Fractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Unmanned Aerial Vehicle (UAV)
3.2. Landsat 8 Operational Land Imager (OLI)
3.3. MODIS Data
3.4. Digital Elevation Model (DEM)
4. Methodology
4.1. Data Preprocessing
4.2. LR
4.3. Fully Constrained LSMA
4.4. BP-ANN
4.5. Validation
5. Results
5.1. LR
5.2. LSMA
5.3. BP-ANN
5.4. Validation
6. Discussion
7. Conclusions
- (1)
- The optimal input combination of the BP-ANN model obtained from this study was ((R1–R7) + DEM + LST), based on alternative input variables. The BP-ANN model developed using that input combination exhibited better performance than the models trained using the other combinations because the elevations and temperatures, which affected the FSC distribution, were integrated based on an analysis of surface reflectivity.
- (2)
- The accuracies of the LR and BP-ANN models based on MODIS and UAV data were much better than those of the fully constrained LSMA model based only on MODIS data and the MOD10A1 FSC. The retrieval accuracy of the fully constrained LSMA model using the PPI endmember extraction algorithm was the worst among the three models (r was only 0.7921 and the RMSEs were as high as 0.3485). There were some serious omission phenomena in the study area, specifically because it had the largest MAE (0.2755) and PME (0.3411). However, it was slightly lower than the retrieval accuracies obtained in the MOD10A1 V005 and previous research [35] based on comprehensive evaluation of six accuracy indices. This finding indicates that the introduction of UAV data can improve the accuracy of FSC mapping.
- (3)
- In brief, the accuracy and stability of the optimal BP-ANN model were the best based on a comprehensive evaluation of the six indices employed in this study, especially for MAE (0.1039) and NME (−0.1055), which were much better than the LR model’s results (MAE = 0.1765, NME = −0.2570). These results indicated it an ideal prediction algorithm for retrieving FSC for the Tibetan Plateau when compared with the LR model, LMSA model and the MODIS global FSC product. The algorithm lays the foundation for accurately evaluating the distribution and variation of snow cover on the Tibetan Plateau and provides more accurate inputs for hydrological and climate models.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, J. Comparison and analysis on methods of snow cover mapping by using satellite remote sensing data. Remote Sens. Technol. Appl. 1999, 14, 29–36. (In Chinese) [Google Scholar]
- Tang, Z.G.; Wang, J.; Yan, L.L.; Li, H.Y.; Liang, J. Estimating sub-pixel snow cover from MODIS in Qinghai-Tibet plateau. J. Arid Land Res. Environ. 2013, 27, 33–38. (In Chinese) [Google Scholar]
- Lee, S.; Klein, A.G.; Over, T.M. A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the snowmelt runoff model. Hydrol. Process. 2010, 19, 2951–2972. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Akyürek, Z.; Şorman, A.A.; Şensoy, A.; Şorman, A.Ü. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ. 2009, 113, 160–181. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Hao, X.H.; Wang, J.; Wang, J.; Huang, X.D.; Li, H.Y.; Liu, Y. Observations of snow mixed pixel spectral characteristics using a ground-based spectral radiometer and comparing with unmixing algorithms. Spectrosc. Spectr. Anal. 2012, 32, 2753–2758. (In Chinese) [Google Scholar]
