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Abstract: High-frequency (HF) radars are routinely used for remotely sensing ocean surface currents.
However, the performance of the most widely used direction-finding HF radar is degraded due to
the effect of the inevitable deviations of actual antenna pattern on the direction of arrival (DOA)
estimation. In this paper, we quantify the DOA estimation error resulting from the deviation of
the actual antenna pattern from the ideal one. Theoretical analysis and field experiment results
suggest that the ratio of the deviations for the two loops dominates the DOA estimation error. Thus,
eliminating the effect of the antenna pattern deviations on DOA estimation error is transformed into
eliminating the effect of this ratio. From this, a calibration method based on the time-averaged local
spatial coverage rate (TLSCR) is proposed to reduce the effect of the antenna pattern deviations on
current extraction, which uses the ideal antenna pattern to estimate the DOA of the echoes. To validate
this proposed calibration method, we assess the radar-derived radial velocities by comparing with in
situ observations. The comparison results indicate that the proposed TLSCR calibration method can
effectively reduce the DOA estimation error and improve the performance of the direction-finding
HF radar in current observation.

Keywords: high-frequency radar; direction finding; ocean surface current retrieval; DOA estimation
error; antenna calibration; antenna pattern distortion

1. Introduction

Shore-based high-frequency (HF) radars, working at a frequency between 3 MHz and 30 MHz,
have now been widely used to remotely sense the coastal-ocean-surface current velocities [1].
These radars can observe current velocities out to a range of about 300 km offshore depending on the
operating parameters of the radar system. Additionally, the current mapping results are provided in real
time with a variety of temporal resolutions (normally around one hour) and spatial resolutions (from
hundreds of meters to kilometers). These results are invaluable in many fields, including oceanographic
and meteorological research [2–4], tsunami warning [5], search and rescue support [6], and monitoring
of oil spills in real time [7].

There are two types of current-observing HF radar systems: direction-finding (e.g., the Coastal
Ocean Dynamics Application Radar (CODAR; [8]) and Ocean State Measuring and Analyzing Radar,
type S (OSMAR-S; [9])) and beam-forming (e.g., Wellen Radar (WERA; [10])). These two types of HF
radar systems employ two distinct methods as well as two types of different antenna arrays to resolve
the direction of arrival (DOA) of the sea echoes. The direction-finding radars adopt a small-aperture
antenna consisting of a monopole and two orthogonal loops to form a quite broad beam for receiving
the sea echoes [11]. The DOA of the sea echoes are determined by exploiting the directional properties of
the compact antenna using the multiple signal classification (MUSIC) algorithm [12,13]. Beam-forming
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radars, using a distributed array of elements, electronically scan the ocean surface with a relatively
narrow beam. The DOA of the sea echoes is identified by the delay and sum approach. This type of HF
radar can achieve an excellent angular resolution to determine the bearing of the sea echoes. However,
the preferred and more widely used HF radar system is the direction-finding HF radar because it
uses a small-aperture antenna to accomplish surface current mapping, which leads to easy installation
and maintenance.

Although many studies have validated the performance of the direction-finding radars in current
observation by comparisons with in situ measurements [14–17], the calibration of the antenna pattern
distortion and the channels’ gain/phase errors are still receiving significant attention due to the
sensitivity of the compact antenna to its surroundings and the sensitivity of the MUSIC algorithm to
the antenna pattern deviation. Some studies have suggested that using a measured antenna pattern to
calibrate the antenna can improve the performance of direction-finding radar in measuring ocean surface
currents [18–20]. To measure the actual antenna patterns, these studies carried out field measurements
with an elaborately designed shipborne transponder moving along a pre-determined path. Obviously,
these field measurements require extra equipment, leading to higher system cost. Carrying out these
antenna pattern measuring experiments is also inconvenient due to the dependence on the weather and
terrain conditions. Although Washburn et al. [21] have proposed a more simple pattern-measuring
method based on an aerial drone, this method is also limited by the weather conditions and surrounding
obstacles (severe weather, high buildings, and trees may cause hazards in performing this method).
Fortunately, an automatic method for measuring the antenna pattern with ships’ echoes has been
developed [22–24]. This automatic method needs almost no human intervention, but the angular
coverage of the antenna pattern measured by this method may be limited depending on the orientation
of the shipping lanes relative to the radar site [23]. In addition to these difficulties in measuring
the actual antenna pattern, the measured antenna pattern often contains too much structure for
the pointing algorithm to handle, resulting in persistent gaps with radial velocities crowding onto
the gap boundaries for the retrieved radial current maps (see Figure 3 in [25] and Figure 6 in [15]).
Although smoothing the measured antenna pattern can mitigate the gaps, this smoothing also leads
to errors in DOA determination [26]. Therefore, using the measured antenna pattern to calibrate the
antenna for direction-finding radar can only partially mitigate the accuracy reduction resulting from the
deviation of the actual antenna pattern from the ideal one [27]. Furthermore, Atwater and Heron [28]
suggested that the errors in radar-measured surface currents were insensitive to the measured and
ideal antenna patterns. In addition, some other studies suggest that in some cases the current velocities
extracted by the ideal antenna pattern show a better reliability than those extracted by the actual
antenna pattern [26,29,30]. Therefore, using the ideal antenna pattern to retrieve the current mappings
in direction-finding radar remains an indispensable technique, which is still widely used today.

However, in practice, using the ideal antenna pattern to retrieve the current mappings has
to be faced with the DOA estimation error resulting from the actual antenna pattern deviation [31].
This DOA estimation error leads to the correctly determined radial velocities being placed into incorrect
bearing sectors. However, so far, a quantitative relationship between the antenna pattern deviation
and the DOA estimation error for the compact monopole-cross-loop antenna is absent. In this paper,
we investigate the relationship between the antenna pattern deviation and the DOA estimation error,
and present a detailed analytical derivation of the DOA estimation error stemming from the antenna
pattern deviation. Theoretical analysis and field experiment results suggest that the relative deviation
of the two loops dominates the DOA estimation error.

Moreover, to eliminate the DOA estimation error resulting from the antenna pattern deviation,
we proposed a novel calibration method for extracting radial mappings using ideal antenna pattern.
The proposed calibration method, called the time-averaged local spatial coverage rate (TLSCR)
calibration method, is based on the quantitative analysis of the effect of the antenna pattern deviation
on the DOA estimation error. To validate this calibration method, current-observing field experiments
were carried out. Comparing the hourly averaged radial current velocities extracted by using ideal
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antenna pattern and involving the TLSCR calibration method with the buoy-recorded current velocities
shows that the radar-derived current velocities agree well with buoy-recorded current velocities,
with correlation coefficients being more than 0.96 and root-mean-square errors of about 10 cm/s.
Additionally, the bearing offset is effectively reduced by implementing the TLSCR calibration method.
Moreover, a comparison of the TLSCR calibration method with the only well-documented calibration
method without any known sources [11] (hereinafter referred to as the conventional calibration
method) has been carried out. Results suggest that the TLSCR calibration has a better performance
than the conventional calibration method. In addition, some potential factors relating to the TLSCR
calibration method have been discussed. These results demonstrate the reliability of the proposed
TLSCR calibration method.

The paper is organized as follows. In the following section, we formulate the effect of the antenna
pattern deviations on current observation for direction-finding radar. In Section 3, we present the
quantitative relationship between the DOA estimation error and the antenna pattern deviations.
In Section 4, we propose the TLSCR calibration method. To validate the quantitative relationship and
the proposed calibration method, a field experiment has been carried out, and results are given in
Section 5. Section 6 gives a discussion followed by a conclusion in Section 7.

