after the fire is over [73], the time
interval used to aggregate pixels considered as belonging to the same fire event, was increased to
28 days.

Table 1. Summary of the selected active fire (AF) and burned areas (BA) products.

Product Satellite Spatial
Resolution

Temporal
Resolution

Time
Coverage Algorithm Reference

MCD45A1 MODIS Aqua
& Terra 500 m

Daily
(Terra: day;
Aqua: night)

2001–January
2017

Bi-directional reflectance
model-based change detection
approach

[24]

MCD14ML MODIS Aqua
& Terra 1000 m

Daily
(Terra: day;
Aqua: night)

2001–present
Contextual algorithm applied
on middle and shortwave
infrared channels

[17]

MCD64A1 MODIS Aqua
& Terra 500 m

Daily
(Terra: day;
Aqua: night)

2001–present

Hybrid algorithm using AF
hotspots and dynamic
threshold over multi temporal
spectral indices changes

[25]

Fire_CCI
Envisat-MERIS

and MODIS
Aqua & Terra

300 m
Daily
(MODIS AF); ~3
days (MERIS)

2005–2011
Hybrid algorithm using AF
hotspots and multi-temporal
changes in reflectance

[23]

2.2.5. Landsat Reference Dataset

No suitable official data on fires was available for our study region. Hence, we decided to compare
the vector fire events datasets derived from the four selected AF and BA products with a reference
dataset that was compiled using 30 m Landsat imagery. Using higher-resolution datasets, such as
the Landsat and ASTER archives, is a robust approach that is commonly employed by researchers
when assessing the accuracy of BA products [28,37,46,47,74]. Visual interpretation is a time-consuming
task because it is performed manually by the analyst who, using empirical knowledge and personal
experience, identifies and maps burned patches in the image. Burned areas are clearly visible in
Landsat images when using the infrared band in the image composite (see Figure 2, black color),
especially when comparing a pre-burn scene with a post-burn scene. Because of time availability
constraints, we selected two sample years to be used in the accuracy assessment. The selected years
were 2006, from Julian day 25 to 345; and 2009, from Julian day 17 to 52 of the following year (2010).
These time frames were chosen for the particularly high fire activity in the study region and the
availability of a relatively high number of cloud-free Landsat scenes within the two years. Five Landsat
scenes for 2006 (Julian days 25, 57, 137, 217, 345) and six Landsat scenes for 2009 (Julian days 17, 33,
49, 81, 273, and 52 of year 2010) were used to perform visual interpretation, by comparing each scene
with the following one in the time line. Additional scenes with partial visibility over the study region
were kept as support in the process. Spectral indexes and transformations, such as Tasseled Cap,
Normalized Difference Vegetation Index, Normalized Burn Ratio, and image differencing techniques
were used to assist the analyst in the extraction of burned areas and the creation of the final reference
dataset. Only fires bigger than 12.5 ha (half of a MODIS pixel) were included in the analysis.

2.3. Accuracy Assessment

Rigorous validation, accuracy assessment protocols, and recommendations exist in the
literature [46,75,76], but are not suitable for the purpose of our study. The frequent small fires
that characterize our study region are difficult to detect with precision using the medium-to-coarse
resolution products that we selected to run this task. Specifically, sub-pixel accuracy of burned areas
would not give results that are pertinent with what we really want to assess. Therefore, we opted for a
more flexible methodology to evaluate their performance against a reference dataset. In this study, the
assessment was performed using a polygon intersection approach (Figure 2), where the focus is put on
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the ability of AF and BA products to detect a fire event independently from the size and shape of the
burn. Instead of assessing the accuracy of the detection pixel by pixel, we assessed the accuracy of the
count and locations of fire events. If a fire event is fully or only partially detected, then the detection is
considered as equally successful. To be considered valid, a burned polygon from the tested dataset
should at least touch a reference polygon. Commission and omission errors are not related to the area
of the fire events that were partially detected, but to those totally omitted or committed. In practice, we
selected the tested products’ polygons that intersected reference polygons using spatial analysis tools
within QGIS, and we compiled an error matrix with the entirety of the reference and tested datasets’
fire events. True negative data (non-fire polygons correctly detected), were not artificially created to be
included in the error matrix, and they were therefore excluded from the accuracy assessment.
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Figure 2. Example of polygon intersection assessment: (1) Burn scar visible on Landsat false color
infrared composite; (2) Reference dataset manually mapped burn polygon; (3) European Space Agency’s
(ESA’s) Fire_CCI and MCD45A1 products overlay. Despite both products show different degrees of
omission and commission errors at a sub-pixel level, in our accuracy assessment, the two detections of
the fire event are considered equally successful.

