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Abstract: Speed and accuracy are important factors when dealing with time-constraint events for
disaster, risk, and crisis-management support. Object-based image analysis can be a time consuming
task in extracting information from large images because most of the segmentation algorithms use
the pixel-grid for the initial object representation. It would be more natural and efficient to work
with perceptually meaningful entities that are derived from pixels using a low-level grouping process
(superpixels). Firstly, we tested a new workflow for image segmentation of remote sensing data,
starting the multiresolution segmentation (MRS, using ESP2 tool) from the superpixel level and aiming
at reducing the amount of time needed to automatically partition relatively large datasets of very high
resolution remote sensing data. Secondly, we examined whether a Random Forest classification based
on an oversegmentation produced by a Simple Linear Iterative Clustering (SLIC) superpixel algorithm
performs similarly with reference to a traditional object-based classification regarding accuracy. Tests
were applied on QuickBird and WorldView-2 data with different extents, scene content complexities,
and number of bands to assess how the computational time and classification accuracy are affected
by these factors. The proposed segmentation approach is compared with the traditional one, starting
the MRS from the pixel level, regarding geometric accuracy of the objects and the computational time.
The computational time was reduced in all cases, the biggest improvement being from 5 h 35 min
to 13 min, for a WorldView-2 scene with eight bands and an extent of 12.2 million pixels, while the
geometric accuracy is kept similar or slightly better. SLIC superpixel-based classification had similar
or better overall accuracy values when compared to MRS-based classification, but the results were
obtained in a fast manner and avoiding the parameterization of the MRS. These two approaches
have the potential to enhance the automation of big remote sensing data analysis and processing,
especially when time is an important constraint.
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1. Introduction

In the last decades, object-based image analysis (OBIA) has emerged as a sub-discipline of
GIScience devoted to analysis and processing of very high resolution (VHR) satellite imagery [1].
OBIA builds on older concepts of image analysis, like image segmentation and classification [2,3].
Image segmentation aims to partition relatively homogeneous image objects, non-overlapped and
spatially adjacent [2]. A ‘perfect’ segmentation should aim to minimize internal variation of image
objects and maximize external difference from neighbors. Many image segmentation algorithms
have been developed [4], but segmentation is still an unresolved problem in OBIA [1,5,6]. This is
due to the fact that segmentation is sensitive to many factors, like image sensor resolution, scene
complexity or number of bands [6]. Object-based classification of VHR images represents a viable
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alternative to the traditional pixel-based approach [7], minimizing the intra-class spectral variation
using objects [8]. Numerous studies have addressed comparative analysis between pixel-based and
object-based classification [8–13]. Besides many advantages [8], the main drawback of object-based
classification is the dependency of the final accuracy on the quality of the segmentation results.
Therefore, achieving a desirable degree of accuracy for segmentation and/or classification using
objects require a large amount of time and parameterization of algorithms.

Many existing segmentation algorithms in OBIA, including the popular multiresolution
segmentation (MRS) [14], use the pixel-grid as the underlying representation. Pixels are the atomic
units of a raster, but they are not natural entities and, therefore, are unlikely to match the content of the
space represented [15]. It would be more natural and efficient to work with perceptually meaningful
entities that are derived from pixels using a low-level grouping process [16]. Therefore, we can partition
an image into superpixels, which are the result of perceptual grouping of pixels based on similar
characteristics (e.g., color) [16]. The term superpixels was first introduced by Ren and Malik [17],
when they used them as a preprocessing stage to organize an image into superpixels through
oversegmentation, thus simplifying the computation in later stages. Using superpixels instead of
pixels in the segmentation process has certain advantages: (1) superpixels carry more information
than pixels and adhere better to the natural image boundaries [16,18]; (2) superpixels have the scale
between the pixel level and the object level [19,20]; (3) they are of low computational complexity and
can speed-up the subsequent image processing [17–19] and (4) superpixels reduce the susceptibility to
noise and outliers, capturing image redundancy [21].

