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Abstract: Multiple cropping, a common practice of intensive agriculture that grows crops multiple
times in the agricultural land in one growing season, is an effective way to fulfill the food demand
given limited cropland areas. Deriving cropping cycles from satellite data provides the spatial
distribution of cropping intensities that allows for monitoring of the multiple cropping activities over
large areas. Although efforts have been made to map cropping cycles at 500 m or coarser resolution,
producing cropping cycle maps at high resolution remain challenging because data from single
satellite sensor do not provide sufficient spatiotemporal observations. In this paper, we generate
dense time series of satellite data at 30 m resolution by fusion of Landsat and MODIS data, and derive
the cropping cycles from the fused time series data. The method achieves overall accuracies of
92.5% and 89.2%, respectively, for two typical regions of multiple cropping in China using samples
identified based on satellite time series data, and an overall accuracy of 81.2% for four subregions
using all samples identified based on multi-temporal high resolution images. The mapped crop cycles
show to be reasonable geographically and agree with the national census data. The fusion approach
provides a feasible way to map cropping cycles at 30 m resolution and enables improved depiction of
the spatial distribution of multiple cropping.

Keywords: time series; data fusion; land cover mapping; multiple cropping; cropping intensity

1. Introduction

Agriculture in Asia provides over half of the world’s cereal with only one-third of cropland
coverage [1–3]. To fulfill the food demand of large population, Asian countries often adopt intensive
agriculture to increase grain production on limited cropland extents with heavy capital and labor
inputs. Multiple cropping, a common practice of intensive agriculture that grows multiple crops in
the same cropland during a single growing season, makes full use of the light-heat resources as well
as other natural conditions to increase the agricultural production capacity [4–6]. Simultaneously,
multiple cropping results in a series of subsequent environment and social issues, such as agricultural
land use, water use and nutrient applications, cropland managements, and the reciprocal feedback of
climate changes [7–10]. Information regarding the spatial distribution of multiple cropping is therefore
essential for a wide range of applications and studies [11–14].
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The spatiotemporal coverage provided by satellite remote sensing makes it an efficient and useful
tool to monitor the activities of multiple cropping over large areas. Areas with multiple cropping
exhibit cyclic patterns in time series of satellite-based vegetation indices, such as Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), which reflect cropping activities on
the ground. Identifying cropping cycles from satellite data allows for the characterization of multiple
cropping from regional to continental scales. Yan et al. [15] analyzed the changes of multiple cropping
intensities from 1980 to 1990s in China based on Advanced Very High Resolution Radiometer (AVHRR)
time series at 8 km resolution. Ding et al. [16] derived maps of multiple cropping from the Global
Inventory Modeling and Mapping Studies (GIMMS) time series data and analyzed the variation of
multiple cropping in northern China from 1982 to 2012. With improved spatial resolution and data
quality, Moderate Resolution Imaging Spectroradiometer (MODIS) time series have been used to
derive the information of crop intensity at 250 m to 1000 m resolution. Li et al. [17] detected yearly
cropping cycles in China based on smoothed MODIS EVI time series and validated the maps against
national survey data at the province level. Estel et al. [18] mapped cropping systems in Europe using
MODIS NDVI time series, which were found to agree with European agriculture management data.
Gray et al. [3] used multi-temporal MODIS NBAR-EVI to map multiple cropping activities in Asia and
produced reasonable results as validated at the provincial level. While mapping multiple cropping
with satellite data at moderate and/or coarse resolutions has been extensively studied, there is a
need to produce high-resolution maps of multiple cropping, simply because the pixel sizes at coarse
resolution (from 0.5 to 8 km) are usually considerably larger than the actual field sizes of croplands [19],
making their use difficult in downstream applications.

Challenges remain in terms of mapping cropping cycles at fine resolution over large areas. One
reason is that data from a single satellite sensor are not capable of capturing the fast-changing cropping
activities on the ground. The harvest and replantation of crops for multiple cropping could be
completed within one month or two [20,21]. Unlike natural vegetation, crops often reach canopy
maturation quickly after plantation and have a relatively short growing period. The agricultural lands
with higher cropping intensities often have more fragmental patches because farmers tend to access
and manage the croplands more frequently [22–24]. In essence, producing high-resolution maps of
multiple cropping requires time series of satellite data at both high temporal and spatial resolutions.
However, the spatial and temporal resolutions of satellite sensors are compromised. High resolution
sensors like Landsat do not collect images frequently enough, whereas coarse resolution sensors like
MODIS have sufficient temporal resolution but less than ideal spatial resolution [25]. To date, no
individual satellite sensor has proven suitable for mapping cropping cycles at high spatial resolution.

