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Abstract: We used the Visible Infrared Imaging Radiometer Suite (VIIRS) active fire data (375 m
spatial resolution) to automatically extract multispectral samples and train a One-Class Support Vector
Machine for burned area mapping, and applied the resulting classification algorithm to 300-m spatial
resolution imagery from the Project for On-Board Autonomy-Vegetation (PROBA-V). The active fire
data were screened to prevent extraction of unrepresentative burned area samples and combined with
surface reflectance bi-weekly composites to produce burned area maps. The procedure was applied
over the Brazilian Cerrado savanna, validated with reference maps obtained from Landsat images and
compared with the Collection 6 Moderate Resolution Imaging Spectrometer (MODIS) Burned Area
product (MCD64A1) Results show that the algorithm developed improved the detection of small-sized
scars and displayed results more similar to the reference data than MCD64A1. Unlike active fire-based
region growing algorithms, the proposed approach allows for the detection and mapping of burn
scars without active fires, thus eliminating a potential source of omission error. The burned area
mapping approach presented here should facilitate the development of operational-automated
burned area algorithms, and is very straightforward for implementation with other sensors.

Keywords: support vector machine one class; burned area; active fire; Cerrado; PROBA-V; VIIRS

1. Introduction

Vegetation burning is a global-scale process that affects the global distribution and structure
of vegetation, major biogeochemical cycles, and the climate system [1]. The relation of fire with
vegetation is contradictory: as an ecological factor, it contributes to maintaining ecosystem dynamics,
productivity and biodiversity and, as a land management tool, it is extensively employed in croplands,
rangelands, and forests throughout the world. However, wildfires are a socio-natural hazard that
annually affect millions of hectares of forests, woodlands, and other vegetation, endangering human
populations, and causing substantial economic losses, both in terms of assets destroyed and in the
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form of prevention and suppression costs [2]. During the last decades, the Brazilian savanna has been
increasingly affected by deforestation due to cropland and pasture expansion, consequently increasing
and altering the natural fire regime in the region [3,4]. Attempts to characterize these anthropogenic
impacts presuppose understanding of spatial and temporal fire patterns [1]. Despite the high frequency
of human induced-fire and significant disturbance caused to the Cerrado biome, fire dynamics are not
yet well characterized.

Over the last few decades, the use of remote sensing has allowed unprecedented advances in
mapping fire dynamics, especially for locating fire occurrence in time and space and quantifying the
total extent of area burned. Several studies relied on the use of remote sensing to map burned areas
at a global/regional scale [5–11]. However, the variable persistence of burn scars within different
vegetation types, and the spectral confusion with other phenomena (e.g., cloud shadowing) are some
of the problems that still hamper accurate burned area mapping [12]. Accordingly, users of burned
area maps have stressed the need to improve product accuracy, namely in order to refine current
estimates of burned areas, thus providing input to global analysis of ecological impacts of fires to better
understand the relations between fire occurrence and biodiversity, and to improve the assessment of
atmospheric emissions derived from vegetation fires [13,14].

The detection of small burned areas is one of the main limitations in burned area mapping
that uses low-resolution sensors, as previously reported [7,11,15–17]. It is possible to improve the
detection of small burned areas using existing fire products. Alonso-Canas [5], using 300-m MEdium
Resolution Imaging Spectrometer (MERIS) global satellite data, developed an algorithm based on
the time series of surface reflectance to identify abrupt changes in near-infrared reflectance (NIR),
and regional growing techniques using MODIS active fire as spatial seeds, in a two-phase algorithm.
The use of this sensor has improved small fire detection due to better spatial resolution, however,
the results were not considered competitive in comparison with MODIS burned area products [17].
Hybrid approaches that combine active fire information with reflectance data have been widely
used in burned area mapping to add new evidence for burned area classification [5,7,11]. In such
approaches, active fires are used to derive statistics for burn classes [18,19], or used as seed points
in regional growing techniques. However, active fire detection products often omit burned area
patches [20], leading to underestimation of the area burned. Omission errors from active fire detection
products may be due to the spatial and the temporal coverage of satellite overpasses, sensor saturation,
or obscuration by clouds and smoke [7,11,21]. The presence of thick clouds and heavy smoke layers
is a major drawback in operational applications, preventing hot spot detection due to the spectral
signal attenuation in the atmosphere [21,22]. This is especially true in the tropics during the dry
season [23,24], where the probability of cloud-free observations is, on average, less than 30% [25].
For instance, Schroeder [21] assessed active fire temporal continuity over Brazil using the Geostationary
Operational Environmental Satellite (GOES) hotspot product and indicated that a reduction of 15% in
fire counts occurs due to cloud obscuration.

The approach described in this paper only uses active fire data to select burned pixels (positive
training samples), avoiding the need to collect unburned (negative) training pixels. Collection of
positive training samples can be used in a positive—only classification approach [26], and is particularly
interesting for mapping burned areas since training sample collection is normally a difficult task
when considering the unburned area class. However, few studies have applied this technique for
burned area mapping. In a comparative study among Maximum Likelihood (ML), Binary Support
Vector Machine (SVM) and One-Class Support Vector Machine Description (OC-SVDD) aimed at
burned area identification, the authors of [27] reported that SVM and OC-SVDD produced good
results for a broader range of sample sizes than ML. Although the SVM yields better accuracy,
the authors mention as an advantage of OC-SVDD that it does not require training samples from
unburned areas. However, burned area training data are manually collected, impairing its use in
an automated burned area algorithm. Song et al. [28] proposed mapping burned areas applying a
one-class classifier and obtained reasonable results using a kernel sparse representation model to
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represent burned samples. However, in both studies, training data for the single class of interest was
collected manually, which increases the classification cost, making it dependent on human intervention
for sample acquisition. Besides eliminating the subjectivity of the human intervention, the fully
automatic approach is advantageous for maximizing image data processing efficiency for large area
coverage and data volume in a timely and cost-effective way, enabling operational delivery of burned
area products.