In computer vision, using superpixels or perceptually meaningful atomic regions [19] to speed
up later-stage visual processing is becoming increasingly popular in many applications [16,19,22].
Achanta, et al. [19] broadly categorized the algorithms of generating superpixels as either graph-based
or gradient ascent methods and compared five state-of-the-art methods, in terms of speed, ability
to adhere to image boundaries, and impact on segmentation performance. Graph-based algorithms
generate superpixels by minimizing a cost function defined over the graph. The most known algorithms
of this category are the normalized cuts algorithm [23], efficient graph-based image segmentation [24],
regular superpixel lattice [25], and energy optimization framework [26]. Gradient-ascent-based
algorithms start from a rough initial clustering of pixels and iteratively refine the clusters until some
criterions are met to form the superpixels [19]. This includes mean-shift algorithm [27], quick-shift [28],
watershed approach [29], and turbopixel method [30]. Achanta, et al. [19] proposed a new superpixel
algorithm: Simple Linear Iterative Clustering (SLIC), which is an adaptation of k-means clustering for
superpixel generation, but faster, more memory efficient, adheres well to the boundaries and improves
the performance of segmentation algorithms.

In remote sensing domain, superpixels are used in a diverse range of applications and data types,
like optical imagery [31,32], SAR images [33] or hyperspectral images [34,35]. Guangyun, et al. [20]
used watershed segmentation to produce superpixels and further used them in a superpixel-based
graphical model for remote sensing image mapping. Ortiz Toro, et al. [36] used superpixels to define
the neighborhood similarity of a pixel adapted to the local characteristics of each image, in order
to improve an unsupervised segmentation algorithm for multispectral imagery. Vargas, et al. [37]
developed a new scheme for contextual superpixel description based on the bag-of-visual words.
Garcia-Pedrero, et al. [38] combined edge-based and superpixel processing for automatic generation
of thematic maps for small agricultural parcels. Fourie and Schoepfer [31] introduced a sample
supervised segment generation method which made use of low-level image processing functions (SLIC
superpixels). Stefanski, et al. [39] introduced the Superpixel Contour algorithm in remote sensing
applications, in order to optimize a semi-automatic object-based classification of multitemporal data
using Random Forest.

Nowadays, an increasing number of satellites deliver a huge amount of remote sensing data
that needs to be processed and analyzed, driven by specific purposes. Spatial science is playing an
important role in tackling the big problems of humanity, like climate change, sustainable development,
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mobility, health, as well as safety and security and for this we need to deliver high-quality spatial
information (i.e., timely, complete, reliable, geometrically and thematically accurate) [40]. Speed and
accuracy are important factors when dealing with big remote sensing data or time conditioned events
(e.g., earthquakes, tsunamis, landslides, refugees, tornados, oil spills etc.) for damage, disaster, risk
and crisis-management support [2,41–43]. If a satellite image is increasing in landscape complexity,
number of bands and extent, a high amount of time and computational resources are needed in order
to automatically extract or classify features of interest. To our knowledge, no study has tested the idea
of generating SLIC superpixels a priori of MRS to improve the computational time or to assess the
performance of SLIC superpixels for object-based classification of remote sensing data.

In this study, we followed two research designs: (1) usage of SLIC superpixels in the process of
segmenting VHR satellite images and (2) comparing SLIC superpixel classification with traditional
pixel-based and object-based classifications. In the first scenario, we tested a workflow for image
segmentation of VHR images, starting the MRS from the superpixel level and aiming at reducing the
amount of time and computational resources needed to partition a relatively large datasets of VHR
remote sensing data. This approach is compared with the traditional one, starting the MRS from the
pixel level, regarding the geometric accuracy of the objects and the computational time. In the second
scenario, we compared the classification accuracy of different SLIC superpixel sizes with pixel-based
and object-based classifications. The main goal was to evaluate whether an oversegmentation obtained
through SLIC superpixels is sufficient enough for a Random Forest classifier in order to obtain a
classification accuracy similar to conventional object-based classification.

The next section (Section 2) describes the datasets, the theoretical background of the SLIC
superpixels, generation of objects, random forest classifier, and the accuracy measures for segmentation
and classification. Section 3 compares the results in terms of accuracy and computational time. Section 4
drafts the major implications of the results, analyzes the performance and limitations of the study and
states further developments. Section 5 concludes the main findings of our study.

2. Materials and Methods

2.1. Datasets

Tests were conducted on very high resolution remote sensing data, differing in spatial resolution,
number of bands, extent, and landscape (Table 1, Figure 1). Test area T1 covers a dense residential and
services area, being located in the area of the main train station in Salzburg, Austria. The T2 test area
covers the southern part of the city of Salzburg, being comprised of dense clustered residential and
commercial buildings with large green spaces in between. Test area T3 represents a sensitive riparian
habitat with forests, agricultural fields, and water bodies, situated at the border between Austria and
Germany, in the northern part of the city of Salzburg [44].