Fortunately, methods have been developed for blending data from sensors at different
spatiotemporal resolutions and produce dense time series of satellite images at high spatial
resolution [26–30]. Gao et al. [31] proposed the algorithm of spatial and temporal adaptive reflectance
fusion model (STARFM) to predict daily surface reflectance at Landsat spatial resolution and MODIS
temporal frequency. The algorithm designed based on spectral difference, temporal difference and
location distance has proven to be useful in forested areas and cropland regions. Zhu et al. [32]
developed an enhanced version of the STARFM based on the spectral unmixing method to improve
the fusion of surface reflectance data in heterogeneous landscape. Hilker et al. [33] introduced a spatial
temporal adaptive algorithm for mapping reflectance change (STAARCH) using the Tasseled Cap
transformation and generated dense time series of Landsat data through data blending with MODIS
for mapping forest disturbance. Wu et al. [34] developed a spatial temporal data fusion approach
(STDFA) and predicted the surface reflectance of fine resolution pixels. These studies have successfully
produced time series of high-resolution images based on the fusion approach using data from different
satellite sensors. The fusion method therefore provides a potential solution to mapping cropping
cycles at high spatial resolution, but remains to be tested.

The main goal here is to propose a method to map cropping cycles at high resolution based on
fusion of Landsat and MODIS data. The proposed method is applied to map cropping cycles in major
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agricultural regions in China. The efforts to develop such a method would allow for producing useful
maps of cropping cycles at high resolution over large areas.

2. Materials

2.1. Study Area

China has a long land use history to cultivate crops intensively. Two Landsat scenes that cover
representative areas of multiple cropping in China were selected for study (Figure 1). One Landsat
scene (Path 122 Row 034) crosses Shandong Province (hereinafter referred to as SD) and Hebei Province
in the North China Plain, and the other (Path 119 Row 038) is located in Jiangsu Province (hereinafter
referred to as JS) in the Yangtze Downstream Plain. Both scenes cover an area of approximately
170 × 180 km.
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Figure 1. An overview of the study area is shown for the Landsat 8 images based on the false-color
composites of near-infrared, red, and blue bands.

The SD scene covers southern Hebei Province and northern Shandong Province, which are both
major grain producing provinces in China. The SD region has a warm temperate monsoon climate with
abundant precipitation and heat resources. As the length of frost free season increases from northeast
to southwest, there is a geographic transition of single cropping to double cropping from north to
south. The region is typically cultivated in high intensity with relatively large field sizes. Winter wheat
and maize are major crop types, whereas other planted crop types include soybean, barley, paddy rice,
and sorghum.

The JS scene covers southern Jiangsu Province, another major grain producing province along
the east coast of southern China. The JS region has a subtropical moist monsoon climate that is
characterized by mild weather and moderate rainfall. Due to rapid economic growth and urban
developments, the agricultural field size in JS is relatively small, making it difficult to derive
information related to multiple cropping from coarse remote sensing data. For most of the multiple
cropping activities, paddy rice and maize are planted in June and harvested in October, followed by
crops such as winter wheat, barley, and rapeseed planted in November and harvested in the next June.

2.2. Data

The used datasets include 30 m Landsat 8 Operational Land Imager (OLI) images, 500 m MODIS
surface reflectance products, 1000 m MODIS land surface temperature products, and 30 m land
cover maps. Landsat 8 surface reflectance higher-level data products in 2015 were obtained from
the Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA)
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website [35]. The Landsat 8 surface reflectance images delivered along with cloud mask data were
generated from the Landsat Surface Reflectance Code (LaSRC). MODIS 8-day surface reflectance
Version 6 products from both Terra and Aqua (MOD09A1 and MYD09A1) and MODIS 8-day land
surface temperature Version 6 products (MOD11A2) in 2014–2016 were downloaded from the Land
Processes Distributed Active Archive Center (LPDAAC) website [36]. The MODIS surface reflectance
products along with ancillary quality control data that are indicative to the observation quality were
delivered in the Sinusoidal projection at 500 m resolution. The MODIS land surface temperature
products were provided in the Sinusoidal projection at 1000 m resolution. To match the spatial extents
of the Landsat images, all MODIS products were resampled to 30 m resolution in the Universal
Transverse Mercator (UTM) projection. The 30 m resolution land cover data of GlobeLand30 for
the year of 2010 were obtained from the website of National Geomatics Center of China [37]. The
classification system of GlobeLand30 includes 10 land cover types: cultivated land, forest, grassland,
shrub land, wetland, water bodies, tundra, artificial surfaces, bare land, and permanent snow and
ice [38]. The GlobeLand30 images are also reprojected using the Geospatial Data Abstraction Library
(GDAL) tool to match the spatial extents of Landsat images. Multi-temporal very high-resolution
images of GaoFen-1 (GF1, 2 m spatial resolution) and GaoFen-2 (GF2, 1 m spatial resolution) that
were acquired during key phenophases of crop growth were sourced from China Center for Resources
Satellite Data and Applications [39]. For the SD scene, the used images include GF-1 images acquired
on 6 January, 29 March, 26 July and 20 October 2015 and GF-2 images acquired on 23 March, 26 April
and 26 September 2105. For the JS scene, the used images include GF-1 images acquired on 24 March,
14 June, 29 July and 3 December 2015. All sourced GF images are almost cloud-free and have already
been preprocessed with radiometric correction, geometric correction, and band fusion.