2. Problem Formulation

Direction-finding radar uses a compact three-collocated antenna consisting of one monopole and
two orthogonal loops (cosine loop and sine loop). These antennas have the properties of sharing a
common phase path, but the gains are different from each other in any direction. Theoretically, the two
orthogonal loops, respectively, have cosine and sine radiation patterns relative to the monopole,
and the monopole gives an omnidirectional radiation pattern, which can be expressed as

A1(θ) = cos θ; A2(θ) = sin θ; A3(θ) = 1, (1)

where A1, A2, and A3 are the ideal antenna patterns for the cosine loop, sine loop, and the monopole,
respectively; θ is the look angle of the radar. This ideal antenna pattern is illustrated in Figure 1.
The orientation of the cosine loop (0◦, Figure 1) is usually called the normal direction.
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Figure 1. Ideal antenna pattern of the monopole-cross-loop antenna, which consists of two orthogonal
loops (cosine loop, A1, and sine loop, A2) and a monopole, A3.

However, the actual amplitude and phase patterns of the three elements always deviate from
the ideal antenna pattern, due to the irregularity of the electromagnetic environment. Additionally,
these deviations will always accompany the current extraction process, resulting in poor-quality
ocean surface current mappings, unless they are intentionally calibrated. The amplitude and phase
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deviations, defined as the ratio of the actual antenna pattern to the ideal antenna pattern (the singular
points for the directions leading to cos θ = 0 or sin θ = 0 is excluded), can be denoted by

gi(θ) = αi(θ) exp(jψi(θ)), (2)

where i = 1, 2, 3 is the index of the three antenna elements; j is an imaginary unit. In fact,
these amplitude and phase deviations in Equation (2) have included the antenna pattern distortion
and the channels’ gain/phase errors, which are caused by the inconsistency among antenna elements,
cables, and receivers (thus, hereinafter we refer to gi as amplitude and phase deviation or antenna
pattern deviation in order to distinguish from the antenna pattern distortion). In addition, g3(θ) is
a constant being equal to one because the antenna pattern of the monopole-cross-loop antenna is
measured as the two loops relative to the monopole. Furthermore, so do the amplitude and phase
deviations (i.e., gi(θ)). Thus, the sample matrix, X(t) = [x1(t), x2(t), x3(t)]T , for a sea echo S coming
from the direction of θ0 at sampling instant t can be expressed as

X(t) = G(θ0)A(θ0)S(t) + N(t), (3)

where x1(t), x2(t), and x3(t) are the output signals from the three elements of the antenna, and the
superscript, T, denotes the transposition; G(θ) = diag([g1(θ), g2(θ), g3(θ)]) is the deviation matrix
of the amplitude and phase; A(θ) = [A1(θ), A2(θ), A3(θ)] is the ideal steering vector for the source
coming from the direction of θ; N(t) is the noise in the three antenna elements.

To determine the DOA of the signal by ideal antenna pattern, the approach of MUSIC first
determines the noise subspace of the observations. Then, the signal bearing is found by projecting
all the steering vectors onto that noise subspace [13]. The noise subspace estimation is typically
achieved by carrying out an eigenvalue decomposition on the covariance matrix, R, formed from
the sample matrix. The covariance matrix can be estimated as R = (1/N)∑N

t=1 X(t)XH(t), where N is
the number of snapshots and H is the Hermitian transpose. Assuming that the noise is spatially white,
the decomposition of the R has the following form:

R = UDUH = λEsEH
s + σ2EnEH

n , (4)

where λ is the signal eigenvalue and σ2 is the noise power; Es is the so-called signal subspace, and the
orthogonal complement subspace spanned by En is the noise subspace. The MUSIC algorithm tries to
find the bearing that minimizes (maximizes) the projections of the steering vectors on the noise (signal)
subspace, which can be expressed as the following MUSIC function:

f (θ) = AH(θ)EnEH
n A(θ)

= AH(θ)[I− EsEH
s ]A(θ).

(5)

If there is no amplitude or phase deviations for the monopole-cross-loop receiving antenna,
and ignoring the effect of the noise (in practice, the signal-to-noise ratio of the selected Bragg lines
is high enough, say more than 8 dB, resulting in a negligible effect of noise on DOA estimation;
and just as the radial velocities comparisons in Section 5.2.4, the accuracy of the estimated velocities
is independent of the range or independent of signal-to-noise ratio), the signal subspace must be
spanned by the ideal steering vector of the incident signal (i.e., Es = span{A(θ0)} or EsEH

s =

A(θ0)[AH(θ0)A(θ0)]
−1AH(θ0)). Thus, A(θ0) is orthogonal to the noise subspace (En), and Equation (5)

achieves the minimum value at θ0. However, for the deviated antenna pattern case, the signal subspace
is spanned by the actual antenna pattern. Thus, we have

EsEH
s = G(θ0)A(θ0)[AH(θ0)GH(θ0)G(θ0)A(θ0)]

−1AH(θ0)GH(θ0). (6)
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In this case, A(θ0) is no longer orthogonal to the noise subspace, En, and DOA estimated
by Equation (5) often deviates from θ0. This deviation in DOA estimation will result in correctly
determined radial velocities being placed into incorrect bearing sectors. It finally produces poor-quality
current mappings. Although the bearing offset of the direction-finding HF radar in current mapping
has long been attributed to the amplitude and phase deviations, the documented quantitative or
analytical relationship between the antenna pattern deviations and the DOA estimation error is absent.
In the next section, we will analyze the effect of the amplitude and phase deviations on the DOA
estimation, and give an analytic relationship to quantify this effect. We will also propose a calibration
method to eliminate this effect in Section 4.

3. Quantifying the DOA Estimation Error Resulting from Antenna Pattern Deviation

In this section, we present a detailed analytical derivation of the relationship between the DOA
estimation error and the antenna pattern deviation. This relationship is key to understanding and
eliminating the effect of the antenna pattern deviation on current mapping for direction-finding
HF radar.

One thing that we are fairly convinced of is that the MUSIC function’s first-order derivative
( f ′(θ) = d f (θ)/dθ) is equal to zero at its minimum. Provided that the MUSIC function reaches its
minimum value at θ̃, an expression for ∆θ = θ̃ − θ0 can be obtained via the first-order approximation
of the Taylor expansion of f ′(θ). Following the approach in [32], expanding f ′(θ) about the estimated
DOA for a small error, we can write

0 = f ′(θ̃) ≈ f ′(θ0) + f ′′(θ0)(θ̃ − θ0). (7)

Thus, the error of estimated DOA, ∆θ, can be determined by

∆θ = θ̃ − θ0 = − f ′(θ0)

f ′′(θ0)
, (8)

with positive ∆θ indicating that the estimated DOA, θ̃, is displaced clockwise from the actual DOA (θ0).
Considering the effect of the amplitude and phase deviations on DOA estimation, the DOA estimation
error stems from the error of actual signal subspace and the ideal manifold formed by the ideal antenna
pattern. The actual signal subspace (Es) is spanned by G(θ0)A(θ0) (Equation (6)). Thus, the MUSIC
function (Equation (5)) can be rewritten as

f (θ) = AH(θ)A(θ)−AH(θ)EsEH
s A(θ). (9)

Using Equations (1), (2), and (6) in Equation (9), we have

f (θ) =2− d−1{1 + α2
1(θ0) cos2 θ0 cos2 θ + α2

2(θ0) sin2 θ0 sin2 θ

+
1
2

Re[g1(θ0)g∗2(θ0)] sin 2θ0 sin 2θ + 2Re[g1(θ0)] cos θ0 cos θ

+ 2Re[g2(θ0)] sin θ0 sin θ},

(10)

where d = EH
s Es = α2

1(θ0) cos2 θ0 + α2
2(θ0) sin2 θ0; Re[·] denotes extracting real part. From Equation (10),

we can easily obtain f ′(θ) and f ′′(θ). Thus, the Equation (8) can be rewritten as

∆θ =
− sin 2θ0{α2

1(θ0)− α2
2(θ0) + {α2

1(θ0) + α2
2(θ0)− 2Re[g1(θ0)g∗2 (θ0)]} cos 2θ0 + 2Re[g1(θ0)−g2(θ0)]}

4{[α2
1(θ0) cos2 θ0 − α2

2(θ0) sin2 θ0] cos 2θ0 +Re[g1(θ0)g∗2 (θ0)] sin2 2θ0 +Re[g1(θ0)] cos2 θ0 +Re[g2(θ0)] sin2 θ0}
. (11)

This equation indeed suggests that the DOA estimation error is related to not only the amplitude
and phase deviations [gi(θ0)] but also the real DOA (θ0). In other words, the same amplitude and
phase deviations in different bearings will generate different levels of DOA estimation error for the
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signals coming from the corresponding bearings. In addition, if the condition of g1(θ0) = g2(θ0)

(i.e., α1(θ0) = α2(θ0) and ψ1(θ0) = ψ2(θ0)) is satisfied, the numerator of Equation (11) will be equal to
zero, which leads to the DOA estimation error, ∆θ, reducing to zero.