The spatial resolution ranges from 0.5 m (T3) to 0.6 m (T1 and T2), respectively, as well as the
number of bands, between four (T1 and T2) and eight (T3) (Table 1). We have used test areas with
different characteristics to assess how the computational time for segmentation is influenced by these
factors and how the classification accuracy performs under different segmentations of these areas.
T1, T2, and T3 were used in the case of segmentation scenarios, while only T2 and T3 were used in
the classification tests, due to their larger extent and contrasting landscapes: urban area (T2) and
semi-natural landscape (T3) (Figure 1).

Table 1. Summary and characteristics of the three test areas.

Test Imagery Spatial
Resolution (m)

Number of
Bands

Extent
(pixels)

Length ×
Width (pixels) Location

T1 QuickBird 0.6 4 4,016,016 1347 × 1042 City of Salzburg, Austria
T2 QuickBird 0.6 4 12,320,100 4004 × 3171 City of Salzburg, Austria
T3 WorldView-2 0.5 8 12,217,001 3701 × 3301 10 km north of city of Salzburg
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Figure 1. The three test areas under investigation (T1 to T3), as detailed in Table 1. 
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Figure 1. The three test areas under investigation (T1 to T3), as detailed in Table 1.

2.2. Simple Linear Iterative Clustering (SLIC) Superpixels

Various algorithms to compute superpixels exist, each with individual strengths and
weaknesses [16]. In this study, we used Simple Linear Iterative Clustering (SLIC) [19,45] which has
been proven to outperform other state-of-the-art superpixel methods [19,46], because of its simplicity,
adherence to boundaries, computational speed, and memory efficiency [19]. SLIC has only one
parameter, k, which is the desired number of equally sized superpixels to be generated. An optional
parameter m can be set up, which controls the compactness of the superpixels [19]. The algorithm
starts by generating k initial cluster centers on a regular grid spaced S pixels apart. To avoid placing the
seed on an edge or a noisy pixel, cluster centers are perturbed in a 3 × 3 neighborhood to the lowest
gradient position. An iterative procedure starts by assigning each pixel to the nearest cluster center
using a distance measure D (Equation (1)), which combines distance of color proximity (Equation (2))
and distance of spatial proximity (Equation (3)):
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where dc and ds represent the color and spatial distance between pixels I
(
xi, yi, sp

)
and I

(
xj, yj, sp

)
in the spectral band sp, B represents the set of spectral bands used, S is the sampling interval of the
clusters centroids, and m controls the compactness of superpixels [36]. The color distance controls
superpixels homogeneity, while the spatial distance forces superpixel compactness [36].

SLIC is an adapted k-means clustering, but what makes it fast and computationally efficient is that
SLIC does not compare each pixel with all pixels in the scene. For a region of approximate size S × S,
the distance D is computed in a region 2S × 2S around the superpixel center, reducing the number of
D calculations. After each pixel is assigned to the nearest cluster center, the new cluster centers are
updated for the newly generated superpixels, representing the mean vector of all the pixels belonging
to the superpixel. A residual error E is computed, as the distance between previous center locations
and recomputed center locations. The iterative procedure stops when the error converges or when it
reaches the threshold of input iterations. Achanta, et al. [19] found out that 10 iterations are sufficient
for most images and, therefore, we used this value for SLIC superpixel generation. In the end, a post
processing step enforces connectivity by reassigning disjoint pixels to nearby superpixels [19].

The same authors proposed a parameter-free SLIC version (SLICO), which generates regular
shaped superpixels across the scene, regardless of textured or non-textured regions in the image.
On the contrary, SLIC is sensitive to texture, generating smooth regular-sized superpixels in
non-textured regions and highly irregular superpixels in textured regions [19].

For generating superpixels, we used a freely available GDAL implementation (GDAL-segment),
available on https://github.com/cbalint13/gdal-segment. The tool needs the following parameters:
input raster image, output shapefile of superpixel polygons, the algorithm of generating superpixels,
the number of iterations (the default is 10) and the size of the superpixels to be generated (the default
is 10).

For segmentation tests, superpixels were generated using SLIC and SLICO algorithms [19] with
an initial size of 10 × 10 pixels. We used this value after trial-and-error, in order to avoid an extreme
oversegmentation (and thus going back to the pixel level) or too large superpixels (which contain
more than one class). No multiple generations of SLIC superpixels with the same size were needed
to test the stability of the method, since the algorithm gives the same delineation of superpixels each
time. For classification tests, we used the same SLIC and SLICO algorithms for generating four sizes
of superpixels: 5 × 5, 10 × 10, 15 × 15, and 20 × 20 pixels, in order to evaluate the sensitivity of
classification accuracy to the size of the superpixels.