- Barton, J.S.; Hall, D.K.; Riggs, G.A. Remote sensing of fractional snow cover using moderate resolution imaging spectroradiometer (MODIS) data. In Proceedings of the 57th Eastern Snow Conference, Syracuse, NY, USA, 17–19 May 2000. [Google Scholar]
- Cao, Y.G.; Liu, C. A simplified algorithm for extracting subpixel snow cover information from MODIS data. J. Glaciol. Geocryol. 2006, 28, 562–567. (In Chinese) [Google Scholar]
- Kaufman, Y.J.; Kleidman, R.G.; Hall, D.K.; Martins, J.V.; Barton, J.S. Remote sensing of subpixel snow cover using 0.66 and 2.1 μm channels. Geophys. Res. Lett. 2002, 29, 28-1–28-4. [Google Scholar] [CrossRef]
- Metsämäki, S.J.; Anttila, S.T.; Markus, H.J.; Vepsäläinen, J.M. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. Remote Sens. Environ. 2005, 95, 77–95. [Google Scholar] [CrossRef]
- Metsämäki, S.; Mattila, O.P.; Pulliainen, J.; Niemia, K.; Luojusb, K.; Böttchera, K. An optical reflectance model-based method for fractional snow cover mapping applicable to continental scale. Remote Sens. Environ. 2012, 123, 508–521. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Liu, L.M.; Xu, Q.; Hu, Y.; Huang, L. Estimating fractional snow cover based on nonlinear NDSI model. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 534–536. (In Chinese) [Google Scholar]
- Cao, Y.G.; Yang, X.C.; Xu, B.; Zhu, X.U. Applications and limitations of a snow mapping algorithm based on MODIS data in Qinghai-Tibet Plateau. Sci. Technol. Rev. 2007, 25, 51–54. [Google Scholar]
- Zhou, Q.; Wang, S.X.; Zhou, Y.; Wang, L.T. Algorithm for MODIS subpixel snow fraction. J. GSCAS 2009, 26, 383–388. (In Chinese) [Google Scholar]
- Vikhamar, D.; Solberg, R. Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sens. Environ. 2003, 88, 309–323. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Qian, D.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.D.; Hao, X.H.; Wang, J.; Wang, W.; Liang, T.G. Fractional snow-cover mapping using an improved endmember extraction algorithm. J. Appl. Remote Sens. 2014, 8, 084691. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design and application. J. Microbiol. Method 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ. 2004, 90, 76–85. [Google Scholar] [CrossRef]
- Dobreva, I.D.; Klein, A.G. Artificial neural networks approach to fractional snow cover mapping. In Proceedings of the 66th Eastern Snow Conference, Niagara, ON, Canada, 9–11 June 2009. [Google Scholar]
- Dobreva, I.D.; Klein, A.G. Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance. Remote Sens. Environ. 2011, 115, 3355–3366. [Google Scholar] [CrossRef]
- Hou, J.L.; Huang, C.L. Improving mountainous snow cover fraction mapping via artificial neural networks combined with MODIS and ancillary topographic data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5601–5611. [Google Scholar]
- Zhang, Y.; Huang, X.D.; Wang, W.; Liang, T.G. Validation and algorithm redevelopment of MODIS daily fractional snow cover products. Arid Zone Res. 2013, 30, 808–814. (In Chinese) [Google Scholar]
- Huang, X.D.; Zhang, X.T.; Li, X.; Liang, T.G. Accuracy analysis for MODIS snow products of MOD10A1 and MOD10A2 in northern Xinjiang area. J. Glaciol. Geocryol. 2007, 29, 722–729. (In Chinese) [Google Scholar]
- Heinz, D.C.; Chang, C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2002, 39, 529–545. [Google Scholar] [CrossRef]