To demonstrate the relation between DOA estimation error and amplitude and phase deviation,
we show the ∆θ as a function of the incident signal’s DOA with different amplitude and phase
deviations in Figure 2. We also force the amplitude and phase deviations to be constant (not varying
with the bearing) for simplicity. Figure 2a suggests that the difference of phase deviations (ψ1 − ψ2)
affects the DOA estimation error. A 40-degree difference between the phase deviations results in at
most 5 degrees DOA estimation error. Moreover, a 20-degree difference between the phase deviations
is easy to achieve in real operation (see Appendix A). However, a two-time difference between the
amplitude deviations (α2/α1) can lead to a DOA estimation error of over 20 degrees. Therefore,
the presence of moderate phase deviations will have a limited impact on DOA estimation of the radial
currents. The amplitude deviation has a much more significant influence on the DOA estimation.
In addition, the DOA estimation error is an odd function as the DOA. Therefore, the estimated DOAs
for signals coming from the different sides of normal direction are displaced with the opposite direction
(for α1 < α2, if DOA> 0, then ∆θ > 0 or displaced clockwise, and if DOA < 0, then ∆θ < 0 or displaced
counterclockwise; for α1 > α2, if DOA > 0, then ∆θ < 0 or displaced counterclockwise, and if DOA < 0,
then ∆θ > 0 or displaced clockwise). This displacement will lead to the estimated DOAs moving
toward the orientation of the cosine loop (0◦ and 180◦, Figure 1) for the case of α1 < α2 or toward the
orientation of the sine loop (90◦ and 270◦, Figure 1) for the case of α1 > α2. This displacement will
affect the distribution pattern of the output radial velocities on the pre-determined range-bearing grid.
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Figure 2. The direction of arrival (DOA) estimation error (∆θ) varying as a function of the DOA with:
(a) different phase deviations but without amplitude deviation; (b) different amplitude deviations
but without phase deviation. The positive DOA estimation error indicates that the estimated DOA is
displaced clockwise from the actual DOA and vice versa.

As a matter of fact, the phase deviations are easy to calibrate, and the typical distribution and
the calibration method are presented in Appendix A. Therefore, the effect of the phase deviations in
Equation (11) can be neglected after handling the phase deviations. Thus, gi(θ) turns into real numbers
(i.e., gi(θ) = αi(θ)), and Equation (11) can be expressed as

∆θ = − sin 2θ0{α2
1(θ0)− α2

2(θ0) + [α1(θ0)− α2(θ0)]
2 cos 2θ0 + 2[α1(θ0)− α2(θ0)]}

4{[α2
1(θ0) cos2 θ0 − α2

2(θ0) sin2 θ0] cos 2θ0 + α1(θ0)α2(θ0) sin2 2θ0 + α1(θ0) cos2 θ0 + α2(θ0) sin2 θ0}
. (12)
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Figure 2b shows the case of this equation. Now, setting

β(θ) =
α2(θ)

α1(θ)
, (13)

the quantitative relation between the DOA estimation error and the amplitude deviations is then
re-expressed as

∆θ = sin 2θ0
−4 ×

α1(θ0){1− β2(θ0) + [1−β(θ0)]
2 cos 2θ0}+ 2[1−β(θ0)]

α1(θ0){[cos2 θ0 − β2(θ0) sin2 θ0] cos 2θ0 + β(θ0) sin2 2θ0}+ cos2 θ0 + β(θ0) sin2 θ0
. (14)

In fact, ∆θ is insensitive to the value of α1(θ0), but quite sensitive to the value of β(θ0). If the
reserved parameter is α2(θ0), this insensitivity will be transferred to α2(θ0), definitely. Figure 3a shows
the variation of DOA estimation error, ∆(θ), varying as a function of DOA with different combinations
of β(θ) and α1(θ). For simplicity, we assume that α1(θ) and β(θ) are constant and independent of
bearing. As Figure 3a suggests, the spontaneous clustering of the curves based on the β(θ) precisely
demonstrates this insensitivity for α1(θ0) and sensitivity for β(θ0). For a given value of β(θ), α1(θ)

plays a negligible role in ∆θ on each bearing. Conversely, for a given value of α1(θ), the values of
∆(θ) vary rapidly for different β(θ). Therefore, ∆θ is indeed insensitive to the value of α1(θ) but quite
sensitive to the value of β(θ). This insensitivity of ∆θ to α1(θ) is also verified by partial derivative
in Appendix B. This insensitivity provides solid evidence to prove that the DOA estimation error is
dominated by β(θ), which is the ratio of the amplitude deviations of the two loops or the relative
amplitude deviations of the two loops. On the other hand, simulation results for the DOA estimation
error under different antenna pattern deviations are shown in Figure 3b to verify the correctness of the
quantitative relationship described in Equation (14). The simulation results are achieved by a Monte
Carlo simulation of 500 independent runs with 20 snapshots for each trial, and the signal-to-noise
ratio used in the simulation is 8 dB. Comparing Figure 3b with Figure 3a, we can clearly see that the
simulation results are almost the same as the theoretical calculated results. Divergences for β = 2.5
at the DOA near ±30◦ are owing to the approximation in Equation (7). This result suggests that
the quantitative relationship is valid. In addition, this quantitative relationship and the result that
the DOA estimation error is dominated by the relative deviation of the loop antennas (i.e., β(θ)) are
truly innovating our understanding of the contribution of the antenna pattern deviation to current
observation for direction-finding HF radar. We will carefully verify this result by the field experiment
(see Sections 5.2.5 and 5.2.6). Moreover, to demonstrate the application of this quantitative relationship,
we propose a calibration method to eliminate the effect of the antenna pattern deviation on DOA
estimation based on it.
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Figure 3. The DOA estimation error varies as a function of DOA. For simplicity, α1(θ) and β(θ) are
assumed to be constant. (a) directly calculated by Equation (14) for different combinations of β(θ) and
α1(θ); (b) achieved by simulation for different β(θ) but α1(θ) being equal to 1.
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4. Calibration Method for Reducing the DOA Estimation Error

4.1. Conventional Calibration Method

The only well-documented method for calibrating the monopole-cross-loop antenna without
any auxiliary sources for ocean surface current observation was proposed by Lipa and Barrick [11].
We shall provide a brief introduction about this conventional method.

This conventional method only takes the channel errors into consideration, and the antenna
pattern distortion is neglected. Thus, the amplitude and phase deviations are constant. Then, the signal
model can be expressed as:

X(t) = diag([a1 exp(jψ1), a2 exp(jψ2), 1])A(θ)S(t), (15)

where a1 (ψ1) and a2 (ψ2) are the amplitude (phase) errors for cosine and sine loop, respectively.
To calibrate the antenna, this conventional method estimates these four parameters based on the
sea echo and then eliminates them by dividing by their estimators. For estimation of the amplitude
deviations, a least-square method is adopted to fit the following equation:

|x1(t)|2

a2
1

+
|x2(t)|2

a2
2

= |x3(t)|2 , (16)

and the value of ψ1 and ψ2 is calculated as the averaged phase deviations, which can be expressed as

ψ1 =
1
N

t=N

∑
t=1

angle(
x1(t)
x3(t)

), (17)

ψ2 =
1
N

t=N

∑
t=1

angle(
x2(t)
x3(t)

), (18)

where angle(. . .) denotes computing the phase angles of complex number. In fact, Equation (16) is
based on the ideal gain relationship between the monopole and the two loops (i.e., cos2 θ + sin2 θ = 1).
In this study, to implement this convention calibration method, we select the first-order Bragg peaks
with signal-to-noise ratio (SNR) more than 15 dB in every one hour to estimate the amplitude and phase
parameters (a1, a2, ψ1, and ψ2). Thus, we adjust the value of gain and phase during the calibration
procedure in every hour.