2.3. Multiresolution Segmentation: Pixels vs. Superpixels

A common algorithm in OBIA for segmenting an image into image objects is multiresolution
segmentation (MRS) [14]. It starts from pixel level and successively aggregates them into objects of
different shapes, sizes, and characteristics, until it reaches a threshold of homogeneity set by the user.
One of the biggest issues in MRS is the selection of parameters, of which the most important one is the
scale parameter (SP). Advancements were achieved in objectively select the SPs for MRS [6,47,48] and
thus aiming for an automated MRS. Drăgut,, et al. [47] developed Estimation of Scale Parameter tool
(ESP) to detect optimal scales based on a local variance graph, using a single layer. Drăgut,, et al. [6]
extended this approach into an automated tool (ESP2) for multiple layers. The ESP2 tool is a fully
automated methodology for the selection of scale parameters to extract three distinct scales using MRS,
implemented in the eCognition Developer software (Trimble Geospatial).

For reasons of objectivity, we used the ESP2 tool starting from the pixel level, as usual, and starting
from the superpixel level, using a hierarchical bottom-up region merging approach (i.e., starting from
an initial level, the next level is generated based on the previous one) to derive only the finest level of
objects (Level 1 of the hierarchy approach of ESP2) (Figure 2).

https://github.com/cbalint13/gdal-segment
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2.4. Assessment of Segmentation Results

The segmentations results were evaluated by comparing the geometries of resulted objects with
reference objects (Figure 2). We independently manually delineated 50 reference objects for each test
area, representing very prominent features in the image, like houses, small buildings, groups of trees,
singular trees, small agricultural fields, water bodies, and roads. There are a variety of methods to
evaluate the segmentation results [49]. In this study, we used five measures of accuracy: Area fit
index (AFI), Over-segmentation (OS), Under-segmentation (US), Root mean square (D), and Quality
rate (QR), with a minimum percent overlap of 50% (Table 2). In the case of a perfect match between
the geometries of objects, AFI, OS, US, and D would be 0 and QR would be 1. The measures are
implemented into an eCognition tool by Eisank, et al. [50].

Besides geometry comparison, we measured the computational time needed for both approaches.
For the ESP2 starting from pixel level we retained only the time needed to run the tool, while for ESP2
starting from superpixel level, we added to the time ESP2 needs to run the computational time for
generating superpixels.
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Figure 2. Proposed workflow to partition a scene into objects starting from pixels and superpixel level,
respectively, by applying Estimation of Scale Parameter 2 (ESP2) [6], an automated parameterization
tool for multiresolution segmentation (MRS) [14]. The computational time is retained for both cases.
Resulted objects were geometrically compared with the reference objects and segmentation accuracy
measures were derived. For the classification scenarios, the final accuracies were compared between
pixel-based, object-based and superpixel-based classification.

Table 2. Overview of the selected segmentation accuracy measures (C indicates the total area of
evaluated objects; R indicates the total area of reference objects).

Measure Equation Domain Ideal Value Authors

Over-segmentation OS = 1− C ∩ R
R [0, 1] 0 Clinton, et al. [51]

Under-segmentation US = 1− C ∩ R
C [0, 1] 0 Clinton, et al. [51]

Area fit index AFI = R − C
R

oversegmentation: AFI > 0
undersegmentation: AFI < 0 0 Lucieer and Stein [52]

Root mean square D =
√

OS2+US2
2

[0, 1] 0 Clinton, et al. [51]

Quality rate QR = 1− C ∩ R
C ∪ R [0, 1] 1 Winter [53]

2.5. Training and Validation Samples

For both test areas used in the classification process, T2 and T3, five classes of interest were
identified: build-up area, woodland, grassland, bareland, and water for T2 and woodland, grassland,
bareland, lake, and river for T3 (Table 3). In order to create training and validation samples,
a number of 2000 points was randomly generated for both test areas. Out of them, 1078 samples
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for T2 and 1225 samples for T3 were visually labeled into one of the five classes, following the class
representativeness across the scenes (Figure 3). Furthermore, we split the datasets into 50% training
samples and 50% validation samples, resulting in 540 training samples and 538 validation samples for
T2 and 614 training samples and 611 validation samples for T3 (Table 3). For the superpixel-based and
object-based classification, the training samples were represented by the superpixels/objects which
had at least one training point sample inside its borders. The validation was done based on points.

Table 3. Training and validation samples for T2 and T3 test areas.