- Theys, C.; Dobigeon, N.; Tourneret, J.Y.; Lanteri, H. Linear unmixing of hyperspectral images using a scaled gradient method. In Proceedings of the IEEE/SP 15th Workshop on Statistical Signal Processing, Cardiff, UK, 31 August–3 September 2009; Volume 10, pp. 729–732. [Google Scholar]
- Bioucas-Dias, J.M.; Figueiredo, M.A.T. Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 14–16 June 2010; Volume 6, pp. 1–4. [Google Scholar]
- Halimi, A.; Altmann, Y.; Dobigeon, N.; Tourneret, J.Y. Nonlinear unmixing of hyperspectral images using a generalized bilinear model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4153–4162. [Google Scholar] [CrossRef] [Green Version]
- Altmann, Y.; Dobigeon, N.; Tourneret, J.Y.; Mclaughlin, S. Nonlinear unmixing of hyperspectral images using radial basis functions and orthogonal least squares. IEEE Geosci. Remote Sens. Symp. 2011, 24, 1151–1154. [Google Scholar]
- Zhang, Y. Fractional Snow Cover Mapping Using MODIS Data in Subpixel Scale. Master’s Thesis, Lanzhou University, Lanzhou, China, 2015. [Google Scholar]
- Gao, P.; Yan, L.; Zhao, H. Aerial remote sensing automatic control system for UAV. SPIE Proc. 2008. [Google Scholar] [CrossRef]
- Wang, W.Q.; Peng, Q.; Cai, J. Waveform-diversity-based millimeter-wave UAV SAR remote sensing. IEEE Trans. Geosci. Remote Sens. 2009, 47, 691–700. [Google Scholar] [CrossRef]
- Eling, C.; Wieland, M.; Hess, C.; Klingbeil, L.; Kuhlmannet, H. Development and evaluation of a UAV based mapping system for remote sensing and surveying applications. Int. Arch. Photogramm. Remote Sens. 2015, 4, 233–239. [Google Scholar] [CrossRef]
- Lei, T.J. Application of UAV remote sensing system monitoring in the low-temperature and frozen ice-snow disaster. J. Anhui Agric. Sci. 2011, 39, 2417–2419. (In Chinese) [Google Scholar]
- Lindner, G.; Schraml, K.; Mansberger, R.; Hübl, J. UAV monitoring and documentation of a large landslide. Appl. Geomat. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Akanksha, F.; Martín-Torres, J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Wang, P.; Luo, X.; Zhou, Z.; Zang, Y.; Hu, L. Key technology for remote sensing information acquisition based on micro UAV. Trans. Chin. Soc. Agric. Eng. 2014, 30, 1–12. (In Chinese) [Google Scholar]
- Wang, Z. Geological features, the formation and the evolution of the Qinghai-Tibetan Plateau. Sci. Technol. Rev. 2017, 35, 51–58. [Google Scholar]
- An, P.J.; Gao, F.; Wang, L.W. Status and trends of space observation research on glacier, snow and geological disasters on the Qinghai-Tibet Plateau. Remote Sens. Environ. 2016, 31, 1223–1230. [Google Scholar]
- Ma, Y.M.; Hu, Z.Y.; Tian, L.D.; Zhang, F.; Duan, A.M.; Yang, K.; Zhang, Y.L.; Yang, Y.P. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia. Adv. Earth Sci. 2014, 29, 207–215. (In Chinese) [Google Scholar]
- Zhu, Y.X.; Ding, Y.H. Influences of snow cover over Tibetan Plateau on weather and climate: Advances and problems. Meteorol. Sci. Technol. 2007, 35, 1–8. (In Chinese) [Google Scholar]
- Yang, Z.G.; Da, W.; Chu, D. Spatiotemporal variation of snow cover in the Tibetan Plateau over the last 15 years. Remote Sens. Technol. Appl. 2017, 32, 27–36. (In Chinese) [Google Scholar]
- Guo, J.P.; Liu, H.; An, L.C.; Wang, P.X.; Gao, M. Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 2001–2012. Plateau Meteorol. 2016, 35, 24–33. (In Chinese) [Google Scholar]