4.2. Proposed Calibration Method

Because the analysis of the relationship between the antenna pattern deviation and the DOA
estimation error indicates that the DOA estimation error is controlled by β(θ) and is nearly free from
the effect of the value of α1(θ), we will not calibrate the amplitude of the cosine loop. Additionally,
we only calibrate the sine loop to yield β(θ) = 1. However, it is inadvisable in practice to strictly
accomplish this objective due to the dependence of the amplitude deviations on the bearing. If we
do this, the troubles encountered in calibrating the monopole-cross-loop antenna using the measured
antenna pattern still exist. Thus, we must trade the DOA estimation performance off the feasibility.
In this study, we calibrate the sine loop by multiplying the optimal correction factor, η̂, to yield the
value of β(θ) being closest to 1 for the entire radar look angle space, which can be expressed as:

η̂ = argηmin J(η) = argηmin
1
N

N

∑
i=1

(ηβ(θi)− 1)2. (19)

Obviously, the optimal correction factor in Equation (19) aims to yield β(θ) close to 1 for the entire
radar look angle space, but, for a specific bearing β(θ), it may not be close to 1. If the measured antenna
pattern is available, we can obtain β(θ) immediately. Thus, the value of η̂ can be easily determined.
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However, we aim at estimating η̂ via an unknown source in this work because measuring the actual
antenna pattern of the monopole-cross-loop antenna is a difficult task in practice.

Now, we give the recipe for estimating the optimal correction factor, η̂. The value of β(θ)

represents the relative amplitude of α2(θ) to α1(θ), and the displacement of the estimated DOA is now
dependent on β(θ). If an improper correction factor is used, it will yield β(θ) > 1 or β(θ) < 1 in most of
the bearings. The extremity that β(θ) > 1 or β(θ) < 1 for the entire radar look angle space is illustrated
in Figures 2b and 3a. Thus, if β(θ) > 1, the estimated DOAs will move toward the orientation of the
sine loop. In contrast, if β(θ) < 1, the estimated DOAs will move toward the orientation of the cosine
loop. Moreover, signals coming from 30◦ to 50◦ or −30◦ to −50◦ are most likely to be displaced due
to β(θ) 6= 1 in these bearings. Thus, these displacements will lead to the estimated radial current
velocities crowding onto the orientation of the cosine loop (0◦ and 180◦, Figure 1) or the sine loop (90◦

and 270◦, Figure 1) but sparse in the bearing away from these orientations (30◦ to 50◦ or −30◦ to −50◦).
The optimal correction factor just eliminates these radial velocities crowding onto the orientation of
the loops, so that the mapped radials will be uniformly distributed in a pre-determined radial grid.
In other words, the radials will be distributed in as many direction cells as possible for all range cells.
The valid estimator of the radials in the directions being away from the two loops orientations will
reach its maximum. Therefore, a local area (LA) with an angle size of 40 degrees (motivations for these
choices are given in Section 6.2) centered in the direction where the antenna patterns of the two loops
intersect (i.e., 45◦, 135◦, 225◦, and 315◦ in Figure 1) is chosen to estimate η̂ (an example for the selected
LA is shown in Figure 4). The optimal correction factor should lead to the radial velocities mapped in
this area being as many as possible. Thus, Equation (19) can be equivalent to

η̂ = argηmax r(η) = argηmax <
m(η)

M
>, (20)

where < . . . > represents an average over time (this time length is four days and the motivations for its
value are presented in Section 6.2); m(η) is the number of sectors returning valid radial current solutions
within the selected 40-degree area (or within LA); M is the total number of the pre-determined sectors
in the LA. r(η), defined in Equation (20), is referred to as the time-averaged local spatial coverage
rate (TLSCR). Thus, we call this method for estimating η̂ to calibrate the compact antenna the TLSCR
calibration method. To estimate the optimal correction factor, η̂, from Equation (20), we search the
maximum value of r(η) for η varying in the range of 0.1 to 2.5 with an interval of 0.1. The motivation
of this search method is that the hardware structure of the cosine loop is the same as that of the sine
loop, resulting in α2(θ)/α1(θ) having a limited value and our experience of using this method finds η̂

is always limited to the range of 0.4 to 2.5.

5. Field Experiment and Results

To verify the reliability of the TLSCR calibration method for calibrating the monopole-cross-loop
antenna for direction-finding radar systems, we carried out a field experiment for current observation
and used this calibration method to calibrate the antenna in the current extraction process.
We demonstrate the reliability of the TLSCR calibration method by assessing the accuracy of the
retrieved radial current velocities. Moreover, to show the improvement of the current mappings
extracted by the proposed calibration method, we also evaluate the radial velocities retrieved by
the conventional calibration method. Certainly, the radial mappings extracted by both the proposed
and conventional calibration methods use the MUSIC algorithm to estimate the DOA of the sea
echoes. Then, to give more solid evidence to validate the reliability of the TLSCR calibration, a testing
case—another current-observation experiment—is provided. In addition, to validate the theory-deduced
result that the DOA estimation error is dominated by the relative amplitude deviations for the two loops,
we perform the current extraction procedure again with an extra manipulation; that is, multiplying a
constant factor on the sea echoes received by the two loops after achieving the TLSCR calibration method.
In fact, this extra manipulation is equivalent to adjusting the values of α1(θ) and α2(θ), but yields β(θ)
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being the same as the normal TLSCR calibration (non-execution of the extra manipulation). Thus, if the
claim that the DOA estimation error is dominated by the relative amplitude deviations for the two
loops is true, the radial velocities retrieved by involving the extra manipulation will agree well with
the radial velocities retrieved by the normal TLSCR calibration. In fact, the reliability of the proposed
TLSCR calibration method is solid evidence for proving the result that the DOA estimation error is
demonstrated by the relative deviations of the two loops because the calibration method is just based
on this result.

5.1. Field Experiment

The experiment was carried out in November 2015. In this field experiment, an HF radar system
named OSMAR-S was installed in Fujian province, China, to observe the sea state of the Chinese
East Sea. A geographic map of this experiment is shown in Figure 4, and the ideal antenna pattern is
superposed on the map. The red solid dot represents the location of the radar site (DongShan (DOSH),
23◦39.45′N, 117◦29.23′E). The blue pentagram indicates the location of a buoy, which is about 75 km off
the radar site. The bearing of this buoy to the radar origin is 48◦ (measured as clockwise to the normal
direction, and hereinafter all the bearings have been measured in this way). This buoy was equipped
with an acoustic Doppler current profiler (ADCP), which provided current velocities every 10 min
with a velocity resolution of 4 cm/s. The buoy-recorded current velocities were used for checking the
results of radar-derived radial velocities to validate the TLSCR calibration method.

Figure 4. Geographic map of the field experiment at DongShan (DOSH), Fujian province, China.
The ideal antenna pattern is superposed on the map. Thin gray lines are the contour lines of the
water depth. The fanwise area enclosed by a thick pink line is the radar’s detection area. The two
light-pink patched fanwise areas, named F1 and F2 and centered where the antenna patterns of the two
loops intersect, is the selected 40-degree local area (LA) for calculating the time-averaged local spatial
coverage rate (TLSCR). A buoy (blue pentagram) equipped with an acoustic Doppler current profiler
(ADCP) is located in F1.