Here, we explore the suitability of the One-Class Support Vector Machine classifier for burned area
classification and mapping in the Cerrado region and propose using active fire data to automatically
collect burned area training samples, circumventing the need for human intervention and increasing
the degree of automation of the entire classification procedure. The procedure was applied to 300-m
spatial resolution imagery from the Project for On-Board Autonomy-Vegetation (PROBA-V) and Visible
Infrared Imaging Radiometer Suite (VIIRS) active fire data (375 m spatial resolution). This algorithm,
hereafter designated AQM-PROBA (from “Área Queimada”, meaning Burned Area, in Portuguese),
is based on VIIRS active fire data which are used to automatically extract burned area training samples
from PROBA-V reflectance imagery. Then, those samples are used as input to a one-class support
vector machine classifier, which only requires positive (i.e., burned area) training data [29]. Our goal is
to generate a completely automated methodology, capable of producing results with accuracy levels in
the range required by users of global fire data products, such as climate and vegetation researchers,
as well as land managers and policy-makers [13]. The accuracy of our results was assessed using
reference data derived from Landsat-8 OLI data over the Cerrado region and finally compared with
MODIS standard burned area product.

2. Study Area and Data

The Cerrado is the largest continuous savanna area in the world and covers about 2 million km2,
ranging from 2.3◦S to 24.7◦S and 41.7◦W to 60.1◦W (Figure 1). It is one of the most important
biodiversity hotspots in the world due to species richness and a high percentage of endemism,
containing more than 10,000 cataloged plant species [30,31], in which species display morphological
and functional dependence from fire [32–34]. Several authors have shown that although
fire-dependent ecosystems, such as the Cerrado, have evolved in the presence of recurrent natural
fires and are dependent on them to maintain their biodiversity, high human pressure through frequent
burning may have negative impacts on species diversity [35,36]. Fire is commonly used in agricultural
land management, affecting water flow and facilitating erosive processes [37], and promoting
deterioration of physical and chemical soil characteristics, reducing its productive potential [38].
Recently, the human footprint was reported as being high to very high across the Cerrado, where only
a few areas remain undisturbed [39]. Moreover, current climate change scenarios point towards an
overall increase in fire frequency and intensity over a large area of the Cerrado [40].

According to Koppen’s classification [41], the Cerrado climate is Equatorial savanna with dry
winter (Aw), characterized by dry winters and monthly mean temperatures above 18 ◦C. The biome
has a marked dry season from May to September when the region becomes susceptible to fire events
with an annual fire occurrence peak in September [7,42,43]. The region is considered a pyrobiome [33]
because it is a fire-dependent ecosystem, where the majority of the species evolved in the presence of
fire. According to the authors of [7,40], the intra and inter-annual variabilities of fire in the Cerrado are
closely related to precipitation variability, but it is worth emphasizing that human activity also plays a
prominent role in fire dynamics in this region and cannot be disregarded [33,34].

Two datasets were used to develop the algorithm: (1) PROBA-V near-infrared Top of Canopy
data (NIR-TOC); and (2) VIIRS active fire data. The datasets span the period 1 August 2015 to
31 October 2015, corresponding to the driest months over the region [7,40].

The PROBA-V satellite was launched on 6 May 2013 as a continuity mission to the Vegetation
instruments aboard of Satellite Pour l'Observation de la Terre (SPOT) (1998–2014) [44]. Its orbit is
sun-synchronous with an initial overpass time at about 10:45 a.m., with a 2295 km swath and daily
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near-global (90%) coverage [45]. PROBA-V cameras have a spatial resolution of 100 to 180 m in the
central 500 km of the swath, and 350–660 m along the outer sections of the swath. Final products are
available at resolutions of 100 m, 300 m, and 1 km, with level 3 geometric and radiometric corrections.
Data consist of reflectance values at the Top of the Atmosphere (product S1-TOA) and Top of Canopy
(S1TOC product) in the Blue (0.464 µm), Red (0.665 µm), NIR (0.837 µm), and shortwave infrared
(SWIR; 1.603 µm) channels. PROBA-V data are disseminated by European independent research and
technology organisation called VITO [46], in partnership with the European Space Agency (ESA).
Solar zenith angles and viewing zenith angles data are also available, as well as information about
radiometric quality and cloud/cloud shadow cover. The present study area is coincident with two
PROBA-V tiles: X13Y08 and X13Y09 (Figure 1), covering an area of about 1.22 million km2 of Cerrado,
which represents 60% of the entire biome area.

VIIRS active fire data, at 375 m spatial resolution, are used for collecting burned area spectral
data training samples [47]. Active fires from VIIRS have the highest spatial resolution of currently
global products, which makes them particularly suitable to detect small fires [48,49]. VIIRS was
launched in October 2011 aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite, a
United States mission jointly managed by the National Aeronautics and Space Administration (NASA)
and by the National Oceanic and Atmospheric Administration (NOAA) and the data are provided at
12-h intervals.