3. Methods

As improved based on our previous study [17], the method to map cropping cycles (Figure 2)
involves three main steps as follows: (1) generating 8-day time series surface reflectance data at 30 m
resolution based on fusion of Landsat and MODIS data; (2) deriving and smoothing fused EVI time
series at 30 m resolution; and (3) extracting cropping cycles based on the smoothed fusion time series
and refining mapped cropping cycles based on land surface temperature data and land cover maps.
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3.1. Generating 8-Day 30 m Surface Reflectance Data by Fusion of Landsat and MODIS Data

Deriving high-resolution maps of cropping cycles from remotely sensed data requires time
series observations that track cropping activities on the ground. While observations from Landsat
have the high spatial resolution of 30 m, the temporal resolution of Landsat images is insufficient
for tracking the dynamics of cropping activities, especially when accounting for the issue of cloud
contamination. For example, there are only approximately 3–8 cloud-free Landsat images available in
2015 for both scenes (Table 1), whereas the activities of crop harvest and replantation could occur within
1–2 months. By comparison, MODIS provides observations with less than ideal spatial resolution
(250 to 1000 m) and sufficient temporal resolution at a near daily basis. The 8-day composites of MODIS
data (46 observations in a calendar year) have proven to reduce the effects of cloud contamination
effectively and thus provide a suitable basis for capturing the variation of cropping phenology in many
studies [40–42]. To combine the strength of Landsat and MODIS observations, we therefore applied a
widely used method of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to
generate 8-day surface reflectance data at 30 m resolution [31].

Table 1. Information on all Landsat 8 images (cloud cover <10%) in 2015 for two studied scenes.

Path, Row Date Scene Cloud Cover Percentage (%) Land Cloud Cover Percentage (%)

122, 034 19 January 2015 0.28 0.27
4 February 2015 9.14 9.03
24 March 2015 0.81 0.79
25 April 2015 1.86 1.81
12 June 2015 1.59 0.84

16 September 2015 1.54 1.54
2 October 2015 0.09 0.09

3 November 2015 0.72 0.70
119, 038 27 September 2015 7.02 7.30

13 October 2015 3.20 3.29
16 December 2015 6.60 6.71

STARFM is a robust tool in generating high-resolution surface reflectance data using Landsat
and MODIS images, and has found to achieve good performance over forest and crop areas. Here,
we apply the STARFM algorithm to blend Landsat OLI surface reflectance images and MODIS 8-day
surface reflectance data, which have already been preprocessed to account for atmospheric correction
and screen out cloud contaminated pixels. For each scene, one clear and good quality image of
Landsat OLI at the key phase of crop growth was selected as the fine-resolution image for fusion (i.e.,
the Landsat 8 image acquired on 25 April 2015 for the SD scene and the Landsat 8 image acquired
on 13 October 2015 for the JS scene, respectively). The 8-day MODIS products that have the closest
observation dates with the Landsat images were chosen as the matched coarse-resolution image,
supposing that the differences of the acquisition time between Landsat and MODIS input data are
negligible. The entire time series of MODIS surface reflectance data from 2014 to 2016 were then used
to generate the 30 m 8-day surface reflectance data separately for both the Terra and Aqua products.
To deriving EVI time series data, the near-infrared, red, and blue bands (Landsat OLI band 5, 4, and 2,
and MODIS band 2, 1, and 3, respectively) were processed with false-color-composite images shown
in Figure 3 as examples. Based on visual examination, STARFM could evidently generate reasonable
images at both high spatial and temporal resolutions by dealing with the effects of land cover mixtures
at MODIS resolutions.
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compositing method: 

Figure 3. Examples are shown for the surface reflectance images after fusion of Landsat and MODIS
data and real Landsat data. The top line shows the fusion results for the entire SD scene, and the second
line shows for a zoomed area as outlined by the yellow box, the third line shows for the real Landsat
data, and the bottom line shows for the zoomed area as outlined by the yellow box. The images are
shown for the false-color composite of near-infrared, red, and blue bands.