The OSMAR-S developed by Wuhan University, China, is a direction-finding HFR system which
adopts a compact cross-loop-monopole antenna for receiving the sea echoes. Similar to the CODAR
and WERA HF radar systems, the OSMAR-S also contributes to the advancement of the HF radar
community. The OSMAR-S uses a linear frequency-modulated interrupted continuous waveform in
operation. During the experiment, the radar worked at a frequency of 13 MHz, with a bandwidth of
60 kHz, yielding a range resolution of 2.5 km. The maximum detection range was 120 km. Samples
for each range cell were collected at an interval of 0.38 s. A 512-point fast Fourier transform was then
performed to yield a coherent integration time of about 200 s, corresponding to a current velocity
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resolution of approximately 5.5 cm/s. The nominal direction resolution was set to 3 degrees in the
direction-finding procedure.

5.2. Results

To validate the proposed calibration method, we extracted radial current mappings for every value
of η (ranging from 0.1 to 2.5 with an interval of 0.1). Then, we checked the relation between the spatial
distribution of the temporal rate and η. The temporal rate was calculated for each radial sector as the
number of the radial mappings with a valid radial velocity estimator for the current sector divided by
the total number of radial mappings. The TLSCRs for the two LAs (F1 and F2) were used to determine
η̂. The radial current velocities extracted in the case of calibrating the antenna using η̂ are compared
with the buoy-recorded current velocities. Moreover, the radial currents extracted using the calibration
method proposed by Lipa and Barrick [11] are shown as a contrast. Then, we present a testing case
and we analyze the bearing offset for the above-mentioned field experiment and testing case. Finally,
we validate the result that the DOA estimation error is dominated by the relative deviations of the
two loops.

5.2.1. Spatial Distribution of Temporal Rate

The spatial distribution of the temporal rate—which is calculated for every radial sector as
the number of the radial mappings with a valid radial velocity estimator for the current sector
divided by the total number of radial mappings—for different correction factors are shown in Figure 5.
The distributions of the temporal rate in Figure 5a–i are computed for the correction factor (η) varying
from 0.1 to 2.4 with an interval of 0.3. Figure 5 indeed confirms that—just as inferred in Section 4.2—η

can significantly affect the spatial distribution of valid radial velocity solutions. From this figure,
we can clearly see that the correction factor with a small value (e.g., η < 0.3) leads to the radials
crowding onto the edge of the detecting area, and a large value (e.g., η > 1.2) results in the radials
crowding onto the bearing near perpendicular to the coastline. In fact, these crowding regions are the
orientation of the antenna pattern of the two loops (Figure 4). This crowding results in sparse radial
velocity estimators in the two LAs, which are away from the orientations of the two loops, indicating a
non-optimal value of η. Additionally, as Equation (20) presents, the optimal value of the correction
factor, η̂, should lead to the mapped radials being uniformly distributed, and the valid estimators of
the radials in the two LAs should achieve its maximum.

(a) (b) (c)

Figure 5. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 5. Spatial distribution of the temporal rate for radial current extracted in the case of different
correction factor: (a) η =0.1, (b) η =0.3, (c) η =0.6, (d) η =0.9, (e) η =1.2, (f) η =1.5, (g) η =1.8,
(h) η =2.1, and (i) η =2.4.

5.2.2. Time-Averaged Local Spatial Coverage Rate (TLSCR)

Figure 6 shows the TLSCR calculated within F1 and F2 (Figure 4) with varying values of the
correction factor. The radial current mappings used to calculate these TLSCRs cover four days,
from November 8th to November 11th. As indicated in this figure, the TLSCRs for both F1 and
F2 increase at first then decrease with increasing values of η. The black vertical line in the figure indicates
the correction factor yielding a maximum of the TLSCR. As Figure 6 suggests, the value of the correction
factor yielding a maximum value of TLSCR for F1 and F2 are the same. This figure definitely suggests
that the value of the optimal correction factor should be 0.5 for DOSH and the optimal correction factor
can be estimated from either F1 or F2.
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Figure 6. Variation of the time-averaged local spatial coverage rate (TLSCR) for LAs (F1 and F2,
shown in Figure 4) as the correction factor (η). The vertical line indicates the correction factor
corresponding to yielding the maximum TLSCR.
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5.2.3. Radial Velocity Comparison

To evaluate the validity of this estimated optimal correction factor, the reliability of the radial
current mappings extracted in the case of calibrating the antenna with the correction factor of 0.5 is
evaluated. We compare the radar-derived radial velocity time series with the buoy-derived radial
current velocities at the buoy location. As a contrast, the radial current velocities extracted by
calibrating the antenna using the conventional method are also compared with the buoy-derived
radial velocities. Figure 7 shows the radar-derived radial velocity time series and those recorded by the
buoy. The correction coefficient (r) and root-mean-square error (rmse) are displayed in the top of each
panel. The comparisons in Figure 7a suggest that the radial currents extracted in the case of using the
TLSCR calibration method are very accurate with a correlation coefficient of 0.96 and an rmse value of
9.67 cm/s (the radial velocities retrieved without any calibration processing have not been presented
here because the radar–buoy comparison results for this case are implied in Figure 17). Therefore,
the proposed calibration method is reliable. On the other hand, the conventional calibration method
yields a correlation coefficient of 0.95 and an rmse value of 14.87 cm/s (Figure 7b). This result indicates
that the proposed calibration method has a much better performance than the conventional method.
The reason for the proposed calibration method having better performance than the conventional
method is that the proposed calibration takes the antenna pattern deviations into consideration and
the conventional method does not consider the antenna pattern deviations.
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Figure 7. Comparison of hourly averaged radar-derived radial velocities with those recorded by the
buoy (Figure 4). (a) radial current velocities extracted by proposed calibration method; (b) radial current
velocities extracted by the conventional method. Correlation coefficient (r) and root-mean-square error
(rmse) are shown in the top of each panel.

5.2.4. A Testing Case

Another current observation experiment using the OSMAR-S radar system was carried out in
February, 2013. The geographic map of this experiment is shown in Figure 8 with the ideal antenna
pattern superposed on it. This figure indicates that the antenna configuration in this experiment was
greatly different from the DOSH. Because of the antenna configuration, there is only one local area
(LA) included in the radar detection area. Two buoys of the same type as DOSH were deployed within
the radar’s detection area. The ranges for the two buoys to the radar origin were 42 km for buoy A
and 85 km for buoy B. The experiment lasted for a month, which is fairly long relative to the DOSH
experiment. Long-term observation included more extreme environmental conditions (interference
and sea state). Thus, this experiment provides a better chance to sufficiently validate the TLSCR
calibration method.
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Figure 8. Geographic map of the second field experiment. The radar deployed at SHanLIao (SHLI),
where its location is not far from DOSH, has a different antenna configuration with respect to DOSH.
The ideal antenna pattern is superposed on the map. The thin gray lines are the isobath. The fanwise
area enclosed by the thick pink line is the radar’s detection area and two buoys (blue pentagram)
equipped with ADCP were located in the radar’s detection area. The light-pink patched fanwise area
is the selected 40-degree local area (LA) for calculating the TLSCR.

We performed the proposed calibration method to retrieve the radial current mappings for
this experiment. Then, the radial current velocities at the buoys’ location were compared with the
buoy-derived radial current velocities. From the selected LA, the optimal correction factor derived
from the radar data collected during the first 4 days—from 1 February to 4 February—is equal to 1.3.
This optimal correction factor was used to calibrate the entire one-month data set. The radial current
velocities extracted at the buoy locations are shown in Figure 9. The correlation coefficient (r) and
root-mean-square error (rmse) are also displayed in this figure. The radar–buoy comparison results
show that the correlation coefficients are 0.90 at buoy A and 0.94 at buoy B, and the rmse values are
11.44 cm/s and 9.00 cm/s for buoy A and buoy B, respectively. In addition, the comparisons between
the radar-sensed radial velocities extracted by conventional calibration method with those recorded
by the buoys indicate comparable correlation coefficients, but obvious degradation for rmse values
(Figure 10 vs. Figure 9). These results suggest that the radial currents retrieved by the proposed
calibration method are highly credible. Additionally, the difference of the antenna configuration had
no effect on the calibration method. The only matter for the antenna configuration is that at least one
LA should be guaranteed within the radar detection area. This criterion is generally likely to be met
because the look angle of the radar is usually larger than the angle size of LA. Moreover, using the
optimal correction factor estimated in the first four days to calibrate the antenna for the long term is
still very effective. These results demonstrate the generalizability of the TLSCR calibration method.
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Figure 9. Comparison of hourly averaged radar-sensed radial velocities derived from the proposed
calibration method with those recorded by the buoys (Figure 8). (a) radial current velocities
comparison at buoy A; (b) radial current velocities comparison at buoy B. Correlation coefficient (r) and
root-mean-square error (rmse) are shown in the top of each panel.
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Figure 10. As in Figure 9, but for radar-sensed current velocities extracted with the conventional
calibration method. (a) radial current velocities comparison at buoy A; (b) radial current velocities
comparison at buoy B.

