Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats
Abstract
:1. Introduction
2. Methods
2.1. Site Description
2.2. Measurements
2.3. Data Analysis
3. Results
3.1. Site Temperature Patterns
3.2. Site Differences in Peak NDVI and Rates of Greening and Senescence
3.3. Greening in Response to Daily Temperatures
3.4. Senescence in Response to Daily Temperatures
4. Discussion
4.1. Interannual Variations in Peak NDVI
4.2. NDVI Response to Temperature
4.3. Interannual Variations in Daily Average Temperatures
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Number of Day Lag | June | August | ||||
---|---|---|---|---|---|---|
Slope | R2 | p-Value | Slope | R2 | p-Value | |
Barrow | ||||||
1 Day | 0.0012 | 0.003 | 0.3965 | 0.0003 | 0.008 | 0.2891 |
2 Day | 0.0016 | 0.035 | 0.2166 | 0.0015 | 0.011 | 0.2574 |
3 Day | 0.0041 | 0.143 | 0.0490 | 0.0013 | 0.076 | 0.0711 |
4 Day | 0.0040 | 0.032 | 0.1460 | 0.0010 | 0.027 | 0.5117 |
Atqasuk | ||||||
1 Day | −0.0005 | 0.006 | 0.2140 | 0.0002 | 0.002 | 0.4871 |
2 Day | 0.0010 | 0.051 | 0.8268 | 0.0008 | 0.047 | 0.2066 |
3 Day | 0.0013 | 0.116 | 0.0444 | 0.0011 | 0.148 | 0.0453 |
4 Day | 0.0012 | 0.104 | 0.3602 | 0.0009 | 0.074 | 0.5377 |
Imnavait Creek | ||||||
1 Day | 0.0003 | 0.011 | 0.1613 | 0.0003 | 0.006 | 0.5274 |
2 Day | 0.0006 | 0.034 | 0.1830 | 0.0009 | 0.088 | 0.1363 |
3 Day | 0.0011 | 0.102 | <0.0001 | 0.0011 | 0.188 | 0.0021 |
4 Day | 0.0012 | 0.175 | 0.0024 | 0.0010 | 0.125 | 0.0383 |
Toolik Lake | ||||||
1 Day | 0.0006 | 0.044 | 0.2200 | 0.0007 | 0.054 | 0.2351 |
2 Day | 0.0001 | 0.001 | 0.4210 | 0.0002 | 0.005 | 0.7268 |
3 Day | 0.0006 | 0.046 | 0.1112 | 0.0011 | 0.204 | 0.0634 |
4 Day | 0.0006 | 0.038 | 0.1735 | 0.0016 | 0.129 | 0.1059 |
References
- Chapin, F.S.; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; et al. Role of land-surface changes in Arctic summer warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.; Plattner, D.Q.G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. (Eds.) Intergovernmental Panel on Climate Change Fifth Assessment Report: Climate Change. The Physical Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Prevey, J.; Vellend, M.; Ruger, N.; Hollister, R.; Bjorkman, A.; Myers-Smith, I.; Elmendorf, S.; Clark, K.; Cooper, E.; Elberling, B.; et al. Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Glob. Chang. Biol. 2017, 23, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Arft, A.M.; Walker, M.D.; Gurevitch, J.; Alatalo, J.M.; Bret-Harte, M.S.; Dale, M.R.T.; Diemer, M.C.; Gugerli, F.; Henry, G.H.R.; Jones, M.H.; et al. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecol. Monogr. 1999, 64, 491–511. [Google Scholar] [CrossRef]
- Marchand, F.L.; Nijs, I.; Heuer, M.; Mertens, S.; Kockelbergh, F.; Pontailler, J.-Y.; Impens, I.; Beyens, L. Climate warming postpones senescence in High Arctic tundra. Arct. Antarct. Alp. Res. 2004, 36, 390–394. [Google Scholar] [CrossRef]
- Barrett, R.T.S.; Hollister, R.D.; Oberbauer, S.F.; Tweedie, C.E. Arctic plant responses to changing abiotic factors in northern Alaska. Am. J. Bot. 2005, 102, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Khorsand Rosa, R.; Oberbauer, S.F.; Starr, G.; La Puma, I.P.; Pop, E.; Ahlquist, L.; Baldwin, T. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Glob. Chang. Biol. 2015, 21, 4520–4532. [Google Scholar] [CrossRef] [PubMed]
- Shaver, G.R.; Chapin, F.S., III. Production: Biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol. Monogr. 1991, 61, 1–31. [Google Scholar] [CrossRef]
- Oechel, W.C.; Hastings, S.J.; Vourlitis, G.; Jenkins, M.; Riechers, G.; Grulke, N. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 1992, 361, 520–523. [Google Scholar] [CrossRef]