3.2. Deriving and Smoothing High-Resolution EVI Time Series

Because EVI has proven in capturing vegetation dynamics with improved sensitivity as compared
to NDVI, the surface reflectance data from both MODIS Terra and Aqua are used to derive EVI
based on the following equation [43] and then further synthesized based on the minimum blue
compositing method:

EVI =
2.5 × (ρNIR − ρRed)

ρNIR + 6 × ρRed − 7.5 × ρBlue + 1
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Note that, although MODIS vegetation indices products are provided from the website of
LPDAAC, the EVI time series are produced on a 16-day basis, which is insufficient to capture rapid
temporal variation in crop growth [44–48]. More importantly, to derive high-resolution EVI data
correctly, it is needed to apply surface reflectance data rather than non-linear indices of EVI to the
algorithm of STARFM.

There is a need to process the fused EVI time series with appropriate smoothing methods because
the fused EVI time series as generated from the MODIS 8-day composite data could contain a
certain degree of noise originated from sources such as atmospheric contamination and viewing
and illumination angles. The software of TIMESAT is used to produce smoothed EVI time series for
the identification of cropping cycles. TIMESAT provides three fitting algorithms, including asymmetric
Gaussian, double logistic, and adaptive Savitzky–Golay. Based on the findings of previous studies [17],
we applied the filter of adaptive Savitzky–Golay to the fused EVI time series. To preserve the subtle
information of crop phenology variation, we applied the second-order polynomial and the window
size of 4 for the 8-day composite data (i.e., 32-days).

Typical points of different cropping cycles are shown in Figure 4 as examples to illustrate the
processes of the time series fitting, where cloudy observations as identified based on the original
MODIS quality control data were assigned small weights in the fitting function. As seen in Figure 4,
EVI time series well track the dynamics of crop growth during the growing season, as EVI first increases
after the plantation of crops, peaks at the time of crop maturation, and then decreases after crops are
harvested. Single cropping exhibits only one periodic cycle in the calendar year. Double cropping could
have two or three peaks during the calendar year, because the plantation of winter wheat in November
typically results in another peak of EVI in November or December right before the dormancy of winter
wheat during the winter time. Fallow areas could also have a periodic cycle in the growing season,
but the peak value of EVI is often low. The fitted EVI time series data at 30 m resolution then serve as
the basis for identifying the numbers of the periodic cropping cycles in a calendar year.
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Figure 4. Examples of the processes of EVI time series are shown for typical points of fallow,
single cropping and double cropping in the Shandong scene. The fused EVI time series are
composited from both MODIS Terra and Aqua data based on the minimum blue compositing method,
and cloudy observations are identified based on the quality control data of original MODIS observations.
The geographic coordinates for the fallow, single-cropping and double-cropping pixels are (38.082◦N,
116.560◦E), (37.604◦N, 118.264◦E), and (37.439◦N, 116.866◦E), respectively.
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3.3. Mapping Cropping Cycles Based on Fusion EVI

To extract the growing cycles from time series of satellite data, studies have developed different
algorithms [49–52]. The complete detail of the used method is described in our previous work [17],
and here we summarize it briefly.

Mapping cropping cycles from analysis of EVI time series involves major steps as follows. First,
local maxima and minima in the fitted EVI time series are detected as potential peaks and troughs,
respectively, by applying a centered moving window of 9, which is equivalent to 32 days before and
after the centered observation. Second, spurious peaks of time series with EVI less than 0.35 are
discarded because the EVI values of croplands, if planted, generally exceed 0.40 at maturation. Third,
to make peaks and troughs alternate in the time series and to reduce influence of occasional undetected
clouds, potential peaks and troughs are checked iteratively where successive potential peaks with
no intervening trough are merged by keeping observations with higher EVI. Fourth, the numbers of
cropping cycles are counted based on the numbers of peaks for the calendar year. Fifth, we apply a
conservative minimum threshold of 5 ◦C based on the nighttime land surface temperature of MODIS
products (MOD11A2) to define the start and the end of a growing season in a year, and deduct the
number of cropping cycles if one peak falls in the non-growing season in order to account for the false
peak resulted by the plantation of winter wheat. Last, the mapped cropping cycles is masked with the
maps of cultivated land as derived from the GlobeLand30 datasets.

To understand the effects of spatial resolution on the mapping of cropping cycles, we applied the
method to both the MODIS EVI time series and the fused EVI time series after the processes of time
series fitting and made comparative studies.