5.2.5. Bearing Offset and Its Consistency with the Quantitative Relationship Described in Section 3

The bearing offset is an important indicator for evaluating the performance of HF radar,
and therefore for validating the reliability of the proposed calibration method. Thus, we analyzed the
bearing offset for the radial velocities extracted with no calibration and with the proposed calibration
method. Then, we analysed the change of the bearing offset after performing the proposed TLSCR
calibration method. Moreover, we also show the consistency of this change with the quantitative
relationship between the antenna pattern deviation and the bearing offset (Equation (14)).

The bearing offset is defined as the bearing difference between the estimated bearing of the
radial current velocities and the real bearing of these radials. The presence of the bearing offset
leads to the radar sector that has the best matching current velocities in comparison with the current
velocities recorded by in situ instruments deviating from the radar sector lying directly over the in
situ instrument. Following the approach proposed by Emery et al. [14], the bearing offset, ∆θr, can be
quantified as ∆θr = θr − θm, where θm is the bearing of the buoy and θr is the bearing to the sector
with maximum correlation coefficient, with positive ∆θr indicating that the sector showing maximum
correlation coefficient is displaced clockwise from the buoy. Similarly, the root-mean-square error
(rmse) can also be used to indicate the current mapping bearing offset (∆θrmse).

The results of bearing offset estimation are provided for all DOSH–buoy and SHanLIao
(SHLI)–buoy pairs in Figure 11. The correlation coefficient and rmse are shown for each radar–buoy
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pair as a function of bearing in the range cell corresponding to the buoys’ location, with vertical
lines indicating the bearing of the sector showing minimum rmse value (red line marked with stars),
and the bearing of the buoy (thick black line). The bearing offsets are hence represented as the
differences between these pairs of vertical lines. On the other hand, because the calculated correlation
coefficients varying as a function of bearing have a flat peak, it may lead to relatively large errors
of the estimated bearing offset if we estimate the bearing offset based on the correlation coefficient.
Conversely, the rmse values varying with bearing have relatively narrow peak. As Figure 11b,e
show, the correlation coefficient is almost constant with bearing in 50◦ to 100◦. However, the rmse
varies distinctly in this bearing range. In fact, the rmse indicates the difference between two variates
and the correlation coefficient describes the consistent proportional increases or decreases about the
two variates. Thus, if the current vector is parallel to the shore, the correlation coefficient between
the buoy-derived radial velocities and the radar-derived radial velocities must be constant with
bearings, so the correlation coefficient fails to reflect the bearing offset. Furthermore, in this study,
the vector current profile may be locally parallel to the shore, so that the correlation coefficient is
almost constant in a large bearing range. Thus, we adopt the rmse to estimate the bearing offset in
this study. As Figure 11 suggests, the bearing offset (the absolute value of ∆θrmse) decreased for all the
radar–buoy pairs comparisons after performing the proposed TLSCR calibration method. In addition,
the bearing offset is not uniform over bearings because the bearing offset results from the antenna
pattern deviation and the antenna pattern deviation is bearing dependent. Specifically, the TLSCR
calibration method completely eliminated the bearing offset at the buoy direction in the DOSH site.
For SHLI, the proposed calibration method produced lesser bearing offsets at both buoys A and
B. These results indeed indicate that the proposed TLSCR calibration can effectively improve the
performance of the direction-finding HF radar in ocean current observation.

In fact, the decrease of the bearing offset after performing the TLSCR calibration is consistent with
the quantitative relationship between the antenna pattern deviation and the DOA estimation error.
First, the bearing offset of the DOSH site at the buoy bearing is zero for the calibrated case (Figure 11d);
that is, the TLSCR calibration produces the ratio of the two-loop amplitude deviations (denoted by
βcalid(θm)) being equal to 1. Thus, for the uncalibrated case, the ratio of the amplitude deviations,
βucalid(θm), must be equal to 1/η̂. Then, using θm, β(θm) = βucalid(θm) = 1/η̂ = 2, and α1(θm) = 1
(according to Figure 3a, the value of α1(θm) has nearly no effect on the DOA estimation error) in
Equation (14), we can obtain the theoretical bearing offset of the uncalibrated case for DOSH–buoy
comparison. As summarized in the first row of Table 1, the theoretical bearing offset (∆θ) is 20.71◦,
which is very close to the bearing offset (∆θurmse) derived from the rmse profile. For the SHLI–buoy
comparison, the bearing offset of the calibrated case is not equal to zero. We must use bearing offset
(∆θrmse), θm, and α1(θm) = 1 in Equation (14) to solve βcalid(θm). Then, for the uncalibrated case,
the ratio of the amplitude deviations, βucalid, can be calculated as βcalid(θm)/η̂. Using this approach,
we obtained the values of βcalid(θm) as 0.63 and 1.12 at the bearings of buoy A and B. That is to say,
after performing the TLSCR calibration for SHLI, the ratios of the amplitude deviations of the two
loops are 0.63 and 1.12 at the bearing of buoys A and B, respectively. Thus, we can obtain that those
ratios for the uncalibrated case are 0.63/1.3 = 0.48 and 1.12/1.3 = 0.86, respectively. Then, using these
ratios and the bearings of these buoys in Equation (14), we can obtain the theoretical DOA estimation
error for the uncalibrated case at the buoys’ bearing. As Table 1 describes, the results of the theoretical
DOA estimation error (∆θ) are very close to the bearing offset estimated based on the rmse profile for
the uncalibrated case (∆θurmse). These results suggest that if we know the DOA estimation error for a
certain bearing, we can know the relative deviation of the two loops, and vice versa. They also suggest
that the quantitative relationship between the antenna pattern and DOA estimation error presented in
this study is credible.
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Figure 11. Correlation coefficient (r) and root-mean-square error (rmse) between radar-derived radial
velocities and those derived from the buoys in a certain range cell corresponding to the buoys’ location.
(a) DOSH–buoy comparison without calibration; (b) SHLI–buoy comparison at buoy A without
calibration; (c) SHLI–buoy comparison at buoy B without calibration; (d) DOSH–buoy comparison with
proposed calibration method; (e) SHLI–buoy comparison at buoy A with proposed calibration method;
(f) SHLI–buoy comparison at buoy B with proposed calibration method. The red vertical line marked
with a star indicates the bearing of the sector with minimum rmse value, and the bearing of the buoy to
the radar origin is indicated by the thick black vertical line. As in [14], the bearing offset in the buoys’
direction can be quantified as the difference of the bearings indicated by these two vertical lines. All the
bearings are measured as clockwise from the normal direction of the compact, three-element antenna.

Table 1. The bearing offset and the ratio of the amplitude deviation of sine loop to that of cosine loop.
θm is the bearing of the buoy to the radar origin. ∆θurmse is the bearing offset for the uncalibrated case
(Figure 11a–c). ∆θrmse is the bearing offset for the calibrated case (Figure 11d–f). βcalid(θm) is the ratio
of the two loops for the calibrated case. βucalid(θm) is the ratio of the two loops for the uncalibrated
case. ∆θ is the direction-of-arrival (DOA) estimation error calculated by Equation (14) with θ0 = θm,
α1(θ0) = 1, and β(θ0) = βucalid(θm).