T2—QuickBird T3—WorldView-2

Training Validation Training Validation

Build-up area 199 199 Woodland 297 296
Woodland 107 107 Grassland 121 120
Grassland 174 173 Bareland 44 44
Bareland 30 29 Lake 59 58

Water 30 30 River 93 93
Total 540 538 Total 614 611
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2.6. Random Forest Classification

Random forest (RF) classifier, an ensemble of classification trees [54], was used in order to classify
the T2 and T3 scenes. A detailed overview of the RF is given in [54], while details about recent
developments of RF in remote sensing can be found in [55]. Briefly, RF builds a set of trees that are
created by selecting a subset of training samples through a bagging approach, while the remaining
samples are used for an internal cross-validation to estimate how well the RF model performs [55].
The final membership class is represented by the one with the maximum votes from the user-defined



Remote Sens. 2017, 9, 243 8 of 19

number of trees (Ntree) used to grow the forest. In most of the studies reported in [55], Ntree value of
500 proved sufficient in order to stabilize the errors before reaching this number of classification trees.

Table 4. Overview of object attributes used in random forest (RF), as exported from the eCognition
Developer [56].

Type Variable Definition [56]

Spectral

Mean band x The mean layer x intensity value of an object/pixel
Standard deviation band x The standard deviation of an object/pixel in band x
Brightness The mean value of all the layers used for RF
NDVI Normalized Difference Vegetation Index

Texture
GLCM standard deviation

Gray level co-occurrence matrix (GLCM) [57]GLCM homogeneity
GLCM correlation

Shape
Border index The ration between the border lengths of the object

and the smallest enclosing rectangle

Compactness The product of the length and width, divided by
the number of pixels

Area The area (in pixels) of an object

The “randomForest” R package was used [58,59], with the default value for Ntree of 500 and
using spectral, shape and texture attributes, as detailed in Table 4. In the case of superpixel-based
and object-based RF classifications, a number of 16 object attributes was used in the case of QuickBird
image (4 bands) and 24 object attributes for WorldView-2 image (8 bands). For the pixel-based
RF classification, only the spectral attributes were used (10 for QuickBird and 18 for WorldView-2,
respectively), since no shape or texture information is enclosed inside a single pixel.

2.7. Classification Accuracy Evaluation

The error matrix was used in order to extract indicators to summarize specific information
about classification performance [60,61]. Overall accuracy (OA) represents the ratio between the
total correctly classified pixels and the total pixels in the error matrix [61]. Producer’s accuracy (PA)
indicates the probability that a pixel in the reference classification have the same class in the classified
image, while the User’s accuracy (UA) represents the probability that a pixel in the classified image
represents the same class in the reference classification [60,61]. The two measures are obtained by
dividing the total correct by the row total (UA) or by the column total (PA) [61]. Kappa coefficient [62]
indicates that the results presented in the error matrix are significantly better than random results,
based on the difference between the actual agreement in the error matrix and the chance agreement
which is indicated by the total, specific of rows and columns [61,63].

3. Results

3.1. SLIC and SLICO Superpixel Generation

All tests were conducted on a computer station with Intel Core i5-4590 CPU (3.30 GHz) processor
with 8 GB RAM, using a 64-bit Windows 7 operating system.

Generating SLIC and SLICO superpixels is a very fast and memory efficient procedure. In the case
of SLIC superpixels of initial size of 10 × 10 pixels, the scored runtime was 2 s for T1, 18 s for T2, and
26 s for T3, while for SLICO was 3 s for T1, 34 s for T2, and 37 s for T3. Computing SLICO superpixels
is a slightly slower procedure because SLICO generates regular shaped superpixels across the scene,
thus having supplementary computational constraints (i.e., compactness) (Figure 4). Test areas T2
and T3 have similar extents but different number of bands (4 and 8, respectively) which influence the
runtime in favor of the former. However, because T3 is of lower landscape complexity than T2, the
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runtime difference is not very big in the case of SLIC superpixels (8 s) and almost negligible for SLICO
superpixels (3 s).