3.4. Accuracy Assessment

The cropping intensity maps for the study areas were assessed at two spatial scales: (1) the
prefectural level; and (2) the pixel level. At the prefectural level, the gross sown areas derived from
both the fusion and MODIS time series in 2015 were compared with that derived from national
survey data from the 2016 provincial statistical yearbook, in which the official statistical data are
released for the previous year. The gross sown areas for prefectures in SD and JS were obtained
from Shandong Statistical Yearbook for 2016 [53] and Jiangsu Statistical Yearbook for 2016 [54].
At the pixel level, the cropping intensity maps were evaluated with 3000 sample points of croplands,
where each scene contains 1500 sample points (Figure 5a,b). The sample points were randomly selected
based on a stratified random sampling method, where 500 samples come from each of the three
strata: fallow, single cropping, and double cropping. Professionals, without knowing the mapping
results, visually interpreted the 3000 validation points based on the unfitted EVI time series at 30 m
resolution. In addition, 1200 randomly selected sample points (i.e., 600 sample points for each scene
and 200 sample points for the strata of fallow, single cropping, and double cropping, respectively) that
distribute the overlapped areas of multi-temporal GF-1 and GF-2 images were interpreted based on the
multi-temporal very high-resolution images of GF-1 and GF-2 for algorithm assessments (Figure 5c,d).
The pixel was interpreted as double cropping if planted in both the spring season and the summer
season and was interpreted as single cropping if planted only in the spring or the summer season.
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GlobeLand30 land cover maps.

4. Results

4.1. Mapping Results Using the Fusion Method of STARFM

The mapped cropping cycles in 2015 for the two study scenes in both SD and JS are shown in
Figures 6 and 7, respectively. The spatial distribution of the cropping cycles is consistent with our
general knowledge of cropping activities. For the SD scene, cropping intensities vary from double
cropping to single cropping as the latitude increases, mostly because the climate and environment
resource gradually become unsuitable for double cropping in northern Shandong Province in the North
China Plain. For the JS scene, cropping intensities change from double cropping to single cropping as
latitude decreases. The areas in southern Jiangsu Province in the Yangtze Downstream Plain experience
fast economic development and urbanization, resulting in fragmental agricultural fields. Although the
climate allows for planting multiple crops in a year, some farmers lived near the city area choose to
plant crops only once a year or even leave the cropland uncultivated, because cultivating the croplands
often costs higher capital and labor inputs but generates less net profits than working in the industry.
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The spatial distributions of cropping cycles over the entire scenes are shown to be consistent as
derived from the 30 m fusion data and the 500 m MODIS data. When inspecting the spatial pattern
using the zoomed window, the mapped cropping cycles derived using the same method but from
different datasets have obvious differences. The 500 m results could not depict the detail of land use
as well as the 30 m results. For the SD scene, one zoomed image is located in a typical wheat-maize
cultivated region with intensive double-cropping activities, and the other is located in a transition
zone from single to double cropping. The 500 m results largely aggregate the agricultural lands and
impervious areas, whereas the 30 m results show the field boundaries and shapes well and reduce the
impacts of pixel mixture on mapping cropping cycles. Similarly, for the JS scenes, one zoomed image
comes from the northern Jiangsu Province, where are cultivated with typical wheat-maize rotations,
and another image covers an area mixed with wheat-rice and single rice cultivations. The 500 m results
seem to erroneously depict the cropping activities near ponds and omit the spatial details of country
roads and small towns, possibly because the pixels mixed with cropland and water at 500 m resolution
could have time series of vegetation indices distinctively different from pixels of typical croplands.
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Figure 6. Mapped cropping cycles for the SD scene and zoomed images. Images are shown for the
distribution maps derived from the 30 m fusion data (top row, a–c) and from 500 m MODIS data
(bottom row, d–f), respectively. The left column presents maps of cropping cycles for the entire scene,
and the middle and the right column present two zoomed areas as marked by the red windows.
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Figure 7. Mapped cropping cycles for the JS scene and zoomed images. Images are shown for the
distribution maps derived from the 30 m fusion data (top row, a–c) and from 500 m MODIS data
(bottom row, d–f), respectively. The left column presents maps of cropping cycles for the entire scene,
and the middle and the right column present two zoomed areas as marked by the red windows.