Site–Buoy θm ∆θurmse ∆θrmse βcalid(θm) βucalid(θm) ∆θ

DOSH–buoy 48◦ 21◦ 0◦ 1 2 20.71◦

SHLI–buoy A 68◦ −17◦ −11◦ 0.63 0.48 −18.95◦

SHLI–buoy B 50◦ −5◦ 3◦ 1.12 0.86 −4.31◦

5.2.6. Validating the Conclusion That the DOA Estimation Error Is Dominated by the Relative
Amplitude Deviations of the Two Loops

In this section, we examine the theoretical conclusion that the DOA estimation error is dominated
by the ratio of the amplitude deviations of the two loops or the relative deviations of the two loops.
To achieve this goal, we extract the current mappings again with an extract manipulation after
completing the TLSCR calibration. This extra manipulation is that we multiply the same constant
factor on the sea echoes in the two loops, which can result in the actual steering vector, G(θ)A(θ),
being transformed into ΓG(θ)A(θ), where Γ = diag[µ, µ, 1] and µ is the constant factor; G(θ) is the the
deviation matrix after performing the TLSCR calibration. Thus, this extra manipulation is equivalent
to amplifying or diminishing the amplitude deviations of the two loops with the same number of
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times. In other words, this extra manipulation adjusts the values of α1(θ) and α2(θ) but keeps β(θ) the
same as the normal TLSCR calibration case (which does not involve the extra manipulation or which is
equivalent to µ = 1). Then, we assess the accuracy of the current velocities and also assess the bearing
offset for the radial mappings extracted by involving the extra manipulation.

In this study, the values of the constant factor (µ) used in the extra manipulation are 0.2 and
20. Certainly, using other values of the constant factor must yield the same results as the results
demonstrated in this section. For DOSH, the current velocities at the buoy location extracted involving
this extra manipulation are shown in Figure 12. The radar–buoy comparison result for µ = 0.2 is
shown in Figure 12a. The correlation coefficient and rmse are almost the same as the results displayed
in Figure 7a. A similar comparison result is also illustrated in Figure 12b for µ = 20. Moreover,
the radar–buoy comparisons for SHLI at both buoys A and B also indicate the same result (Figures 13
and 14). Although the rmse values for the cases of different values of µ have changes, these changes
are very small and less than the current resolution of the radar system (5.5 cm/s). Thus, these results
indicate that the accuracy of the radial velocities is dominated by the relative amplitude deviation
of the two loops. On the other hand, we also examine the bearing offset for the cases of µ = 0.2 and
µ = 20. Figure 15 shows the rmse values varying with the bearing for the three radar–buoy pairs
under different values of µ. We have not calculated the bearing offset directly because the rmse profiles
for different values of µ are almost the same, which provides enough evidence to verify that there
is almost no difference for the bearing offset in the cases of different µ. Thus, these results provide
solid evidence to validate that the DOA estimation error is dominated by the ratio of the amplitude
deviations of the two loops.
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Figure 12. Comparison of the radial velocities extracted involving the extra manipulation with those
recorded by the buoy (Figure 4) for DOSH. The extra manipulation is defined as multiplying the same
constant factor to the sea echoes received by the cosine and sine loop after performing the TLSCR
calibration procedure. (a) the value of the constant number is equal to 0.2 (µ = 0.2); (b) the value of the
constant number is equal to 20 (µ = 20). Correlation coefficient (r) and root-mean-square error (rmse)
are shown in the top of each panel.
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Figure 13. As in Figure 12, but for SHLI at buoy A. (a) the value of the constant number is equal to 0.2
(µ = 0.2); (b) the value of the constant number is equal to 20 (µ = 20).
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Figure 14. As in Figure 12, but for SHLI at buoy B. (a) the value of the constant number is equal to 0.2
(µ = 0.2); (b) the value of the constant number is equal to 20 (µ = 20).
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Figure 15. Root-mean-square error (rmse) varying with the bearing for radar–buoy comparison.
(a) DOSH–buoy comparison; (b) SHLI–buoy A comparison; (c) SHLI–buoy B comparison. µ is the
constant imposed on the cosine and sine loops, and µ = 1 is the normal TLSCR calibration, which is
also shown in Figure 11. The vertical line indicates the bearing of the buoy.
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6. Discussion

6.1. Interpretation of the Fact That the Same Deviation in the Two Loops Will Not Lead to DOA
Estimation Error

In this study, an analytical relationship between DOA estimation error and antenna pattern
deviation has been presented (Equation (14)). From this analytical relationship, we conclude that the
DOA estimation error is dominated by the relative deviations of the two loops, and the same deviation
in the two loops will not lead to DOA estimation error. Now, we interpret this conclusion in another
way. Provided that the deviations of the amplitude for the two loops are the same, the actual antenna
pattern can be expressed as:

A1(θ) = C(θ) cos θ; A2(θ) = C(θ) sin θ; A3(θ) = 1, (21)

where C(θ) > 0 is the amplitude deviation. For a signal coming from the direction of θ0, the actual
steering vector of this signal can be expressed as:

B(θ0) = [C(θ0) cos θ0, C(θ0) sin θ0, 1]T . (22)

Then, we obtained the estimated DOA, θ′0, using the ideal antenna pattern and MUSIC algorithm.
The DOA estimated in this way indicates that A(θ′0) is the most similar steering vector to B(θ0) in
terms of the entire look angle space. In fact, the similarity can be quantified by the Euclidean distance,
D(θ), between the actual steering vector, B(θ0), and the ideal-pattern-formed steering vector, A(θ).
Thus, estimating the DOA is to minimize the Euclidean distance; that is,

θ′0 = argθmin D(θ) = argθmin {[B(θ0)−A(θ)]T [B(θ0)−A(θ)]}1/2. (23)

In addition, the Euclidean distance is

D(θ) = [B(θ0)−A(θ)]T [B(θ0)−A(θ)]}1/2

=
√
[C2(θ0) + 1− 2C(θ0) cos(θ − θ0)].

(24)

From Equations (23) and (24), we can infer that θ′0 = θ0. In other words, for the entire look angle
space, A(θ0) is the most similar vector to B(θ0). Namely, in the MUSIC algorithm, the value of this
deviation (the value of C(θ)) will only affect the amplitude of the MUSIC function but not affect the
position where MUSIC reaches its minimum value. Thus, the same deviation in the two loops cannot
result in DOA estimation error.

6.2. Sensitivity Testing of the TLSCR Calibration Method

In Section 4.2, we have proposed a method to calibrate the antenna for a direction-finding radar
system. The experimental results indicate that this method can effectively calibrate the antenna. Now,
we examine the effect of the two parameters (the size of selected LA and time length for averaging in
calculating TLSCR) in determining the optimal value of the correction factor.

The TLSCR calibration method is tested for different value combinations of the two parameters:
the angle size of the LA varying from 10◦ to 60◦ and the time length, for averaging, varying from 0.5 day
to five days. We adopt the variance to quantify the sensitivity of the estimated optimal correction
factor (η̂) to these two parameters. The variance of the estimated η̂, for different combinations of these
two parameters, is shown in Figure 16. As made evident in this figure, for a given value of the angle
size, the variance decreases with increasing time length. However, in practical application, a small
value of time length is preferred due to the computing efficiency. In fact, the time length controls
how much radial current mappings are used to calculate η̂. In reality, a long time for estimating η̂
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can effectively eliminate the effects of the interference (radio-frequency interference and ionospheric
disturbance) and the actual sea state on determining the optimal correction factor. Therefore, the time
length should last for a few days. On the other hand, for a given value of time length, the variance
decreases with increasing angle size. However, for angle size increasing from 20◦ to 60◦, the variance
decreases very slowly for any given time length. In real application, a small angle size is also preferred.
This is because the radar detection area is limited by the coastline and a smaller size area, centered
at the direction where the antenna pattern of the two loops intersect, is easy to achieve within the
radar detection area. Thus, the slow decrease of the variance for angle size increasing from 20◦ to 60◦

suggests that the choice of the angle size is pretty flexible; that is, a value of 20 degrees or 60 degrees for
the angle size produces almost the same result. Therefore, angle size being 40◦ and time length being
four days are suitable. Furthermore, the variance is very small even for angle size being 10 degrees
and time length being 0.5 day. This small level of variance indicates that the TLSCR method is robust.
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Figure 16. Variance of the estimated optimal correction factor, η̂, for different combinations of angle
size of LA and the time length for averaging in calculating TLSCR.