- Wang, W.; Huang, X.D.; Deng, J.; Xie, H.J.; Liang, T.G. Spatio-temporal change of snow cover and its response to climate over the Tibetan Plateau Based on an improved daily cloud-free snow cover product. Remote Sens. 2014, 7, 169–194. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Wang, W. Snow Cover Monitoring and Early Warning of Snow-Caused Disaster Based on Remote Sensing and GIS Technologies in Pastoral Areas of the Tibetan Plateau. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2014. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Wang, W. Monitoring Snow Cover in Pastoral Areas on Qinghai-Tibetan Plateau. Master’s Thesis, Lanzhou University, Lanzhou, China, 2011. [Google Scholar]
- Huang, X.D.; Liang, T.G. Study on the remotely sensed monitoring method of snow disaster in pastoral area. Pratacult. Sci. 2005, 22, 10–16. (In Chinese) [Google Scholar]
- Chen, M. MATLAB Neural Network Principle and Instances of Precision Solution; Tsinghua University Press: Beijing, China, 2013. [Google Scholar]
- Ung, S.T.; Williams, V.; Bonsall, S.; Wang, J. Test case based risk predictions using artificial neural network. J. Saf. Res. 2006, 37, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.X.; Zhang, W.J.; Feng, Q.S.; Meng, B.P.; Gao, J.L.; Liang, T.G. Monitoring of grassland herbage accumulation by remote sensing using MODIS daily surface reflectance data in the Qingnan Region. Acta Pratacult. Sin. 2016, 25, 14–26. (In Chinese) [Google Scholar]
- Ma, X.F.; Huang, X.D.; Deng, J.; Wang, Y.L.; Liang, T.G. Comprehensive risk assessment of snow disasters in Qinghai Province. Acta Pratacult. Sin. 2017, 26, 10–20. (In Chinese) [Google Scholar]
- Zhang, H.; Zhao, Q.H. An economic indicator screening method based on fundamental principle of principal components analysis. J. Shandong Univ. Financ. Econ. 2013, 124, 52–61. (In Chinese) [Google Scholar]
- Hao, X.H.; Wang, J.; Wang, J.; Zhang, P.; Huang, C.L. The measurement and retrieval of the spectral reflectance of different snow grain size on Northern Xinjiang, China. Spectrosc. Spect. Anal. 2013, 33, 190–195. [Google Scholar]
- Wang, J.; Huang, C.L.; Hao, X.H. An algorithm of snow cover fraction retrieval considering the variability of snow particle size. J. Geo-Inf. Sci. 2017, 19, 101–109. (In Chinese) [Google Scholar]
- Wang, J.; Li, W.M. Snow grain and snow fraction retrieval algorithms based on asymptotic radiative transfer model. Remote Sens. Technol. Appl. 2017, 32, 64–70. (In Chinese) [Google Scholar]
- Wu, H.Y.; Liang, S.L.; Tong, L.; He, T.; Yu, Y.Y. Bidirectional reflectance for multiple snow-covered land types from MISR products. IEEE Geosci. Remote Sens. 2012, 9, 994–998. [Google Scholar]
- Wu, J.D.; Li, N.; Yang, H.J.; Li, C.H. Risk evaluation of heavy snow disasters using BP artificial neural network: the case of Xilingol in Inner Mongolia. Stoch. Environ. Res. Risk Assess. 2007, 22, 719–725. [Google Scholar] [CrossRef]
- Zheng, W.L.; Dou, J.K. Forecasting snow cover fraction in Manasi river basin based on BP neural network. J. Nanjing Univ. Nat. Sci. 2015, 51, 1014–1021. (In Chinese) [Google Scholar]
- Zheng, W.L.; Dou, J.K.; Zhou, X.B.; Song, M.M.; Bian, G.D.; Xie, S.P.; Feng, X.Z. Vertical distribution of snow cover and its relation to temperature over the Manasi River Basin of Tianshan Mountains, Northwest China. J. Geogr. Sci. 2017, 27, 403–419. [Google Scholar] [CrossRef]
Data Code | Path | Row | Date | Cloud Fraction |
---|---|---|---|---|
V1 | 144 | 36 | 14 October 2016 | 0.03 |
V2 | 134 | 40 | 11 December 2016 | 0.04 |