At the prefectural level, the mapped cropping cycles are evaluated using the national census
data reported by National Bureau of Statistics of China (NBSC) (Figure 8). To derive the sown areas
from satellite-based maps, the cropland pixels are first multiplied by the cropping cycles and then
zoned using the prefectural boundaries. The obtained coefficients of determination (R2) between
satellite-derived and census-based sown areas are higher than 0.80 for both scene and for both the
30 m and 500 m maps, demonstrating that the developed method to derive cropping cycles performs
reasonably well in both areas with regular field sizes like SD and areas with fragmental field sizes
like JS. The algorithm shows to be robust when applied to satellite data at different spatial resolution
and varied cultivated conditions. Note that the regression slopes between satellite-derived and
census-based sown areas are much closer to the 1:1 line for the 30 m maps than for the 500 m maps for
each scene. One possible reason is that the 30 m fusion data provide a realistic basis for estimating
cropping areas because the pixel mixture effects are considerable at 500 m resolution and make it
difficult to map agricultural fields accurately. For example, the regression slopes in the JS scene are
higher than that in SD, probably due to more fragmental fields.

At the pixel scale, the 30 m cropping intensity maps derived from the 30 m time series data were
evaluated using samples that were manually interpreted. The error matrices including the metrics of
producer’s accuracy, user’s accuracy, overall accuracy are shown for each cropping classes and for each
scene in Table 2. The achieved overall accuracies are 92.5% and 89.2% for the agricultural intensity map
in the SD and JS scene, respectively, illustrating that the mapping results are accurate. The producer’s
and user’s accuracies are all above 80.0% for three different classes of cropping activities. Most of
commission errors are due to the confusion between single and double cropping, mainly because
cloudy observations could result in missed data in the time series and make pixels of double cropping
have time series data similar to pixels of single cropping. Other errors are resulted by the confusion
between fallow and single cropping, largely due to the effects of pixel mixtures given that pixels
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mixed with single-cropping and fallow could have lower EVI than pure pixels with single cropping.
The accuracies are generally higher in the SD scene than in the JS scene, because SD has fewer clouds
and larger field sizes than JS.
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Figure 8. Gross sown areas for the year of 2015 are compared between national census data at the
county level and maps of cropping cycles as derived from: (a) SD; and (b) JS. The black dots represent
estimates derived from 30 m fusion data and the blue hollow dots represent estimates derived from the
500 m MODIS data.

Table 2. The error matrices for the agricultural intensity maps in 2015 for both scenes using STARFM.

Mapped Classes

Reference Data

Shandong Scene Jiangsu Scene

F S D UA (%) F S D UA (%)

F 466 27 7 93.2% 448 43 9 89.6%
S 10 454 36 90.8% 26 439 35 87.8%
D 4 29 467 93.4% 0 49 451 90.2%

PA (%) 97.1% 89.0% 91.6% 94.5% 82.7% 91.1%

OA (%) 92.5% 89.2%

F denotes fallow; S denotes single-cropping; D denotes double-cropping; and PA, OA, and UA denote producer’s
accuracy, overall accuracy and user’s accuracy, respectively.

The agriculture intensity maps at 30 m resolution were additionally evaluated using the samples
derived from multi-temporal very high-resolution GF satellite images (Table 3). The overall accuracy
is 81.2% for samples from four study regions and the overall accuracies are 82.0%, 82.3%, 81.3% and
79.0% for the Region A, B, C and D, respectively. The overall accuracies as evaluated using samples
derived from multi-temporal GF-1 and GF-2 images are lower than those evaluated using samples
derived from EVI time series. Similar to results in Table 2, the overall accuracies are slightly higher in
SD than that of JS generally. In both regions A and B in SD, large errors are caused by the confusion
between single cropping and fallow. By comparison, in both regions C and D in JS, large errors are due
to the confusion between single cropping and double cropping.

To understand the scale effects on different resolution maps, the 30 m maps are aggregated to
500 m resolution as fractional maps of cropping intensities and are then compared with the binary
500 m map of cropping cycles. Each box diagram in the boxplots of Figure 9 shows the data distribution
of fractional cropping intensities for each binary category of the cropping cycles. For the box diagram
of fallow cycles derived using MODIS data, the mean marks of fractional cropping intensities are both
less than 0.5, implying that using MODIS data alone might not be able to identify the cropping cycles
accurately if the areas of cultivated lands occupy less than 50 percent of the pixels. The fusion data
could be useful for identifying the cropping cycles for areas with small field sizes. By comparison,
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the box diagrams of double-cropping cycles derived using MODIS data in both SD and JS have the
mean marks of fractional cropping intensities less than 2.0. In essence, because the effects of pixel
mixture are considerable at 500 m resolution, applying the proposed method to the MODIS data at
500 m resolution tends to result in overestimates of double cropping and underestimates of fallow for
areas with intensive agriculture. These results illustrate the necessaries to map cropping cycles at fine
spatial resolutions.

Table 3. The error matrices for the agricultural intensity maps using reference data derived from
multi-temporal very high-resolution GF-1 and GF-2 images.