- Chapin, F.S.; Shaver, G.R.; Giblin, A.E.; Nadelhoffer, K.J.; Laundre, J.A. Responses of arctic tundra to experimental and observed changes in climate. Ecology 1995, 76, 694–711. [Google Scholar] [CrossRef]
- Campioli, M.; Samson, R.; Michelsen, A.; Jonasson, S.; Baxter, R.; Lemeur, R. Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season. Plant Ecol. 2009, 202, 41–53. [Google Scholar] [CrossRef]
- Olivas, P.C.; Oberbauer, S.F.; Tweedie, C.E.; Oechel, W.C.; Lin, D.; Kuchy, A. Effects of Fine-Scale Topography on CO2 Flux Components of Alaskan Coastal Plain Tundra: Response to Contrasting Growing Seasons. Arct. Antarct. Alp. Res. 2011, 43, 256–266. [Google Scholar] [CrossRef]
- Sturm, M.; Racine, C.; Tape, K. Climate change: Increasing shrub abundance in the Arctic. Nature 2001, 41, 546–547. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.; Schimel, J.; Michelson, G.; Welker, J.; Oberbauer, S.F.; Liston, G.; Fahnestock, J.; Romanovsky, V.E. The role of winter biological processes in converting arctic tundra to shrubland. BioScience 2005, 55, 17–26. [Google Scholar] [CrossRef]
- Tape, K.; Sturm, M.; Racine, C. The evidence for shrub expansion in northern Alaska and the Pan-Arctic. Glob. Chang. Biol. 2006, 12, 686–702. [Google Scholar]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Björk, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; Dorrepaal, E.; Elumeeva, T.G.; et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Welker, J.M.; Molau, U.; Parsons, A.N.; Robinson, C.; Wookey, P.A. Response of Dryas octopetala to ITEX manipulations: A synthesis with circumpolar comparisons. Glob. Chang. Biol. 1997, 3, 61–73. [Google Scholar] [CrossRef]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing transformations and their effects on multispectral recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of Environment, University of Michigan, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131. [Google Scholar]
- Riedel, S.M.; Epstein, H.E.; Walker, D.A. Biotic controls over spectral reflectance of Arctic tundra vegetation. Int. J. Remote Sens. 2005, 26, 2391–2405. [Google Scholar] [CrossRef]
- Stow, D.; Petersen, A.; Hope, A.; Engstrom, R.; Coulter, L. Greenness trends of Arctic tundra vegetation in the 1990s: Comparison of two NDVI data sets from NOAA AVHRR systems. Int. J. Remote Sens. 2007, 28, 4807–4822. [Google Scholar] [CrossRef]
- Gamon, J.A.; Huemmrich, K.F.; Stone, R.S.; Tweedie, C.E. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt. Remote Sens. Environ. 2013, 129, 144–153. [Google Scholar] [CrossRef]
- Epstein, H.E.; Raynolds, M.K.; Walker, D.A.; Bhatt, U.S.; Tucker, C.J.; Pinzon, J.E. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Greening of Arctic Alaska, 1981–2001. Geophys. Res. Lett. 2003, 30, 2067. [Google Scholar] [CrossRef]
- Walker, D.A.; Raynolds, M.K.; Daniëls, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; et al. The Circumpolar Arctic Vegetation Map. J. Veg. Sci. 2005, 16, 267–282. [Google Scholar] [CrossRef]
- Verbyla, D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr. 2008, 17, 547–555. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sens. Environ. 2008, 112, 1884–1894. [Google Scholar] [CrossRef]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Comiso, J.C.; Epstein, H.E.; Jia, G.; Gens, R.; Pinzon, J.E.; Tucker, C.J.; Tweedie, C.E.; et al. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact. 2010, 14, 1–20. [Google Scholar] [CrossRef]
- Walker, D.A.; Epstein, H.E.; Raynolds, M.K.; Kuss, P.; Kopecky, M.A.; Frost, G.V.; Daniëls, F.J.A.; Leibman, M.O.; Moskalenko, N.G.; Matyshak, G.V.; et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 2012, 7, 015504. [Google Scholar] [CrossRef]