To evaluate how the computational speed increases with the increasing number of pixels, we
derived SLIC superpixels for a 4-band QuickBird scene with extents ranging from 1 to 10 million pixels,
with an increment of 1 million (Figure 5). From the resulted runtime, which ranged between 2 s and
16 s, we can conclude that for a 4-band VHR satellite image, with each layer of one million pixels,
the SLIC algorithm needs approx. 2 s to extract superpixels (i.e., for a 30 million pixels QuickBird
scene it will need approx. 1 min to generate SLIC superpixels).
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3.2. Multiresolution Segmentation: Pixels vs. Superpixel Results

The complexity of the three test areas was reduced by a few orders of magnitude, from 1.4 mil
pixels to 12.835 SLIC superpixels for T1, from 12.7 mil pixels to 123.153 SLIC superpixels for T2 and
from 12.2 mil pixels to 131.415 SLIC superpixels for T3, respectively (Table 5). Due to this fact, SLIC and
SLICO superpixels make a big difference in any subsequent processing regarding the computational
time. The larger the scene and the bigger the number of bands, the bigger the time needed for ESP2 to
run starting from a pixel-grid (from 1 min 29 s to 5 h 35 min 24 s) (Table 5). Runtime of ESP2 starting
from SLIC superpixels is higher than that of ESP2 starting from SLICO superpixels, the difference
ranging between 3 s for T1 and 3 min 13 s for T2. This is explained by the fact that the scale parameter
detected for the latter case is smaller and therefore the processing of ESP2 stops earlier. This is justified
by the fact that SLICO superpixels have compactness constraints to follow a regular lattice and, as a
consequence, they can omit meaningful image boundaries, increasing the internal heterogeneity of the
superpixels. SLIC superpixels reduced the runtime by a magnitude of 229% for T1, 1146% for T2 and
2476% for T3, respectively.

Table 5. Segmentation accuracy and computational time for the three test areas (T1 to T3) for
multiresolution segmentation (MRS) using pixels, Simple Linear Iterative Clustering (SLIC), and
SLICO superpixels, respectively. The number of initial pixels/superpixels, scale parameter (SP) and
the final number of objects after applying ESP2 is depicted in the table. The segmentation accuracy
measures used are Area fit index (AFI), Over-segmentation (OS), Under-Segmentation (US), Root mean
square (D) and Quality rate (QR).

Test

Segmentation Results Segmentation Accuracy Metrics

Time
Number SP Number of

Objects AFI OS US D QR

T1 Pixels 1,403,574 69 3,109 0.499 0.560 0.121 0.405 0.414 1 min 29 s
SLIC 13,835 81 2,017 0.388 0.463 0.122 0.338 0.499 27 s

SLICO 13,906 61 2,757 0.447 0.515 0.122 0.374 0.454 24 s

T2 Pixels 12,696,684 172 4,670 0.174 0.229 0.067 0.169 0.729 2 h 42 min 40 s
SLIC 123,153 173 4,204 0.088 0.161 0.079 0.127 0.782 13 min 02 s

SLICO 125,842 148 5,354 0.335 0.386 0.075 0.278 0.584 9 min 49 s

T3 Pixels 12,217,001 220 1,632 0.100 0.148 0.052 0.111 0.813 5 h 35 min 24 s
SLIC 131,415 212 1,702 0.062 0.124 0.066 0.099 0.823 13 min 03 s

SLICO 121,525 172 2,338 0.223 0.275 0.066 0.200 0.688 10 min 46 s

The scale parameters for pixel-grid and SLIC superpixels are similar. The most evident case is for
T3 (220 and 212, respectively), where approximately the same number of objects was extracted in the
end (1632 and 1702, respectively).

Compared with the other two approaches, SLIC superpixels had better values for AFI, OS, D,
and QR, and slightly worse values for US than the pixel approach (the difference range from 0.001 for
T1 and 0.014 for T3) (Table 5) (Figure 6). In the latter case, this can be considered a negligible difference
when aiming to reduce the runtime. Compared to the pixel approach, SLIC had better values of QR
for T1 (0.499 compared to 0.414), for T2 (0.782 compared to 0.729), and for T3 (0.823 compared to
0.813). The oversegmentation of the scene using SLICO superpixels negatively impacts the accuracy
measures and, therefore, they are better than the pixel approach only in the case of T1 (QR of 0.454
compared to 0.414), where the number of objects is slightly smaller. In test area T1, even if there is a
big difference in the number of objects extracted between pixel approach and SLIC superpixels (3109
and 2017, respectively), the US has the same value, while OS decreases by 0.1. This means that SLIC
superpixels are better at adhering to the boundaries and, therefore, creating more meaningful objects
than those generated by starting from a pixel-grid.
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3.3. Pixel-Based, Superpixel-Based and MRS-Based RF Classification Results

Ten variations of classifications were compared for both test areas: one pixel-based classification
and nine object-based classifications (one case with objects derived from automated MRS
starting from pixel level and eight cases represented by four different sizes of SLIC and SLICO
superpixels, respectively).