Accuracy assessment is needed to quantify the degree of agreement between mapped products
and ground observations. It allows for rigorous evaluation of the quality of thematic maps derived
from remotely sensed data. Ideally, accuracy assessment of maps based on remotely sensed data
is performed against ground measurements, taken to represent the true status or quantity of the
target under analysis. There are limitations to using this ideal approach in the proposed study,
due to the very broad extent of the study area (the whole of Cerrado), the limited accessibility of
many regions, and the ephemeral nature of the signal, which starts to fade out a few days after
the fire occurrence. Currently, this problem is circumvented by using higher spatial resolution
satellite imagery as reference data for evaluating the lower resolution derived maps, being a
well-established procedure [7,15,16,18,48,50–52]. Accordingly, the higher spatial resolution satellite
imagery used in this study as reference data for accuracy assessment came from the Landsat-8 (L8)
Operational Land Imager (OLI), which has a spatial resolution (30 m), more than 2–3 orders of
magnitude higher than that of the evaluated PROBA-V and MODIS instruments. Thirteen paths/rows
from OLI sensor, covering an area corresponding to 17% of the Cerrado (Figure 1), were used to
elaborate independent fire reference perimeters. The procedure is based on the International Global
Burned Area Satellite Product Validation Protocol [53], which uses a semi-automatic classification
approach. The algorithm uses fixed and multitemporal thresholds applied to the Normalized Burn
Ratio Long SWIR (NBRL) spectral index, based on OLI bands 6 and 7 (shortwave infrared around
1.6 and 2.1 µm). Visual photointerpretation is the ultimate benchmark for any classification and
segmentation procedure [54]. Accordingly, the derived scars were then subject to a meticulously,
lengthy, and expensive manual and visual quality control, in order to produce the highest quality
reference map.

The choice of L8 scenes was guided by the spatial and temporal distribution of active fires derived
from the VIIRS in 2015 (Figure 2). September was the month with the highest frequency of active fires,
followed by October, and they are concentrated in the northern part of the Cerrado, corroborating
previous studies [7,42,43]. L8 images were then selected according to the period of highest fire activity
and lowest cloud cover. We have stratified L8 reference scenes by region according to high, medium,
and low fire incidence, to properly assess commission and omission errors. Table 1 shows the path/row
and dates (initial and final date) of the L8 images used in this study.

Finally, we describe our results through a comprehensive assessment of burned area classification
using Landsat fire reference perimeters and comparison with the MCD64A1 collection 5 burned area
product [11]. MCD64A1 uses daily reflectance and active fire data from the MODIS sensor aboard
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the AQUA and TERRA. It presents a nominal resolution of 500 m and is globally available on a
monthly basis since August 2000. MODIS tiles h13v09 and h13v10 were used for comparison exercise;
the dataset was downloaded from the University of Maryland site.Remote Sens. 2017, 9, 1161  5 of 21 
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Table 1. Landsat 8 path/rows and dates used to elaborate reference fire perimeters.

Number Path/Row Initial Date Final Date

1 218/072 16 September 2015 2 October 2015
2 219/068 23 September 2015 9 October 2015
3 219/070 7 September 2015 9 October 2015
4 219/071 23 September 2015 9 October 2015
5 219/072 23 September 2015 9 October 2015
6 220/066 30 September 2015 19 October 2015
7 220/067 30 September 2015 19 October 2015
8 220/068 29 August 2015 14 September 2015
9 221/067 20 August 2015 5 September 2015
10 221/070 5 September 2015 21 September 2015
11 221/071 5 September 2015 21 September 2015
12 222/067 27 August 2015 12 September 2015
13 222/068 27 August 2015 12 September 2015

3. Methods

3.1. The AQM-PROBA Algorithm

The AQM-PROBA algorithm structure is described following main phases: Pre-processing,
Multitemporal compositing, Training sample selection and Burned area classification.

3.1.1. Pre-Processing

PROBA-V NIR daily reflectance values, with spatial resolution of 300 m, are georeferenced based
on coordinate information contained in the metadata, rejecting pixels:

(1) containing solar zenith angles greater than 60◦ and/or viewing zenith angles of NIR channel
greater than 40◦;

(2) classified as cloudy in the PROBA-V Quality assurance layers;
(3) containing low radiometric quality;
(4) containing reflectance values higher than 0.5.

3.1.2. Multitemporal Compositing

Pixel quality assessment is provided for the product 1-day Synthesis Products Top-Of-Canopy
reflectance (S1TOC). Bi-weekly composites of the second lowest NIR value of the time series
were computed, with the chosen span of two weeks. Choice of this compositing approach is based on
the results obtained by [55]. Multi-temporal image compositing is the creation of a synthesis image with
inputs from different dates selected according to spectral criteria that minimize cloud contamination and
evidence target land cover types. This approach is frequently used in burned area mapping [7,11,56].