V3 | 132 | 41 | 12 January 2016 | 0.03 |
V4 | 133 | 38 | 4 December 2016 | 0.06 |
V5 | 136 | 35 | 4 December 2016 | 0.067 |
V6 | 146 | 36 | 24 November 2014 | 0.05 |
V7 | 140 | 36 | 2 October 2016 | 0.04 |
T1 | 141 | 34 | 23 October 2015 | 0.02 |
T2 | 134 | 33 | 6 October 2015 | 0.06 |
ANN Parameters | Description |
---|---|
Input | R1–R7, DEM, LST |
Output | FSC |
Number of net layers | Three (the input layer, hidden layer and output layer are only one layer) |
Number of nodes | Input layer: n; hidden layer: 2n + 3; output layer: 1 |
Training and learning method | Levenberg-Marquardt, gradient descent method |
Performance | RMSE, r |
Transfer function | Input layer to hidden layers: tangent hyperbolic |
Hidden layers to output layer: pure linear | |
Standardization method | Standard deviation method |
LR Model | LMSA Model | BP-ANN Model | ||
---|---|---|---|---|
The procedure of model establishment | Data | MOD10A1/NDSI, MYD10A1/NDSI, UAV/FSC | MOD09GA | R1–R7, DEM, LST, UAV/FSC |
Date | February–March 2017 | October 2014–December 2016 | February–March 2017 | |
Tools | Excel 2013 | ENVI 5.3 | Matlab 2016 | |
Process | 1. Scatter plot (FSC, NDSI) 2. FSC = a × NDSI + b | 1. Spectral library building 2. Subpixel unmixing algorithm: FCLS | This ANN was trained with back propagation error to learn the relationship between UAV FSC and R1–R7, DEM and LST | |
Examples of FSC spatial distribution | Date | 14 October 2016 | ||
Region | V1 (randomly selected) | |||
Validation | Data | Binary Landsat 8 OLI snow-cover map | ||
Date | October 2014–December 2016 | |||
Tools | ArcGIS 10.2.2, Excel 2013 | |||
Region | V1–V7 |
Experiments | Combinations | RMSE | r |
---|---|---|---|
Exp. 1 | (R1–R7) | 0.2606 | 0.7884 |
Exp. 2 | (R1–R7) + DEM | 0.2071 | 0.8053 |
Exp. 3 | (R1–R7) + LST | 0.2267 | 0.8216 |
Exp. 4 | (R1–R7) + DEM + LST | 0.2006 | 0.8453 |
MFSC/% | Reg-FSC | Mix-FSC | BP-FSC | MOD10A1-FSC | Landsat 8-FSC | |
---|---|---|---|---|---|---|
Code | ||||||
V1 | 48.08 | 33.92 | 51.73 | 29.67 | 40.05 | |
V2 | 43.61 | 8.21 | 6.63 | 16.16 | 12.94 | |
V3 | 31.80 | 9.67 | 9.14 | 30.68 | 26.25 | |
V4 | 17.48 | 8.23 | 26.04 | 7.58 | 19.60 | |
V5 | 36.05 | 38.08 | 65.60 | 39.02 | 62.29 | |
V6 | 15.29 | 2.39 | 18.71 | 4.38 | 7.34 | |
V7 | 44.38 | 19.71 | 26.20 | 28.11 | 33.36 | |
Average | 33.81 | 17.17 | 29.23 | 22.23 | 28.83 |
r | RMSE | MAE | PME | NME | |
---|---|---|---|---|---|
MOD10A1 | 0.7838 | 0.2833 | 0.1877 | 0.1867 | −0.2081 |
Reg-FSC | 0.8222 | 0.2304 | 0.1765 | 0.1431 | −0.2570 |
Mix-FSC | 0.7921 | 0.3485 | 0.2755 | 0.3411 | −0.0902 |
BP-FSC | 0.8445 | 0.2201 | 0.1039 | 0.1732 | −0.1055 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Huang, X.; Sun, Y.; Wang, Y.; Liang, T. Fractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau. Remote Sens. 2017, 9, 1332. https://doi.org/10.3390/rs9121332
Liang H, Huang X, Sun Y, Wang Y, Liang T. Fractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau. Remote Sensing. 2017; 9(12):1332. https://doi.org/10.3390/rs9121332
Chicago/Turabian StyleLiang, Hui, Xiaodong Huang, Yanhua Sun, Yunlong Wang, and Tiangang Liang. 2017. "Fractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau" Remote Sensing 9, no. 12: 1332. https://doi.org/10.3390/rs9121332
APA StyleLiang, H., Huang, X., Sun, Y., Wang, Y., & Liang, T. (2017). Fractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau. Remote Sensing, 9(12), 1332. https://doi.org/10.3390/rs9121332