- Oberbauer, S.F.; Elmendorf, S.C.; Troxler, T.G.; Hollister, R.D.; Rocha, A.V.; Bret-Harte, M.S.; Dawes, M.A.; Fosaa, A.M.; Henry, G.H.R.; Høye, T.T.; et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [PubMed]
- Healey, N.C.; Oberbauer, S.F.; Ahrends, H.E.; Dierick, D.; Welker, J.M.; Leffler, A.J.; Hollister, R.D.; Vargas, S.A.; Tweedie, C.E. A Mobile Instrumented Sensor Platform for Long Term Terrestrial Ecosystem Analysis: An Example Application in an Arctic Tundra Ecosystem. J. Environ. Inform. 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Henry, G.H.; Molau, U. Tundra plants and climate change: The International Tundra Experiment. Glob. Chang. Biol. 1997, 3, 1–9. [Google Scholar] [CrossRef]
- Hollister, R.D. Air temperature for Barrow and Atqasuk, Alaska ITEX sites. Grand Valley State University; Unpublished work. 2017. [Google Scholar]
- Environmental Data Center Team. Meteorological Monitoring Program at Toolik, Alaska. Toolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775. Available online: http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php (accessed on 15 October 2016).
- R Foundation for Statistical Computing, Vienna, Austria. Available online: www.r-project.org (accessed on 30 June 2017).
- Wipf, S.; Rixen, C.; Mulder, C.P. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob. Chang. Biol. 2006, 12, 1496–1506. [Google Scholar] [CrossRef]
- Chapin, F.S., III. Environmental controls over growth of tundra plants. Ecol. Bull. 1987, 38, 69–76. [Google Scholar]
- Hudson, J.M.; Henry, G.H. Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology 2009, 90, 2657–2663. [Google Scholar] [CrossRef] [PubMed]
- Hope, A.S.; Kimball, J.S.; Stow, D.A. The relationship between tussock tundra spectral reflectance properties and biomass and vegetation composition. Int. J. Remote Sens. 1993, 14, 1861–1874. [Google Scholar] [CrossRef]
- Douma, J.C.; Van Wijk, M.T.; Lang, S.I.; Shaver, G.R. The contribution of mosses to the carbon and water exchange of arctic ecosystems: Quantification and relationships with system properties. Plant Cell Environ. 2007, 30, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evolut. 1995, 10, 270–275. [Google Scholar] [CrossRef]
- Harris, A. Spectral reflectance and photosynthetic properties of Sphagnum mosses exposed to progressive drought. Ecohydrology 2008, 1, 35–42. [Google Scholar] [CrossRef]
- Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Metereol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Phoenix, G.K.; Gwynn-Jones, D.; Callaghan, T.V.; Sleep, D.; Lee, J.A. Effects of global change on a sub-Arctic heath: Effects of enhanced UV-B radiation and increased summer precipitation. J. Ecol. 2001, 89, 256–267. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Wal, R.; Jónsdóttir, I.S.; Quirk, H.; Dutton, S. Temporal variability in plant and soil nitrogen pools in a high-Arctic ecosystem. Soil Biol. Biochem. 2007, 39, 2129–2137. [Google Scholar] [CrossRef]
- Molau, U.; Alatalo, J.M. Responses of subarctic-alpine plant communities to simulated environmental change: Biodiversity of bryophytes, lichens, and vascular plants. Ambio 1998, 27, 322–329. [Google Scholar]
- Hollister, R.D.; May, J.L.; Kremers, K.S.; Tweedie, C.E.; Oberbauer, S.F.; Liebig, J.A.; Botting, T.F.; Barrett, R.T.S.; Gregory, J.L. Warming experiments elucidate the drivers of observed directional changes in tundra vegetation. Ecol. Evol. 2015, 5, 1881–1895. [Google Scholar] [CrossRef] [PubMed]