The usual binary error matrix metrics were extracted to quantify and compare the different
products. The metrics were the user’s accuracy (UA), which is a measure of the reliability and precision
of the product, the producer’s accuracy (PA), which denotes the sensitivity, or the probability of
detection, and the F1 score [77], also known as Sørensen index or Dice’s coefficient, which is the
harmonic mean of the two metrics previously mentioned. Other common metrics relying on true
negative data, such as overall accuracy, were not calculated due to their absence in the error matrix.
Equations of the three metrics are listed below:

F1 Score : F1 =
2TP

2TP + FP + FN
(1)

User’s Accuracy : UA =
TP

TP + FP
× 100 (2)

Producer’s Accuracy : PA =
TP

TP + FN
× 100 (3)

where TP = True Positive values, fire events correctly detected by the tested product; FP = False Positive
values, fire events erroneously detected by the tested product (commission); FN = False Negative
values, fire events not detected by the tested product (omission).
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The polygon intersection methodology used in this study could lead to inconsistent results when
a tested product heavily overestimates burned areas, because within-polygon commission error is
not included in the calculations. However, in general, BA algorithm designers tend to minimize
commission errors at the cost of larger omission errors [48]. Moreover, this more flexible methodology
can reduce classification errors due to image registration inaccuracies. By the mean of these metrics,
we compared every tested product towards the reference dataset for the year 2006, 2009, 2006, and
2009 combined, and for three different fire sizes (full dataset: >12.5 ha; more than one MODIS pixel:
>25 ha; more than two MODIS pixels: >50 ha) to highlight which product performs better with bigger
and smaller fire sizes. Furthermore, we cross-analyzed the best BA performer with the only pure
AF product to find out if the two products show divergent abilities in the detection of fires. A low
number of correctly detected fires by both products would suggest that merging the two products
could significantly increase the probability of detection (PA).

3. Results

Individual performances of the four tested global products are summarized in Table 2. Overall,
the capabilities of all the products in the detection of small burned areas in this mountainous study
region are relatively low. For both years 2006 and 2009, and consequently 2006 and 2009 combined,
the best performer was MCD45A1, displaying the highest F1 scores (0.42, 0.24, 0.31, respectively) and
the highest UA (lower errors of commission). The best PA was obtained by the only pure active fire
product (MCD14ML), which reached 47% in 2009, but this result was to the detriment of UA, which
was among the lowest, and had a negative impact on the F1 score. The other two products, MCD64A1
and Fire_CCI, showed lower performances in the detection of fire events. In 2006, the probability of
detection of all the products increased when excluding smaller fire events from the analysis, exceeding
25% for fire sizes bigger than 50 ha (two MODIS pixels), except for Fire_CCI, who only scored 17%.
In 2009, PAs improved with an increasing fire size, but for MCD45A1 and MCD64A1 the values were
lower than in 2006, while for MCD14ML and Fire_CCI, PA values were higher (66% and 18% for fires
bigger than 50 ha).

Details about PAs per fire event size are shown in Table 3. According to the reference dataset, there
were 70 fire events in total in 2006: 15 fire events with a BA size between 12.5 to 25 ha, 19 fire events
between 25 to 50 ha, and 36 fire events bigger than 50 ha. In 2009, a total of 144 fire events occurred
with number (n) per size of 55, 45, and 44, respectively. In both years, most of the fire events that were
correctly detected by the products were bigger than 50 ha. Only MCD14ML was able to conspicuously
detect smaller fires, especially in 2009. The other products scored very low, with detected events
smaller than 50 ha virtually null.

A more detailed analysis of the user’s accuracy is illustrated in Table 4. We classified each
committed fire event by its size in pixels. We can clearly observe that most of the committed fire events
are of very small size (mostly 1 pixel) for the three MODIS products, while Fire_CCI shows more
weighty errors in both 2006 and 2009. The very low UA of MCD14ML shown in Table 3 appears less
serious when adding fire size information.