Mapped
Classes

Reference for Region A Reference for Region B Reference for Region C Reference for Region D

F S D UA
(%) F S D UA

(%) F S D UA
(%) F S D UA

(%)

F 84 11 5 84.0 86 11 3 86.0 87 11 2 87.0 76 18 6 76.0
S 5 77 18 77.0 10 78 12 78.0 13 76 11 76.0 11 71 18 71.0
D 1 14 85 85.0 3 14 83 83.0 8 11 81 81.0 3 7 90 90.0

PA (%) 93.3 75.5 78.7 86.9 75.7 84.7 80.6 77.6 86.2 84.4 74.0 78.9
OA (%) 82.0 82.3 81.3 79.0

OA (%) for all samples: 81.2%

F denotes fallow; S denotes single-cropping; D denotes double-cropping; and PA, OA, and UA denote producer’s
accuracy, overall accuracy and user’s accuracy, respectively.
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are compared with fused images in Figure 10 and the results show that ESTARFM outperforms 
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results are acceptable for subsequent analysis because noises in individual images could be reduced 
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Figure 9. The boxplots for the distribution of crop intensities are shown for the scenes of: (a) SD;
and (b) JS. The 30 m cropping cycles mapped using the fusion data are aggregated to 500 m as fractional
maps and are then compared with the binary cropping cycles mapped using the 500 m MODIS data for
the entire scene.

4.2. Comparisons between Mapping Results Using STARFM and Using ESTARFM

The fusion methods determine the derived 30 m resolution surface reflectance data and hence the
mapping results. While STARFM is implemented for producing high-resolution maps of cropping
cycles, the algorithm of ESTARFM that uses two pairs of Landsat and MODIS images is another fusion
method that has been widely used for data fusion. To understand the impacts of different fusion
methods, we also implement ESTARFM [32] for data fusion. The real Landsat images are compared
with fused images in Figure 10 and the results show that ESTARFM outperforms STARFM for the
studied region in terms of the regression coefficients and error metrics. The linear correlations however
are weaker than those in similar studies [31,32]. Note that we used 8-day composited products in
our studies and there are two-day mismatches between MODIS composites and Landsat data. As the
view angles could vary greatly in MODIS data from day to day, the fusion results are acceptable for
subsequent analysis because noises in individual images could be reduced during the process of time
series fitting.
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Figure 10. Scatter plots of real surface reflectance and predicted surface reflectance in near-infrared
and red bands using STARFM (a,b) and ESTARFM (c,d). The solid lines denote the 1:1 lines and the
dash lines denote the regression lines.

The accuracies obtained using ESTARFM (Table 4) are comparable to those obtained using
STARFM (Table 2) when assessing the mapping results using the interpreted samples. It appears that
ESTARFM outperforms STARFM in recognition of single-cropping but underperforms STARFM for
both fallow and double cropping possibly because that the fused images derived from ESTARFM
have higher EVI values than those derived from STARFM. Comprehensive comparisons are needed
in future studies to fully understand how different fusion approaches would influence their abilities
on mapping cropping cycles using the proposed method. Note that STARFM requires only one pair
of Landsat and MODIS images while ESTARFM requires two pairs of Landsat and MODIS images
for data fusion and ESTARFM is much more computationally extensive than STARFM. Given that
complete cloudy-free Landsat images during the growing season are not always available for other
places and it is also quite possible that the matching MODIS images contain cloudy pixels, STARFM
seems to be the method more suitable for large-scale applications.

Table 4. The error matrices for the agricultural intensity maps in 2015 for both scenes using ESTARFM.

Mapped Classes

Reference Data

Shandong Scene Jiangsu Scene

F S D UA (%) F S D UA (%)

F 432 56 12 86.4% 420 52 28 84.0%
S 15 464 21 92.8% 19 454 27 90.8%
D 26 45 429 85.8% 8 61 431 86.2%

PA(%) 91.3% 82.1% 92.9% 94.0% 80.1% 88.7%

OA(%) 88.3% 87.0%

F denotes fallow; S denotes single-cropping; D denotes double-cropping; and PA, OA and UA denote producer’s
accuracy, overall accuracy and user’s accuracy, respectively.
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5. Discussion