3.1.3. Training Sample Selection

Burned area classification mainly relies on two variables: (1) Post-fire NIR reflectance; and (2)
Difference between pre-fire (T1) and postfire (T2) NIR reflectance. VIIRS active fires were used to
extract NIR reflectance from PROBA-V pixels to act as training samples to the One-class Support
Vector Machine (OC-SVM) classifier. A total of 323,259 VIIRS active fires (for both PROBA-V tiles)
were used to extract NIR reflectance information from pixels (one active fire per pixel). As active fires
may be detected by the sensor even when only a very small fraction of the pixel area has burned,
its reflective spectral signature may not display clear evidence of the burning event. Hence, those pixels
are inadequate training samples and have to be discarded. To exclude these samples, the set of pixels
containing an active fire detected during the respective compositing period were segmented into
three classes, using the Jenks natural breaks method [57]. Natural break segmentation of potential
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training data was performed on post-fire NIR reflectance values (T2) and on the pre-fire minus post-fire
NIR difference values (T1–T2). To be included in the training sample, candidate pixels must belong
simultaneously to: (1) the lowest class of post-fire NIR reflectance and (2) to one of the two highest
classes of NIR difference values. Of 323,259 pixels, 93,643 (circa 29%) were selected as training samples
for both PROVA-V tiles. Figure 3 shows the cumulative density functions for post-fire NIR reflectance
values (Figure 3a) and NIR difference values (Figure 3b), and the thresholds for including pixels in the
training sample.
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3.1.4. Burned Area Classification—One-Class Support Vector Machine (OC-SVM) Classifier

The training sample was then used as input to the One-class Support Vector Machine
(OC-SVM) classifier. OC-SVM is a machine-learning algorithm derived from the standard Support
Vector Machine algorithm [29] and designed to tackle single-class classification problems. It optimizes
separation of the target class by constructing a hyperplane that best represents the multidimensional
edge of the feature space. The hyperplane is obtained by minimizing the function:

t(w, ξ, ρ) =
1
2
‖w‖2 − ρ +

1
mv

m

∑
i=1

ξi (1)

where v is used to control the volume of the sphere that bounds the portion of the feature space where
the training samples are located. It defines an upper limit to the outliers fraction found in the data [58],
w is the width of the region besides the decision boundary, and m is the number of training instances.

Although developed for linear problems, different kernel functions for nonlinear problems can
be used with OC-SVM [29]. Among the kernel functions available for computation, the most widely
used are the radial basis function (RBF), the sigmoid function, and the polynomial function [50].
Kernel choice is based on the data type and on the n-dimensional feature distribution. In the present
analysis we used the RBF kernel in the present analysis which has been extensively and successfully
used in remote sensing image-processing tasks [59,60].

According to the boundaries defined by the kernel function of the OC-SVM, the classifier
returns positive values for classes that are similar to the classes in the training sample and negative
values otherwise. Computations were carried out using the R-Studio and the package e1071 [61]. The v
value is defined as the inverse of the number of features, which in the present study is equal to two (NIR
values and NIR differences). The value of w may vary between 0, which yields low omission error at the
expense of a higher comission, and 1, which has the opposite effect. We selected this value as 0.1, after a
series of tests and visual analyses of the trials outputs. Finally, a morphological opening (erosion followed
by dilation) filter by a square structuring element of size three was applied to the burned area map.
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3.2. Accuracy Assessment

The accuracy of AQM-PROBA-V burned area maps was assessed using reference fire perimeters
extracted from each L8 scene and compared with the results from the MCD64A1 burned area
product. We evaluated the AQM-PROBA-V and MCD64A1 in two different ways: (1) pixel-based and
(2) grid-based. The pixel-based analysis was based on a contingency table (Table 2), from which
different verification measures were calculated, namely overall accuracy (OA), omission (OE),
and commission error (CE), bias (BIAS), Dice coefficients (DICE), and critical success index (CSI)
(Table 3). The OA is the fraction of correctly classified pixels, either as burned or unburned. Accordingly,
the OA reflects the agreement between the burned area (BA) product and the reference map
(i.e., the accuracy of the classification) and satisfies the principle of equivalence of events, since it credits
correct burned and unburned pixels equally [62]. This is not always a desirable attribute, particularly
when the number of burned pixels is much smaller than the unburned one. An alternative to the OA is
the CSI, which is useful when the event (burned pixels) occurs much less frequently than the nonevent
(unburned pixels). It quantifies the proportion of correctly classified burned pixels, after removing
correctly classified unburned pixels from consideration. The worst possible values for OA or CSI
are zero, and the best is one. The OE and the CE provide respectively information about the reliability
and discrimination power of the developed BA product, while the DICE is a measure of the overlap
between the BA product and the reference map, in terms of the number of common burned pixels.
The OE and CE range between zero and one, and have a reverse scale, such that smaller values are
best. Conversely, the DICE has a direct scale, varying from zero (worst) to one (best). Finally, BIAS just
indicates if the BA product overestimates (BIAS > 1) or underestimates (BIAS < 1) the burned area,
and should not be considered an accuracy measure, since it does not provide information about the
correspondence between classification and reference. Unbiased BA products exhibit BIAS equal to 1,
indicating that the burned event is classified the same number of times that it is observed.

Table 2. Generic contingency table between the reference and burned area (BA) products.

Reference

Burned Unburned Total

BA Products
Burned A B A + B

Unburned C D C + D
Total A + C B + D A + B + C + D

Table 3. Verification measures, acronyms and equations derived from contingency table from Table 2.