In the case of T2 area, all the classifications kept the general pattern of class distributions within
the image (Figure 7). However, a quantitative analysis reveals differences between approaches.
Pixel-based classification has the lowest OA (91.45%) and this is due to the confusion between bareland
and build-up areas, giving the lowest values of PA for build-up areas (91.46%) and lowest UA for
bareland class (56.62%). Also, the pixel-based approach has difficulties in distinguishing woodland
from grassland, having the lowest PA for woodland (85.98%) and the lowest UA for grassland (91.62%)
(Figure 8). Unexpectedly, classified objects resulted from MRS (OA of 96.09%) and SLIC and SLICO
superpixels have the classification accuracy comparable (OA between 95.17% and 97.21%) (Table 6).
Even more, all the four sizes of SLIC superpixels and two SLICO superpixels (5 × 5 and 15 × 15)
outperformed the MRS-based classification regarding the OA values. The highest OA was achieved by
SLIC 20 × 20 RF classification, of 97.21%.

In the case of T3 area, the results follow the same trend as in the T2 area, meaning that the spatial
structure of class distributions is clearly visible in all classification scenarios (Figure 9). Being a less
heterogeneous scene, comprising natural elements, the OA values are higher than in T2 classification
evaluation: more than 99% for MRS-based classification and all eight variations of superpixel-based
classification. The highest OA was achieved by SLIC 15× 15 superpixels (99.84%), while the MRS-based
classification reached a value of 99.51% for OA (Table 6). In the case of pixel-based RF classification,
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lowest OA (90.51%) is due to the confusions between woodland and grassland, which gives the lowest
PA for woodland (81.08%) and lowest UA for grassland (67.82%) (Figure 10).
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Table 6. Overall accuracy (OA) and Kappa index for T2 and T3 RF classifications, using all ten
approaches tested in this study.

T2-QuickBird T3-WorldView-2

OA (%) Kappa OA (%) Kappa

Pixels 91.45 0.881 90.51 0.867
MRS 96.09 0.945 99.51 0.993

SLIC 5 × 5 96.84 0.956 99.02 0.956
SLIC 10 × 10 96.47 0.951 99.18 0.988
SLIC 15 × 15 96.65 0.953 99.84 0.998
SLIC 20 × 20 97.21 0.961 99.18 0.998
SLICO 5 × 5 97.03 0.958 99.51 0.988

SLICO 10 × 10 95.72 0.940 99.51 0.993
SLICO 15 × 15 96.28 0.948 99.35 0.991
SLICO 20 × 20 95.17 0.932 99.67 0.995

4. Discussion

The novelty of this study consists in using SLIC superpixels to decompose the complexity of VHR
remote sensing data into perceptually meaningful building blocks to: (1) significantly decrease the
time needed for automated MRS and (2) create fast and accurate thematic maps of classes of interest.

In the case of superpixel-based MRS segmentation, the computational time decreased from a
couple of hours to a few minutes, while maintaining or improving the geometric accuracy of extracted
objects. Several consequences emerge from this, such as increasing the maximum extents for running
ESP2 Supplementary tests (not shown here) proved that for scenes of tens of millions of pixels ESP2
is successfully fast when starting from SLIC superpixels, while in the case of starting from pixels it
crashes due to the immense amount of resources needed to compute the statistics at the pixel-level.
An unexpected finding is related to the fact that the geometric accuracy of our proposed workflow
is at least similar or slightly better than MRS starting from pixel-level. This is directly linked to
how the two segmentation algorithms, SLIC and MRS, perform the initial grouping of pixels, with a
better adherence to image objects boundaries in the case of the former. This fact needs to be further
investigated in our future studies.

Comparing pixel-based, object-based and superpixel-based classification revealed the fact that
we can achieve a similar or even better classification accuracy using superpixels instead of objects
resulting from automated MRS. Gao, et al. [64] underlined that the best classification accuracy can
be obtained by using an optimal segmentation, avoiding over- or under-segmentation of the image.
However, Belgiu and Drǎguţ [65] found that classification accuracy is significantly less dependent
on the segmentation results and as long as under-segmentation remains at acceptable levels, we
can still achieve a high classification accuracy. In our case, although we used four different sizes
of superpixels (5 × 5, 10 × 10, 15 × 15 and 20 × 20, respectively), we achieved very similar OA,
between 95.15% and 97.21% for T2 and between 99.02% and 99.84% for T3. Therefore, even with these
over-segmentations generated by SLIC and SLICO algorithms we can achieve similar results to the
object-based classification, with objects obtained by applying a time-consuming automated MRS.