5.1. The Influence of the Field Sizes

As the field sizes of the croplands could largely influence the mapping results [19], one key issue
is to understand the needed spatial resolutions for mapping cropping cycles using remote sensing
data. Figure 11 shows the hand-digitized GF-1 images that cover typical sites in both SD and JS
(Figure 11a,b) and their corresponding variograms (Figure 11c) [55]. For the JS site (the dark blue line),
the variogram rises steeply at small lag distances, indicating a large amount of small cropland fields.
For the SD site (the dark red line), the variogram rises more slowly due to the presence of large crop
fields. The variogram appears to reach its sill in the 100 to 200 m range for the JS site and in the 200 to
300 m range for the SD site, suggesting that the 500 m resolution of MODIS data is not sufficient for
accurate mapping of cropping cycles in both SD and JS. The agricultural fields as quantified here are
slightly larger than that in studies on Anhui Province of China [19] and all suggest that high-resolution
mapping of agricultural lands and cropping cycles is needed for areas with fragmental croplands
in China.
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Mapping cropping cycles at fine resolution using time series satellite data generated by fusion
of Landsat and MODIS has advantages over methods that use data from single satellite sensor. First,
our results have shown that mapping cropping cycles at 30 m resolution provides more detailed
distribution than at 500 m resolution for agricultural lands, and is more suitable for dealing with the
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effects of pixel mixtures. Second, the fusion approach solves the problem of lacking dense time series
of satellite observations at fine resolution for tracking cropping activities on the ground.

5.2. Temporal Resolution of Satellite Data

In this work, we have implemented the fusion approach using 8-day composite MODIS data
from both MOD09A1 and MYD09A1. The example for the time series of double cropping cycles (the
black line) in Figure 4 suggests that 16-day composite MODIS products (e.g., MOD/MYD13Q1 EVI
datasets) is likely unsuitable to be used for detecting cropping cycles because the temporal window
between the harvest of the first crop and the plantation of the second crop is only 3–6 weeks. As a
result, single points in the 16-day composite products missed during the key phenophases would lead
to algorithm failures. By comparison, the uses of 8-day composite data allows for tracking the cropping
activities using a predefined window. However, the cropping activities vary considerably over large
geographic region, for example, the transplantation of the paddy rice frequently occurs in the southern
China and crop maturation only requires a short growing time period, making it critical to obtain
cloudy-free observations during the time period of crop rotation. It then would be of interests to test
the fusion approach using daily MODIS data and produce daily time series for subsequent processing.
Enriched high-resolution land surface observations from satellites like Landsat 8 and Sentinel 2 would
allow for improving the mapping of cropping cycles, and how to minimize the differences among
sensors and construct time series data at high spatial resolution with sufficient temporal resolution
(less than or equal to 8-day) remains to be studied in future researches.

5.3. Cropland Mask

To screen out the croplands, we applied the land cover dataset of GlobeLand30 [38].
While the cropland mask in GlobeLand30 has shown to be sufficiently accurate in our experiments,
we occasionally found that the impervious surfaces such as the roads in between villages and the
ridges of crop field are not correctly classified but visible in our maps of cropping cycles. Given that
the mapped cropping cycles in 2015 are five years later than the produced GlobeLand30 map 2010, it is
necessary to understand how accurate the GlobeLand30 map is, and therefore we obtained ground
survey data of polygons for the SD scene from National Bureau of Statistics of China. The polygon
data were converted to raster data with binary classes of cropland and not cropland, which were
used to evaluate the cropland mask derived from the GlobeLand30 map. The error matrix in Table 5
suggested an overall accuracy of 82.3% for the GlobeLand30 cropland mask. It is worth noting that the
producer’s accuracy is 99.0% for the class of cropland but is only 20.5% for the class of not cropland,
suggesting that many pixels that were not cropland are misclassified as cropland. Most of these
erroneous classified areas were found to be mixed pixels in our examination. The confusion between
impervious surfaces and agricultural lands could result in biased estimates of cropland areas and
hence derived sown areas [17]. Improved mapping of croplands at high resolutions in future studies
would help mapping of the cropping cycles as well [56].

Table 5. The error matrix for the GlobeLand30 map in SD as evaluated using ground survey data.

GlobeLand30 Map
Ground Survey

Cropland Not Cropland User’s Accuracy

Cropland 129,940 28,073 82.2%
Not cropland 1364 7258 84.2%

Producer’s accuracy 99.0% 20.5%
Overall accuracy 82.3%
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6. Conclusions

While efforts have been made to map cropping intensities using satellite data, most of the
approaches to date only tried to map cropping intensity at 500 m or even coarser resolution. In this
study, we proposed a framework to identify cropping cycles at 30 m resolution by fusion of Landsat
and MODIS. The method is tested in two typical regions of multiple cropping in major grain producing
provinces in China. The mapping results were assessed at both the pixel and the county level.
The overall accuracies are 92.5% and 89.2% for two study areas at the pixel level, respectively, and the
R2 between satellite-derived and census-based sown areas are greater than 0.80. The distribution maps
of cropping cycles at 30 m shows to depict the details of the agricultural field sizes better than the
maps at 500 m resolution. The proposed method provides a potential way to map cropping intensities
over large areas.
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