Verification Measures Acronym Equation

Overall Accuracy OA (A + D)/(A + B + C + D)
Omission Error OE C/(A + C)

Commission Error CE B/(A + C)
Bias BIAS (A + B)/(A + C)

Dice Coefficient DICE 2A/(2A + B + C)
Critical Success Index CSI A/(A + B + C)

Most accuracy metrics available in the literature for the validation of thematic maps are derived
from the contingency table. However, the traditional use of the contingency table assumes that reference
data and classified data have the same spatial resolution, which is often not the case when evaluating
coarse spatial resolution classifications, e.g., BA product acquired by sensors such as PROBA and
MODIS. However, the influence of the sensor spatial resolution on the accuracy of the final burned
area coarse product is well documented in the literature and is called low-resolution bias [49]. In order
to circumvent this limitation, the contingency table was calculated using a fuzzy approach [63],
which evaluates the proportion of reference (30 m) burned area contained within each pixel of the
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lower resolution burned area products (300 m and 500 m, for PROBA-V and MODIS, respectively).
This proportion was used to weigh the contingency table data. For example, if an AQM-PROBA burned
pixel has 70% of its area considered as burned in the reference data, this pixel has a hit of 0.7 and a
commission error of 0.3. On the other hand, if the burned area in the reference data corresponds to 30%
of an AQM-PROBA pixel, none of which is captured by AQM-PROBA, this pixel will have an omission
error of 0.3. The proportions were used as weights to calculate the contingency table, which results
from the summation of all weighted values for each error or hit. The analysis takes into account
the extent to which the lower resolution information diverges from the higher resolution reference.
This approach has been used for validating burned area maps derived from low-spatial resolution
data against reference data of higher spatial resolution, since it is more appropriate than the traditional
contingency table for the comparison of datasets with different spatial resolutions [7,50,64]. Moreover,
a confidence interval was calculated for each verification measure using AQM-PROBA and MDC64A1
burn maps, by means of the Z-test. The confidence interval means that by repeating the analysis with
independent samples, the results will be within the upper and lower bounds of the interval with a
pre-defined probability, in our case 95%.

In the second approach, grid-based, we compared AQM-PROBA, MCD64A1, and the Landsat
reference data over 10 × 10 km grids for each L8 reference scene. The Kendall rank coefficient [65] was
used to assess the correlation between the BA products within the 10 × 10 km grid. The advantage of
grid correlation analysis is that it quantifies regionally the overall agreement between burned area
estimation and the reference, and has been widely used to study the relationship between burned area
estimates at different spatial resolutions [15].

The Mann–Kendall test was used in order to check the null hypothesis (H0) of no correlation between
reference maps and the developed maps (τ ≤ 0). The alternative hypothesis (H1) indicates that there is a
correlation between both reference and developed maps (τ > 0), at a significance level of 0.05.

Finally, we also evaluated classification errors according to the distribution of fire-scars size by
number and by area for each Landsat scene. Thus, the reference, AQM-PROBA and MCD64A1 maps
scars were categorized into four classes according to the fire-scar area: (1) very small (0–25 ha); (2) small
(25–100 ha); (3) medium (100–1000 ha) and (4) large (>1000 ha).

4. Results

The AQM-PROBA algorithm performance was assessed through a comparison with the MCD64A1
product and the Landsat fire reference perimeters. For the whole study area, 12,848 km2 of the
burned area were mapped using the AQM-PROBA algorithm, and 10,332 km2 for MCD64A1,
against 13,086 km2 mapped in the reference map. In general, the overall accuracy for AQM-PROBA
and MCD64A1 were high (Table 4), which is expected since the target class is much less frequent than
the non-occurrence class.

Figure 4 shows boxplots for the accuracy measures of all the L8 scenes, for both BA products.
AQM-PROBA yielded higher bias values than MCD64A1 (Figure 4c), whereas both products showed
similar results for DICE and CSI (Figure 4d,e). AQM-PROBA showed lower mean values of OE (30%)
and higher CE (22%) than the MCD64A1 (34% and 15% of OE and CE, respectively).

The verification measures for both products were also assessed individually for each Landsat
scene (Table 4). The highest OE and CE values were recorded for the 221/071 scene, while BIAS values
ranged from 0.40 (for MCD64A1 in the scene 221/071) to 1.18 (AQM-PROBA for 219/068). The DICE
and CSI coefficients have similar values, with highest values for scenes 219/072, 220/68 and 222/67
(AQM-PROBA) and 219/068, 219/070, 220/067 (AQM-PROBA and MCD64A1).
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Figure 4. Boxplots for each verification measures (a) Omission Error (OE); (b) Comission Error (CE);
(c) Bias (BIAS); (d) Dice Coefficient (DICE) and (e) Critical Success Index (CSI) for 13 Landsat
8 scenes based on Área Queimada—Project for On-Board Autonomy-Vegetation burned area product
(AQM-PROBA) (gray boxes) and Moderate Resolution Imaging Spectroradiometer direct broadcast
(DB) burned area product (MCD64A1) (white boxes), depicting the 25th, 50th (median, black line) and
75th percentiles. The red cross represents the mean value, and black points are the outliers.

Table 4. Verification measures from contingency table (Omission Error (OE); Comission Error (CE);
Bias (BIAS); Dice Coefficient (DICE) and Critical Success Index (CSI)) for Área Queimada—Project
for On-Board Autonomy-Vegetation burned area product (AQM-PROBA) and Moderate Resolution
Imaging Spectroradiometer direct broadcast (DB) burned area product (MCD64A1) for each Landsat
8 scene.