The results of the cross-comparison of MCD45A1 and MCD14ML are shown in Table 5. For the
two assessed years, the number of fire events correctly detected by both products was very small
when compared to the sum of corrected detections when merging the two products. In total (2006 &
2009 combined), only 22 out of 120 correctly detected fires were in common between MCD45A1 and
MCD14ML. If these two datasets were combined to form a unique merged dataset, the producer’s
accuracy would clearly increase. PAs of the merged products, including all fire sizes, would be 59%,
55%, 56%, while MCD45A1 alone has 30%, 16%, 21%, and, MCD14ML alone has 43%, 47%, and 46%
for the years 2006, 2009, and 2006 and 2009, respectively. Consequently, UA would also be smoothed
down, with a negative impact on the F1 scores. Still, F1 scores for the merged product would be better
than any single product in 2009 and the second best in 2006.
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Table 2. Performances of MCD45A1, MCD64A1, MCD14ML, and Fire_CCI products in a control site in northwest Yunnan for the year 2006, 2009, and 2006 & 2009
combined. F1 score and user’s accuracy (UA) are shown for burned areas (BA) > 12.5 ha (full dataset) only, while producer’s accuracy (PA) is shown for BA > 12.5 ha,
> 25 ha, and > 50 ha.

2006 2009 2006 & 2009

F1
Score

UA
(%)

PA (%)
BA > 12.5 ha

PA (%)
BA > 25 ha

PA (%)
BA > 50 ha

F1
Score

UA
(%)

PA (%)
BA > 12.5 ha

PA (%)
BA > 25 ha

PA (%)
BA > 50 ha

F1
Score

UA
(%)

PA (%)
BA > 12.5 ha

PA (%)
BA > 25 ha

PA (%)
BA > 50 ha

MCD45A1 0.42 70 30 36 53 0.24 52 16 24 41 0.31 59 21 28 46
MCD64A1 0.22 69 13 16 25 0.08 30 5 6 9 0.13 44 7 10 16
MCD14ML 0.26 19 43 51 61 0.24 16 47 57 66 0.25 17 46 55 64
Fire_CCI 0.16 37 10 13 17 0.1 11 10 13 18 0.12 15 10 13 18

Table 3. Number of fire events correctly detected (det) and producer’s accuracy (PA) of MCD45A1, MCD64A1, MCD14ML, and Fire_CCI products in a control site in
northwest Yunnan for the year 2006, 2009, and 2006, and 2009 combined. Three different BA sizes are shown: 12.5 to 25 ha, 25 to 50 ha, and >50 ha.

2006 2009 2006 & 2009

BA 12.5–25 ha
(n = 15)

BA 25–50 ha
(n = 19)

BA > 50 ha
(n = 36)

BA 12.5–25 ha
(n = 55)

BA 25–50 ha
(n = 45)

BA > 50 ha
(n = 44)

BA 12.5–25 ha
(n = 70)

BA 25–50 ha
(n = 64)

BA > 50 ha
(n = 80)

det PA det PA det PA det PA det PA det PA det PA det PA det PA

MCD45A1 1 6.7% 1 5.3% 19 52.8% 2 3.6% 3 6.7% 18 40.9% 3 4.3% 4 6.3% 37 46.3%
MCD64A1 0 0.0% 0 0.0% 13 36.1% 2 3.6% 1 2.2% 4 9.1% 2 2.9% 1 1.6% 17 21.3%
MCD14ML 2 13.3% 6 31.6% 22 61.1% 17 30.9% 22 48.9% 29 65.9% 19 27.1% 28 43.8% 51 63.8%

Fire_CCI 0 0.0% 1 5.3% 6 16.7% 2 3.6% 4 8.9% 8 18.2% 2 2.9% 5 7.8% 14 17.5%

Table 4. Number of committed fire events organized by their size in pixels. Pixel sizes is relative to individual fire products.

N◦ of Fire Events/Commission Pixels

2006 2009

1 px 2 px 3 px 4–7 px 8–20 px >20 px 1 px 2 px 3 px 4–7 px 8–20 px >20 px

MCD45A1 7 2 9 2 3 4 4 1
MCD64A1 2 2 5 9 2
MCD14ML 100 20 7 239 69 15 21 3

Fire_CCI 3 . 2 3 2 2 55 19 7 13 13 7
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Table 5. Cross-comparison of reference fires detected and not detected by MODIS MCD14ML (active fire) and MCD45A1 (burned area). The tables emphasize fires
detected by both products, fires detected by only one of the two products, and fire not detected by both products. This cross-comparison is useful to evaluate if the
two products are sensitive to the same fire events or detect different fire events. Producer’s accuracy is calculated using the detection rate of a possible merged product
(merged detection).