6.3. Interpretation of the Optimal Correction Factor

In this study, we only used a constant factor—the optimal correction factor—to calibrate the
monopole-cross-loop antenna. Experiment results suggest that using the ideal antenna pattern and
involving the proposed calibration method can achieve reliable performance for direction-finding HF
radar. However, in practice, the antenna pattern of the collocated, three-element antenna is always
distorted owing to the irregular electromagnetic environment. Thus, we must note that this optimal
correction factor yields the minimum DOA estimation error for echoes homogeneously coming from
the sea surface; that is, the echoes coming from each sector are equal-possibility or the echoes are not
coming from a specific bearing scope. Furthermore, this optimal correction factor produces the optimal
quality radial current mappings in terms of the DOA estimation performance for the entire look angle
space (as Equation (19) presented, η̂ is the global optimal correction factor for eliminating the effect
of the amplitude deviations). However, this optimal correction factor cannot completely eliminate
the effect of the antenna distortion on each direction. Therefore, the optimal correction factor is in
terms of the whole quality of the radial mappings, not for signals coming from any specific direction.
As Figure 17 shows, for the buoys in DOSH and SHLI experiments, the correction factor yielding
the minimum rmse or maximum correlation coefficient value is probably not equal to the optimal
correction factor derived by TLSCR calibration method. Thus, the optimal correction factor is a trade-off
between the global quality of the radial mapping and the DOA estimation reliability of some specific
directions. We think that this trade-off is advisable for the always-distorted monopole-cross-loop
receiving antenna. On the other hand, although the optimal correction factor can yield the minimum
DOA estimation error for entire radar look angle, the value of this minimum DOA estimation error
still relates to the antenna pattern distortion. Additionally, as Equation (19) indicates, the value of J(η̂)
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implies the relation between the distortion level of the actual antenna pattern and this global minimum
DOA estimation error. Thus, in the future, we will devote efforts to providing a metric for evaluating
the acceptability of the distorted antenna pattern in terms of the DOA determination performance for
current extraction with ideal antenna pattern.
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Figure 17. Correlation coefficient and root-mean-square error (rmse) of radar–buoy comparison
vary with the correction factor. (a) DOSH–buoy comparison; (b) SHLI–buoy comparison at buoy A;
(c) SHLI–buoy comparison at buoy B. The thick black vertical line indicates the correction factor
yielding a minimum rmse value. For the DOSH experiment, the optimal correction factor estimated
by TLSCR method is just the correction factor yielding the minimum rmse value. However, for SHLI
experiment, the optimal correction factor only yields the minimum rmse at buoy B. The correction
factor yielding the minimum rmse value for SHLI buoy A is equal to 1.8.

7. Conclusions

In this paper, we presented a detailed analytical derivation of the quantitative relationship between
the DOA estimation error and the antenna pattern deviation for the compact monopole-cross-loop
antenna. This quantitative relationship suggests that the relative deviations of the two loops dominate
the DOA estimation error. Field experiment results give solid evidence for validating this result.
On the other hand, this result indicates that eliminating the effect of the amplitude deviations
on current mappings can be transformed into eliminating the effect of this ratio. Based on this
proposition, a calibration method called time-averaged local spatial coverage rate (TLSCR) is proposed.
This calibration method aims at yielding the minimum DOA estimation error for the resolved radial
velocities, when using the ideal antenna pattern to retrieve the radial current mappings. Two parameters
of the TLSCR calibration method are examined in terms of the sensitivity. The field current-observing
experiment verified the validity of this calibration method. The radial current velocities extracted
by using the ideal antenna pattern and incorporating this proposed calibration method have a high
reliability. Comparisons of these radial current velocities with the buoy-recorded current velocities
show high correlation coefficient with values being greater than 0.9 and low root-mean-square error
with values of about 10 cm/s. Additionally, the bearing offset was effectively reduced after performing
the proposed calibration method. Moreover, the bearing offset showed a striking consistency with the
quantitative relationship between the DOA estimation error and the antenna pattern deviation.
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Appendix A. Typical Distribution of the Phase Deviations

The phase deviations for the sea echoes received by monopole-cross-loop antenna are
experimentally proofed bearing independent and caused by the antenna elements, cables, and receivers.
Therefore, the phase deviations deduced from sea-backscattered first-order Bragg echos must to
converge at a certain value. Typical distributions of the phase deviations induced from the field
experiment (see Section 5.1) are shown in Figure A1. Both the phase deviations for cosine loop and
sine loop have a Gaussian distribution with a high and sharp peak. Moreover, the distributions of
these phase deviations are stable and invariable over time. Therefore, these phase deviations are easy
to calibrate. In the OSMAR-S radar system, we consider the most frequent occurrence value of the
deviations (corresponding to the peak value in the histogram, Figure A1b,d) as the compensating object
to eliminate the phase deviations. Actually, the conventional calibration about the phase deviations
(Section 4.1) calculating the averaged phase deviations as its compensating object yields a similar
result, so that the phase deviations can be calibrated by either conventional method or currently
described method. From Figure A1 we can infer that, after preforming this phase calibration procedure,
the phase deviations will be limited in a small scale. Furthermore, a small phase deviation results in
an ignorable contribution to DOA estimation error. Thus, the effects of the phase deviations on the
DOA estimation can be effectively eliminated.
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Figure A1. Typical distributions of the phase deviations deduced from a field experiment in OSMAR-S
system. Following the definition of the phase deviation in Section 2, the phase deviations are equivalent
to the phase difference of the first-order Bragg Doppler bins in the loops relative to those in the
monopole. (a) the scatter plot of the phase deviation for cosine loop; (b) the histogram of the phase
deviation for cosine loop; (c) scatter plot of the phase deviation for sine loop; (d) histogram of the phase
deviation for sine loop.
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Appendix B. Sensitivity of DOA Estimation Error to α1(θ)

To examine the sensitivity of DOA estimation error, ∆θ, to the value of α1(θ0), we deduce the
partial derivative of ∆θ to α1(θ0). The partial derivative of ∆θ to α1(θ0) can be easily acquired from
Equation (14). Furthermore, it is given as follows

∂∆θ
∂α1(θ0)

= −[1− β(θ0)]
3 sin3(2θ0)

8{α1(θ0){[cos2 θ0−β2(θ0) sin2 θ0] cos 2θ0 + β(θ0) sin2 2θ0}+ cos2 θ0 + β(θ0) sin2 θ0}2 . (A1)

Furthermore, Figure A2 shows this partial derivative in the cases of β(θ0) = 0.5 and β(θ0) = 2.5
for signals coming from 30◦ and 500 (θ0 = 30◦ and θ0 = 50◦), respectively. (Motivation for showing
this partial derivative just for θ0 = 30◦ and θ0 = 50◦ is that Figure 3a indicates that varying the value
of α1(θ0) results in a more obvious effect in the bearing near to 30◦ and 500 than in other bearings.).
Figure A2 demonstrates that ∆(θ) is insensitive to α1(θ0). Because changing the value of α1(θ0) from
0.1 to 5 can just produce a few degrees difference for ∆θ (the area enclosed by the curves and the
straight line (the thick black line) for the partial derivative being equal to zero in Figure A2). Thus,
∆(θ) is insensitive to α1(θ0). Furthermore, this insensitivity suggests that there is no need to pursue
α1(θ0) = α2(θ0) = 1 and just need to yield α1(θ0) = α2(θ0) or β(θ0) = 1 in the calibration procedure.
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β and θ0. The thick black horizontal line indicates the partial derivative being equal to zero.
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