Products Path/Row OA OE CE BIAS DICE CSI

AQM-PROBA 218/072 0.997 0.47 0.05 0.56 0.68 0.51
MCD64A1 218/072 0.996 0.68 0.21 0.41 0.46 0.30

AQM-PROBA 219/068 0.990 0.14 0.27 1.18 0.79 0.65
MCD64A1 219/068 0.994 0.21 0.07 0.85 0.85 0.74

AQM-PROBA 219/070 0.993 0.17 0.15 0.97 0.84 0.72
MCD64A1 219/070 0.993 0.22 0.11 0.88 0.83 0.71

AQM-PROBA 219/071 0.998 0.43 0.27 0.78 0.64 0.47
MCD64A1 219/071 0.998 0.60 0.12 0.45 0.55 0.38

AQM-PROBA 219/072 0.998 0.29 0.18 0.86 0.76 0.61
MCD64A1 219/072 0.998 0.40 0.07 0.65 0.73 0.57

AQM-PROBA 220/066 0.986 0.31 0.32 1.03 0.69 0.52
MCD64A1 220/066 0.988 0.41 0.18 0.72 0.69 0.52

AQM-PROBA 220/067 0.989 0.23 0.27 1.05 0.75 0.60
MCD64A1 220/067 0.991 0.30 0.16 0.84 0.76 0.62

AQM-PROBA 220/068 0.996 0.29 0.16 0.85 0.77 0.63
MCD64A1 220/068 0.994 0.26 0.28 1.02 0.73 0.57

AQM-PROBA 221/067 0.987 0.40 0.13 0.69 0.71 0.55
MCD64A1 221/067 0.988 0.34 0.15 0.78 0.74 0.59

AQM-PROBA 221/070 0.991 0.35 0.31 0.95 0.67 0.50
MCD64A1 221/070 0.993 0.36 0.18 0.78 0.72 0.56

AQM-PROBA 221/071 0.993 0.70 0.42 0.53 0.40 0.25
MCD64A1 221/071 0.994 0.74 0.36 0.40 0.37 0.22

AQM-PROBA 222/067 0.989 0.33 0.17 0.81 0.74 0.59
MCD64A1 222/067 0.989 0.33 0.14 0.78 0.75 0.61

AQM-PROBA 222/068 0.996 0.45 0.12 0.63 0.68 0.51
MCD64A1 222/068 0.996 0.43 0.10 0.63 0.70 0.54
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Rather than presenting just a single value for each verification measure, a confidence interval can
be calculated and presented as part of the classification skill. The confidence interval is comprised by
the range, which is the lower and upper limit of each metric that can be expected from the classification
approach, and by the probability that the verification measures of the classification approach will fall
within the range.

Accordingly, Table 5 indicates the expected range of each metric using a confidence interval
of 95%, which means that there is a likelihood of 95% that the confidence interval (lower-upper limits)
encompasses the true classification metric on unseen data. The confidence interval results (Table 5)
indicate that if the verification measure were calculated for different reference datasets, the average
value of each metric would fall between the lower and upper limits of the interval, with high probability.
Thus, the AQM-PROBA yielded better results for the OE, BIAS, DC, CSI verification measures than
MCD64A1, which, in turn, has a lower CE.

Table 5. Confidence intervals calculated with the Z-test with 95% confidence, for each verification
measures (Omission Error (OE); Comission Error (CE); Bias (BIAS); Dice Coefficient (DICE) and Critical
Success Index (CSI)) from contingency table and for each burned area product (Área Queimada—Project
for On-Board Autonomy-Vegetation burned area product (AQM-PROBA) and Moderate Resolution
Imaging Spectroradiometer direct broadcast (DB) burned area product (MCD64A1)).

Verification Measures Lower Limit Upper Limit Fire Product

OE
0.27 0.42 AQM-PROBA
0.31 0.5 MCD64A1

CE
0.16 0.27 AQM-PROBA
0.11 0.2 MCD64A1

BIAS
0.73 0.94 AQM-PROBA
0.6 0.81 MCD64A1

DC
0.64 0.75 AQM-PROBA
0.6 0.76 MCD64A1

CSI
0.48 0.61 AQM-PROBA
0.45 0.61 MCD64A1

Comparing the total burned area obtained from reference data, AQM-PROBA and MCD64A1
for each Landsat scene it is clear that AQM-PROBA displayed results closer to the reference data
than MCD64A1, with the exception of the 220/68, 221/67, 222/67 and 222/68 scenes. Figure 5 shows
different fire patterns among the thirteen analyzed scenes. Three scenes (218/072, 219/071 and
219/072) present less than 400 km2 of burned area, whereas another three scenes contain approximately
600–750 km2 of burned area (220/068, 222/068, and 221/071). Finally, the majority (seven scenes,
219/068, 219/070, 220/066, 220/067, 221/067, 221/070 and 222/067) display more than 1200 km2 of
area burned each. While all three BA products show similar spatial behavior, there are significant
differences regarding the magnitude of the amount of burned area. On average, the AQM-PROBA
and MCD64A1 provide underestimation of BA compared to the reference Landsat. The AQM-PROBA
(MCD64A1) product provides greater burned area amount in 8 (5) of the analyzed scenes than
MCD64A1 (AQM-PROBA), corroborating the BIAS behavior shown in Table 4.