- Inouye, D.W. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 2008, 89, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Tolvanen, A. Recovery of the bilberry (Vaccinium myrtillus L.) from artificial spring and summer frost. Plant Ecol. 1997, 130, 35–39. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Chapman, W.L.; Walsh, J.E. Recent variations of sea ice and air temperatures in high latitudes. Bull. Am. Meteorol. Soc. 1993, 74, 33–47. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Bekryaev, R.V.; Alekseev, G.V.; Bhatt, U.S.; Colony, R.L.; Johnson, M.A.; Maskshtas, A.P.; Walsh, D. Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. J. Clim. 2003, 16, 2067–2077. [Google Scholar] [CrossRef]
Community Attribute | Barrow | Atqasuk | Imnavait Creek | Toolik Lake |
---|---|---|---|---|
Full Transect | ||||
Ave. Daily June Temperature C | −4.2 to 10.1 | 3.78 to 20.6 | −5.6 to 19.9 | −5.7 to 20.5 |
Ave. Daily August Temperature C | 0.2 to 10.3 | 2.5 to 14.3 | −0.8 to 17.6 | −0.8 to 18.2 |
Dry Heath | ||||
Length Along Transect m | 20 | 20 | 12 | 15 |
Species List | Luzula confusa | Ledum palustre | Arctostaphylous alpina | Arctostaphyolus alpina |
Luzula arctica | Vaccinium vitis-idaea | Vaccinium vitis-idaea | Vaccinium vitis-idaea | |
Salix rotundifolia | Cassiope tetragona | Cassiope tetragona | Cassiope tetragona | |
Vaccinium vitis-idaea | Carex bigelowii | Betula nana | Betula nana | |
Pedicularis kaneii | Hierochloe alpina | Hierochloe alpina | Carex bigelowii | |
Lichen | Lichen | Lichen | Lichen | |
Moist Acidic | ||||
Length Along Transect m | 12 | 18 | 14 | |
Species List | Eriophorum vaginatum | Eriophorum vaginatum | Eriophorum vaginatum | |
Salix pulchra | Salix pulchra | Salix pulchra | ||
Ledum palustre | Betula nana | Betula nana | ||
Vaccinium vitis-idaea | Ledum palustre | Ledum palustre | ||
Carex bigelowii | Carex bigelowii | Carex bigelowii | ||
Pleurocarpous moss | Vaccinium vitis-idaea | Vaccinium vitis-idaea | ||
Sphagnum sp. | Pleurocarpous moss | Pleurocarpous moss | ||
Sphagnum sp. | Sphagnum sp. | |||
Shrub | ||||
Length Along Transect m | 16 | |||
Species List | Salix pulchra | |||
Betula nana | ||||
Ledum palustre | ||||
Carex bigelowii | ||||
Pleurocarpous moss | ||||
Sphagnum sp. | ||||
Wet Acidic | ||||
Length Along Transect m | 14 | |||
Species List | Eriophorum vaginatum | |||
Salix pulchra | ||||
Betula nana | ||||
Ledum palustre | ||||
Carex bigelowii | ||||
Cassiope tetragona | ||||
Pleurocarpous moss | ||||
Sphagnum sp. | ||||
Wet Meadow | ||||
Length Along Transect m | 25 | 12 | ||
Species List | Carex aquatilis- stans | Carex aquatilis | ||
Dupontia fisherii | Eriophorum angustifolium | |||
Eriophorum angustifolium | Eriophorum russeolum | |||
Eriophorum russeolum | Salix pulchra | |||
Pleurocarpous moss | Salix polaris | |||
Sphagnum sp. | Pleurocarpous moss | |||
Sphagnum sp. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
May, J.L.; Healey, N.C.; Ahrends, H.E.; Hollister, R.D.; Tweedie, C.E.; Welker, J.M.; Gould, W.A.; Oberbauer, S.F. Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats. Remote Sens. 2017, 9, 1338. https://doi.org/10.3390/rs9121338
May JL, Healey NC, Ahrends HE, Hollister RD, Tweedie CE, Welker JM, Gould WA, Oberbauer SF. Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats. Remote Sensing. 2017; 9(12):1338. https://doi.org/10.3390/rs9121338
Chicago/Turabian StyleMay, Jeremy L., Nathan C. Healey, Hella E. Ahrends, Robert D. Hollister, Craig E. Tweedie, Jeffrey M. Welker, William A. Gould, and Steven F. Oberbauer. 2017. "Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats" Remote Sensing 9, no. 12: 1338. https://doi.org/10.3390/rs9121338
APA StyleMay, J. L., Healey, N. C., Ahrends, H. E., Hollister, R. D., Tweedie, C. E., Welker, J. M., Gould, W. A., & Oberbauer, S. F. (2017). Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats. Remote Sensing, 9(12), 1338. https://doi.org/10.3390/rs9121338