MCD14ML Cross MCD45A1

2006 Fires > 12.5 ha 2009 Fires > 12.5 ha 2006 & 2009 Fires > 12.5 ha

MCD14ML Tot.
MCD45A1

MCD14ML Tot.
MCD45A1

MCD14ML Tot.
MCD45A1det not det det not det det not det

MCD
45A1

detected 10 11 21 MCD
45A1

detected 12 11 23 MCD
45A1

detected 22 22 44
not detected 20 29 not detected 56 65 not detected 76 94
Tot. MCD14ML 30 Tot. MCD14ML 68 Tot. MCD14ML 98
Ref. Landsat fires 70 Ref. Landsat fires 144 Ref. Landsat fires 214
Merged fires 177 Merged fires 438 Merged fires 615
Merged detection 41 Merged detection 79 Merged detection 120
Omitted 29 Omitted 65 Omitted 94
Committed 136 Committed 359 Committed 495
Producer’s Acc 58.6% Producer’s Acc 54.9% Producer’s Acc 56.1%
User’s Acc 23.2% User’s Acc 18.0% User’s Acc 19.5%
F1 score 0.33 F1 score 0.27 F1 score 0.29
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4. Discussion

Four different freely available global BA and AF datasets were compared towards a higher
resolution reference dataset to assess their ability in the detection of fire events in a mountainous
region characterized by frequent small size fires. Because the accuracy assessment methodology
chosen in this study differs substantially from the ones used for studies in other regions, a direct
comparison of the results with those studies cannot be done. However, our findings need to be
critically interpreted and discussed in the peculiar context of detection and quantification of small fire
events. As expected, due to the landscape and topographic characteristics of the target region, and the
technical specifications of the tested global datasets, the performance of the products was relatively
low. The F1 score, which is the harmonic mean of precision and recall (i.e., producer’s accuracy and
user’s accuracy), was comprised between 0.08 and 0.42 in the two analyzed years. An F1 value below
0.5 means that correct detections are fewer than mistaken detections. A closer look at the omission
and commission errors allows for the identification of the error type with the highest impact on the
results. The choice of a given tradeoff between the two error types determines the results. For example,
using less conservative rules (e.g., lower thresholds) to separate burned from unburned pixels will
result in improved probabilities of detection at the cost of greater commission errors. As stated before,
BA algorithm designers often opt for the opposite approach, containing commission errors at the
cost of larger omission errors [48], and our results confirm this statement. Almost all of the analyzed
models are more accurate (lower commission) than sensitive (higher omission). Only MCD14ML,
the only pure AF-based product, displayed higher probabilities of detection (PA), but also showed
the lowest UAs, leading to a relatively reduced F1 score. It is worth mentioning that the low PA
may be overstated in our approach. In fact, active fires detected by the MCD14ML product may be
correct, but the resulting burned area may be smaller than the minimum size that is considered in
this analysis (12.5 ha), or may have left a very light burn scar that escaped the analyst’s interpretation
when manually mapping fire perimeters for the reference dataset.

The influence of fire event size on the probability of detection can be highlighted when analyzing
PAs for different fire sizes: every product obtained improved PAs for larger fires. Table 3 clearly
illustrates the very poor detection of fires that are smaller than 50 ha by the tested products, except
for MCD14ML, who reached PAs of between 13% and 49%. Comparable results were found in other
studies [78]. 50 ha corresponded to two MODIS pixels. Sub-pixel analysis of burned patches performed
in past studies [25,29,79] reported that a 50% of BA proportion in a MODIS pixel can be considered as
an appropriate threshold for medium resolution burned area detection, while a threshold of 75% highly
increased the sensitivity of the MODIS products. In our study, this was only true for the MCD14ML,
while the other products had very low sensitivity for such small burned areas. A possible explanation
for this difference could be the shape and location of small fires in this mountainous region that is
characterized by narrow valleys with steep mountain flanks. The area of a small fire could span over
two or more MODIS pixels, covering only small fractions of each pixel, consequently resulting in a
failure of the detection of that fire event in any of the affected pixels. Moreover, several fires occur in
herbaceous vegetation that burns very fast but also recovers very fast without leaving heavily marked
and clearly spectrally-discernable scars. These conditions are not favorable to BA algorithms, which
are based on abrupt and permanent changes in spectral reflectances [80].