A better insight into the fire pattern of each analyzed scene may be obtained by analyzing the
distribution of fire scars size by the corresponding fractions of total number of scars and of total
burned area. Accordingly, Figure 6 shows the reference fire scar size distribution by number of scar
categorized into four classes: (1) very small (0–25 ha); (2) small (25–100 ha); (3) medium (100–1000 ha);
and (4) large (>1000 ha). Figure 6 reveals that the region presents a predominance of very small fire
scars (class 1), however these scars accounts for less than 5% of the total amount of burned area.
Conversely, the highest amount of burned area belongs to large fire scars (class 4, larger than 1000 ha),
which in turn, accounts for the lowest number of scars.
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The L8 scenes 219/71 and 221/71 showed smaller percent differences in between size classes100–
1000ha and >1000 ha (Figure 6), in comparison to other scenes. These scenes also displayed high 
omission error for both products (Table 4). Nevertheless, Figure 7 shows that most omissions cases 
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reference data).  
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(>1000 ha), for each Landsat 8 scene.

The L8 scenes 219/71 and 221/71 showed smaller percent differences in between size classes
100–1000ha and >1000 ha (Figure 6), in comparison to other scenes. These scenes also displayed high
omission error for both products (Table 4). Nevertheless, Figure 7 shows that most omissions cases
are due to small fire scars (AQM-PROBA in red, MCD64A1 in blue and, black contour represents the
reference data).
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scene. For AQM-PROBA, the highest Kendall’s correlation was found for scene 220/66 (0.85) and the 
lowest for scene 218/72 (0.51). For MCD64A1, the best result was found for scene 221/67 (0.72) and 
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reference map was 0.7, with a standard deviation of 0.09, whereas for MCD64A1 the correlation was 
0.56 with a standard deviation of 0.11 (Table 6). 

 

Figure 7. Burned area maps for Área Queimada—Project for On-Board Autonomy-Vegetation burned
area product (AQM-PROBA) (red) and Moderate Resolution Imaging Spectroradiometer direct
broadcast (DB) burned area product (MCD64A1) (blue) for 219/071 scene. The black outline represents
the reference Landsat 8 fire scars perimeters. The small rectangles highlight examples of omissions
cases related to small fire scars.

Figure 8 shows the burned area proportions classified in all the Landsat scenes plotted against
the proportion classified as burned in the two BA products in a region of 10 by 10 km defined within
each reference data scene. For all scenes, the AQM-PROBA showed a greater correlation with the
Landsat burned area estimates than the MCD64A1 product. Both BA products underestimate the BA in
most cases, except in 219/68, 219/70, 222/67 for AQM-PROBA-V and 220/68 for MCD64A1 (Figure 8).

Table 6 shows the Kendall correlation index calculated for each product and for each Landsat scene.
For AQM-PROBA, the highest Kendall’s correlation was found for scene 220/66 (0.85) and the lowest
for scene 218/72 (0.51). For MCD64A1, the best result was found for scene 221/67 (0.72) and the worst
for scene 218/72 (0.37). On average, the correlation between AQM-PROBA and the reference map
was 0.7, with a standard deviation of 0.09, whereas for MCD64A1 the correlation was 0.56 with a
standard deviation of 0.11 (Table 6).
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Figure 8. Scatterplots between burned area classified with the Área Queimada—Project for On-Board
Autonomy-Vegetation burned area product (AQM-PROBA) and Moderate Resolution Imaging
Spectroradiometer direct broadcast (DB) burned area product (MCD64A1) algorithms and the reference
fire perimeters for a defined 10× 10 km grid within each Landsat 8 scene represented by each subfigure
(8a to 8l). The regression line (blue) and the 1:1 line (black) are also displayed.

Table 6. Values obtained from the calculation of the Kendall correlation index (τ) with a confidence
level of 95% for both products Área Queimada—Project for On-Board Autonomy-Vegetation burned area
product (AQM-PROBA) and and Moderate Resolution Imaging Spectroradiometer direct broadcast
(DB) burned area product (MCD64A1) and for each Landsat 8 scene (path/row).

Product Path/Row τ

AQM-PROBA 218/072 0.51
MCD64A1 218/072 0.37

AQM-PROBA 219/068 0.72
MCD64A1 219/068 0.60

AQM-PROBA 219/070 0.69
MCD64A1 219/070 0.61

AQM-PROBA 219/071 0.66
MCD64A1 219/071 0.43

AQM-PROBA 219/072 0.71
MCD64A1 219/072 0.53

AQM-PROBA 220/066 0.85
MCD64A1 220/066 0.65

AQM-PROBA 220/067 0.79
MCD64A1 220/067 0.68

AQM-PROBA 220/068 0.76
MCD64A1 220/068 0.67

AQM-PROBA 221/067 0.82
MCD64A1 221/067 0.72

AQM-PROBA 221/070 0.70
MCD64A1 221/070 0.63

AQM-PROBA 221/071 0.67
MCD64A1 221/071 0.42

AQM-PROBA 222/067 0.72
MCD64A1 222/067 0.60

AQM-PROBA 222/068 0.58
MCD64A1 222/068 0.44
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5. Discussion

Two aspects can be considered in the analysis of omission and commission errors: the first is
related to errors along the edges of burn scars, due to the differences in spatial resolution of the datasets,
possibly combined with georeferencing errors. The second is related to fires that occurred prior to the
date of the first Landsat image, but were detected in the PROBA-V composite after this date, probably
due to shortage of cloud-free data. This type of error was also identified in the results of MCD64A1.
The uncertainty in detection dates can lead to this type of error in the accuracy assessment [52].