The object variables with the highest importance in RF classification were the spectral features,
while the texture and shape features shared the least importance roles in the classification process.
In the case of superpixels, the shape features play an insignificant role because most of the superpixels
have similar sizes and shapes.

We used SLIC and SLICO superpixels because they were shown to outperform other
state-of-the-art superpixel algorithms [19,46]. In our study, applying MRS on SLIC superpixels proved
to be the most efficient in terms of geometric accuracy of the final objects. Even if SLICO superpixels
gave better geometric accuracy results than the pixel-approach only in the case of T1, we included
them because SLICO can be a valid option in studies were a more regular lattice is needed, where
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the complexity of the scene is lower or when the features of interest are widely larger than the size of
SLICO superpixels. Another notable advantage is that most used superpixel algorithms are available
in open source implementations.

Besides many advantages, the drawbacks of using superpixels are (1) the choice of the superpixel
algorithm and its parameters, (2) choosing between a lattice or non-lattice arrangement of the
superpixels, and maybe the most important one, (3) the risk of losing meaningful image boundaries
by placing them inside a superpixel [16], if the superpixel size is larger than the size of objects of
interest. The size of the superpixels needs to be carefully chosen, so as not to worsen the computational
efficiency (by generating too small superpixels) or to contain more than one class inside a superpixel
(by having too coarse superpixels). Usage of smaller superpixels can increase the geometric accuracy of
the objects, but it will influence the computational time, while larger superpixels would omit important
boundaries and increase internal heterogeneity of the objects (Figure 11). After testing different sizes
of the SLIC and SLICO superpixels in MRS, we suggest that using an initial size of the superpixel of
10 × 10 is a good compromise to enable the advantages of using superpixels, both in terms of accuracy
of the final results and computational runtime of ESP2. Another minor drawback of using SLIC and
SLICO superpixels in MRS or for a thematic classification is that we introduce further parameterization
in the process, but the only parameter one has to set is the desired size of the generated superpixels,
that means how finer or coarser the generated superpixels should be.
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10 × 10 pixels and 15 × 15 pixels in the lower right.

Using VHR images with different characteristics gave us an overview of their effects in generating
superpixels. For the same size of desired superpixels, the larger the extent of the scene and the higher
the number of layers, the higher the computational time. However, the most important influence over
the runtime is the extent of the generated superpixels: smaller superpixels will require longer time
than larger superpixels. Also, a higher number of iterations in the clustering process will increase the
runtime. As we already mention, 10 iterations were found to be sufficient for most of the images [19].
A higher number of iterations can lead to a better adherence of the superpixels to the boundaries, but
it will affect the time needed for generating them.

Superpixels are used in many computer vision applications, like object recognition [66],
image segmentation [67], depth estimation [68] and object localization [69] as well as biomedical
applications [70]. In remote sensing, superpixels can help in overcoming the current limitations
regarding the computational time and memory efficiency of studies dealing with image segmentation
or thematic classifications of large remote sensing data. Furthermore, superpixels have already
been extended and applied for the analysis of 3D scene structure [71]. The 3D version of
superpixels—supervoxels—has shown robustness and computational speed when having to face
billions of voxels from 3D electron microscope image stacks [70]. Transferring this into the spatial
domain, superpixels and supervoxels are worth testing in 3D analysis, such as geological modelling,
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environment modelling or applications dealing with terrestrial or airborne laser scanning data, just
to name a few. Superpixels also receive high attention and are of paramount importance in video
processing applications [72] and since we now capture HD videos from satellites and unmanned aerial
vehicle (UAV), we can aim at live processing of these satellite remote sensing videos for different
purposes. Thus, we can further expand the capabilities of remote sensing applications to explain and
to solve current problems of humankind.

5. Conclusions

In this paper, we showed how to efficiently partition an image into objects by using SLIC
superpixels as the starting point for MRS and how the SLIC superpixels could be used for fast and
accurate thematic mapping. From the segmentation point of view, when compared to the traditional
approach (starting from pixel-grid), our approach outperformed both in terms of geometric accuracy
of the extracted objects and computational time. From the classification point of view, SLIC superpixels
successfully replaced the objects obtained from MRS in a RF classification, achieving similar or better
overall accuracy of the final thematic maps. These two approaches have the potential to enhance the
automation of big remote sensing data analysis, processing, and labelling, especially when time is an
important constraint.
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