One of the main differences between the four datasets is their algorithm approach. MCD45A1 is
a pure BA-based dataset, MCD14ML is a pure AF-based dataset, while MCD64A1 and Fire_CCI use
hybrid approaches. This difference was expected to cause dissimilar results. The fact that AF-based
algorithms are more sensitive to small fires and in general show higher probabilities of detection,
but also many false detections (errors of commission), was already highlighted in previous studies.
More recent algorithms were designed using hybrid approaches in order to take advantage of both
AF and BA methods, while trying to minimize the errors of commission. The latest MODIS product,
MCD64A1, showed great potential and an improved detection of smaller fires in other cases, but its
performance in our study region was not as good as its predecessor’s. Likewise, Tsela et al. [29] found
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that MCD45A1 detects smaller burned areas (50% of a MODIS pixel) better than MCD64A1, and when
presenting the new hybrid algorithm, Giglio et al. [25] stated that the minimum burn size for reliable
detection is in the order of 120 ha. ESA’s Fire_CCI product performed poorly as well. A possible
reason for the failure of detection lies in the hybrid algorithms strategies: both hybrid approaches rely
heavily on a probabilistic selection of candidate burned pixels based on MCD14ML. Hotspots are used
as starting seeds for the Fire_CCI product, while the MCD64A1 product employs them as training
samples for a classification over previously created maps of persistent changes in a vegetation index.
Although in general very low, omission error from the AF product is entirely absorbed by the hybrid
algorithm. Those fires not detected by the AF product will be excluded from further processing. This
approach is very efficient to overcome excessive commission errors, but may be too restrictive for the
detection of small burned patches in mountainous regions. Moreover, without a proper topographic
adjustment of the raw satellite images, the real surface area of a pixel in a rugged terrain and on steep
slopes is bigger than on a flat regular terrain, making the detection of small fires more difficult.

Because of the higher spatial resolution of the Fire_CCI product (300 m), a better detection of
smaller fires was expected, but our results proved the opposite. For both of the assessed years, Fire_CCI
performed similarly to MCD64A1, and worse than the other two products. Pixel size analysis showed
a tendency for big commission errors due to confusion between burned land and other disturbances.
Among the four tested products, Fire_CCI is the newest and its validation is still at its beginning stage.
Preliminary comparisons showed good agreements with other global products, but greater omission
and commission errors [28,33,73]. Further validation is in progress.

The cross-analysis of the two best performers, the BA-based MCD45A1 and the AF-based
MCD14ML, revealed that these two products can detect several different fire events, and that by
merging them directly, better probabilities of detection can be reached. On the other hand, the
commission error would also be higher. Depending on the aim of a given study (e.g., quantification
of burned areas), a direct merge would not be a suitable solution. However, this cross-comparison
confirms that hybrid approaches can significantly improve the accuracy of burned area detection, and
suggests that the existing approaches should be ameliorated, in order to include the detection of small
fires in other ecosystems, such as the mountainous one that is analyzed in this study. Past merged
products efforts have demonstrated an improvement of the results [29,32]. The latter research paper
was an attempt to include small fires in the global assessment of the impact of fires on the ecosystems.
The authors found that accounting for small fires increased the total burned area and biomass global
carbon emissions by approximately 35% when these fires were included in simulations with the GFED3
biogeochemical model.

To balance the interpretation of the results, we need to mention the limits of the data and the
methodology employed. First, mountainous regions host very complex environments with unique
landscape and topography features, and are characterized by small fire events. Global algorithms
are designed for analysis and applications at regional to global scales, therefore lower performances
in these particularly small regions are somehow expected. When fires are small, the impact of
incongruences in the geographic registration of the products increases. Additionally, the landcover
mask that is used to remove agriculture fires from the analysis may contain classification errors and
lead to further detection mistakes. Secondly, when defining the methodology, some compromises, like
the choice of the rules for the aggregation of pixels belonging to the same fire event and the choice of an
accuracy assessment method, need to be done. Polygon intersection means that at least a part of a fire
event’s burned area is detected; it does not tell us anything about how accurately the shape and the area
of the fire event is detected. Moreover, the two metrics quantifying error types, user’s accuracy (UA)
and producer’s accuracy (PA), the way they were used in our assessment method, do not quantify the
error within correctly detected fire events, but only the error of fires completely omitted or committed.
Finally, the reference dataset was based on visual interpretation of Landsat scenes and the analyst’s
empirical knowledge of the region. This method is widely recognized by the scientific community as
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being valid and efficient when assessing the accuracy of coarser resolution datasets, but on the other
hand, it is still prone to interpretation mistakes, and it is a time-consuming task.