Although the AQM-PROBA and MCD64A1 products are based on different data derived
from different sensors, the divergences in the results presented may reflect the different
methodologies applied. Both products use active fire for spectral characterization of burned pixels,
but they are different in design. The AQM-PROBA is based on the spectral space of the NIR T2
and NIR T1-T2 values in PROBA-V images, with samples collected by VIIRS active fire, which is
used to train the OC-SVM classification model. On the other hand, MCD64A1 uses spectral index
data constructed in the NIR-SWIR spectral space (1.6 and 2.1 µm) and cumulative active fire maps
to guide the selection of burned and unburned samples and to specify probabilities. In addition,
the better spatial resolution of PROBA-V compared to MODIS data and the use of OC-SVDD may
have an influence on the detection of smaller fire scars. In the AQM-PROBA product, isolated pixels
are excluded from the final result, such that the minimum mapping area is 22 ha. Due to the 500 m
spatial resolution of MODIS, the theoretical minimum area mapped by the MCD64A1 would be 50 ha.
However, according to previous studies, it is hard to detect burned areas smaller than about 4 to
10 pixels in size [64]. For instance, the minimum resolution at which MCD64A1 is reliable is 120 ha [66].

Both products showed the same trend towards larger omission errors and lower correlation
with the reference data when small burns dominate the fire size distribution. This is common when
comparing images and reference data collected at different spatial resolutions, where the size and
irregularity of the targets are determinant for higher omission errors [5,7,15,52]. The largest omission
errors in both burned area products were observed where scars are typically small. Silva et al. [15]
using Satellite Pour l’Observation de la Terre (SPOT) Vegetation data over Africa, mentioned two
atypical situations: small burned areas that were sufficiently dark to be detected (low values of NIR
reflectance after the fire) and large burned areas that were frequently missed due to a small decrease
in NIR reflectance values after the fire. The former case may explain the results obtained with scene
219/072 evaluated in our study. This scene contained small burned areas but yielded a Kendall
coefficient of 0.71 for AQM-PROBA, similar to those obtained for areas with larger burns. Besides the
presence of small burned areas, scene 218/72 covers a peculiar area where a rugged topography and
extensive rock outcrops further complicated burned area detection with low-spatial resolution sensors.

Thus, we show that mapping accuracy is likely to vary significantly in space due to the observed
contrast between the distribution of fire size number and area. The extent and fragmentation pattern
of burning, namely on the relative importance of small versus large burns, introduces limitations in
BA estimation when using coarse spatial resolution sensors. Since the study area is characterized by a
high frequency of very small scars (<25 ha), a large number of omission errors was observed due to
the coarse resolution of the BA products (500 m for MCD64A1 and 350 m for AQM-PROBA), in some
cases leading to a substantial underestimation of total area burned. On the order hand, in regions with
predominance of large fire scars, the BA coarse products are quite accurate, and may even lead to slight
overestimation. High reflectance values of NIR after the fire may be the reason for the results of scene
221/067, where omission errors were high, despite the occurrence of large burns. One possible cause is
the presence of low fuel loadings in the area, and the presence of quartz neosols [67]. This soil has a
whitish color and high reflectance values of the NIR channel due to the presence of sand and quartz
in their composition [68]. Libonati [7] validated the AQM algorithm for scene 221/067 considering a
multi temporal data set spanning a six-year period. This algorithm uses the index W, constructed by
the spectral space of the NIR-MIR (middle infrared) spectral region of the MODIS sensor. The AQM
algorithm is based on the MODIS MIR channels, suggesting that the use of different channels and
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indices may produce better results in the area. In this case, the spectral space of the MIR, used in AQM,
can have a positive influence.

6. Conclusions

This study highlights the use of a One-Class Support Vector Machine classifier for burned area
mapping using automated sample selection based on active fires. The procedure was applied to the
Brazilian Savanna using Project for On-Board Autonomy—Vegetation (PROBA-V) reflectance and
Visible Infrared Imaging Radiometer Suite (VIIRS) active fire data. Nevertheless, we must highlight
that although the present study has used PROBA-V images and VIIRS active fire data, the approach
may be easily adapted to other data sources.

Validation results using Landsat reference data, and a comparison with the MCD64A1 burned area
product (MODIS/Terra and Aqua Burned Area Monthly L3 Global 500 m) showed a higher accuracy
of the current algorithm in the Brazilian Cerrado. In general, the AQM-PROBA presented lower
omission error compared with the MCD64A1 product, but the latter displayed lower commission errors.
However, the AQM-PROBA displayed more balanced values of omission and commission and,
consequently, a bias closer to 1 and a higher correlation with the fire reference data. Higher similarity
was also observed between reference and AQM-PROBA for fire scars smaller than 100 ha.

One of the limitations of the presented methodology is the spectral limitation of the
PROBA-V sensor, which has only four channels. Several studies have shown that the spectral space of
short wave infra-red and middle infra-red channels in savanna areas is advantageous, especially at the
2.1 and 3.9 µm wavelengths, respectively [69–73]. Thus, the implementation of the approach presented
herein with spectral indexes presenting greater separability between burned and unburned surfaces
may improve the results. Considering that burned areas in the Cerrado tend to show an increase in
temperature after the fire occurrence [74], another alternative to improve burned area detection may
involve the use of thermal data.

Finally, the proposed methodology based on the use of one-class algorithms opens new
perspectives on fire scar detection, since current burned area algorithms based on hybrid approaches
are still hampered by the accuracy of active fire products. Moreover, the results of this study have
demonstrated that the technique of automated sample selection based on active fires as proposed here
produced accurate and promising results for burned area mapping, circumventing the need for human
intervention in sample acquisition.
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