5. Conclusions

The impact of small size disturbances on terrestrial and atmospheric environments is very
important, not only at local and regional scales, but also at the planetary and continental scales.
Modeling of the Earth System should include those small fires in order to acquire a better understanding
of fire disturbance as a global driving force of ecosystem change during time. Mountainous ecosystems
are home to rich and rare biological species, and are very sensitive to changes induced by human
activities and climate change. This study contributes to this understanding by delivering a first
assessment of the strengths and shortcomings of the existing, free-of-charge, global BA and AF
products, in an ecosystem that has never been assessed before: the mountainous region of northwest
Yunnan, at the southeastern edge of the Himalaya complex. The four global products tested in this
study were selected because of their relatively high temporal and spatial resolution. The outcomes of
the accuracy assessment allowed for the identification of the best product and a preliminary insight
into fire activity in this region. Our main conclusions are as follows:

1. The analyzed global AF and BA products shows poorer results in our mountainous area than in
other ecosystems, mainly due to the smaller size of fires. For burned areas bigger than 50 ha, the
best product could detect more than 60% of the fire events. Detection decreases drastically for
smaller burned areas.

2. The two former MODIS fire products, first MCD45A1 then MCD14ML, were the best performers
in our study area, followed by MCD64A1 and Fire_CCI. These results did not align with our
expectations. The newest algorithms are designed using hybrid approaches that combine the
capabilities of both AF and BA methods. Therefore, among other improvements, they should
have performed better in the detection of small fires. On the contrary, they obtained lower
scores and higher commission and omission errors than their predecessors. This has important
implications for the design of future algorithms. MCD45A1 being the best performer suggests
that its bi-directional reflectance based approach is still valid and deserves more consideration,
for example, by being integrated in a hybrid approach. Unfortunately, MCD45A1 has been
discontinued since January 2017 and replaced by the hybrid MCD64A1, which produced
worse results.

3. At present, the usefulness of the existing global BA and AF products for the quantification of
small fires is still marginal. The spatial resolution limitation of the sensors that are used to
generate these datasets represents a physical limit that cannot be passed. Yet, taking into account
the high rate of omission and commission, MCD45A1 and MCD14ML’s data can be used to obtain
preliminary insights on the fire activity of regions that are characterized by relatively small fires
or to partially assess the accuracy of other burned area extraction methods.

Hence, based on the results of the present study, we recommend a re-evaluation of the new
hybrid algorithms so that they can account for small fires occurring in ecosystems that feature complex
landscape and topographic traits. Improved algorithms would not only benefit global and continental
scale applications, but also serve the increasing number of users that are working in smaller regions
where no other reliable data about fire activity is available. Our study suggests that, despite the sensors
resolution limitations, there is room for improvements in algorithm design. Adopting sensors with
higher spatial resolution like the MERIS sensor used in the Fire_CCI product is undoubtedly the right
direction to follow to improve the burned area mapping phase. Still, the first selection of seeds based
on MODIS thermal bands needs to be rethought.

We believe that a more accurate quantification of small fires, as well as other disturbance
phenomena at global scale will be soon achievable, also thanks to the onset of big data technology.
Existing alternatives could lie on higher resolution AF products like the 375 m VIIRS AF sensor aboard
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the Suomi National Polar-orbiting Partnership satellite [81], which collects images about every 12 h.
However, its archive is very recent, beginning from the year 2012. Active fire data for previous years
need to rely on the MODIS or other AF products. In addition, the Landsat archive offers four decades
of 30 m resolution imagery, which has been widely used for all sorts of fire-related applications. In this
perspective, recently, a lot of effort is put in the reconstruction of fire history using Landsat-based
algorithms, such as the Burned Area Essential Climate Variable (BAECV) algorithm, which has been
applied to the conterminous United States [82]. This algorithm maps burned areas with a minimum
size of 4.05 ha, which is an ideal minimum size for mountainous areas. A first assessment performed
by Vanderhoof et al. [83] found that, in a mountainous ecoregion of the western United States, BAECV
detected 33% and 76% of fires with sizes 4.05 to 10 ha and 10 to 25 ha, respectively. These are very
positive and encouraging results, which are calling for the application and validation of BAECV and
other Landsat-based fire extraction algorithms over other regions of the world.
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