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Abstract: The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to
obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface.
The surface reflectance is an important parameter for the estimation of other remote sensing
parameters linked to the eco-environment, atmosphere environment and energy balance. One
of the key issues to achieve atmospheric corrected surface reflectance is to precisely retrieve the
aerosol optical properties, especially Aerosol Optical Depth (AOD). The retrieval of AOD and
corresponding atmospheric correction procedure normally use the full radiative transfer calculation
or Look-Up-Table (LUT) methods, which is very time-consuming. In this paper, a Simplified
AtmospHeric correction AlgoRithm for gAofen data (SAHARA) is presented for the retrieval of AOD
and corresponding atmospheric correction procedure. This paper is the first part of the algorithm,
which describes the aerosol retrieval algorithm. In order to achieve high-accuracy analytical form for
both LUT and surface parameterization, the MODIS Dark-Target (DT) aerosol types and Deep Blue
(DB) similar surface parameterization have been proposed for GF4 data. Limited Gaofen observations
(i.e., all that were available) have been tested and validated. The retrieval results agree quite well with
MODIS Collection 6.0 aerosol product, with a correlation coefficient of R2 = 0.72. The comparison
between GF4 derived AOD and Aerosol Robotic Network (AERONET) observations has a correlation
coefficient of R2 = 0.86. The algorithm, after comprehensive validation, can be used as an operational
running algorithm for creating aerosol product from the Chinese GF4 satellite.
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1. Introduction

The retrieval of aerosol optical properties is a difficult task due to the coupling of surface and
aerosol information observed by the satellite Top of Atmosphere (TOA) reflectance. Currently, the
determination of aerosol types, including size distribution, refractive index, and aerosol profile,
complicates the problem, especially for the aerosol types with strong absorption properties [1,2].
The cloud twilight zone effect [3] is also a challenging task in order to obtain accurate aerosol
properties [4]. An aerosol retrieval algorithm is instrument-dependent, especially for the estimation of
surface properties. Currently, the majority of aerosol retrieval algorithms like Moderate Resolution
Imaging Spectroradiometer (MODIS) Dark-Target (DT), MODIS Deep Blue (DB) are implemented
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utilizing the Look-Up-Table (LUT) approach [5,6]. The LUT method speeds up the retrieval procedure
compared to full radiative transfer calculations. However, accurate analytical/empirical equations
provide a unique ability to undertake fast aerosol retrievals, which are especially useful for high-spatial
resolution aerosol retrievals [7,8].

Several attempts have been proposed in past decades for fast aerosol retrievals with analytical
equations. The MultiAngle Implementation of Atmospheric Correction (MAIAC) algorithm is a
semi-analytical algorithm using Green function by utilizing the analytical calculation of the surface
bidirectional reflectance factor (BRF), which is proven to be an effective way for the operational aerosol
algorithm [9]. Katsev et al. [10] and Seidel et al. [11] used analytical solutions of radiative transfer theory
to speed up the AOD retrievals, and the retrievals using MEdium Resolution Imaging Spectrometer
(MERIS) instrument show very promising results. Another way is to utilize the Kaufman et al. [12]
equation which was firstly proposed by Chandrasekhar [13] and tries to parameterize different terms
in the radiative transfer equation, including atmosphere path reflectance, transmittance and spherical
albedo. The newly development of Simplified high resolution MODIS Aerosol Retrieval Algorithm
(SARA) [7] utilized the parameterization with the aerosol properties derived from a local urban Aerosol
Robotic Network (AERONET) station and the surface reflectance from MOD09GA level-2 daily surface
reflectance product. The algorithm has been validated and can be further used for the high spatial
resolution AOD retrieval with enough local a-priori information.

Besides the parameterization of the radiative transfer process, another essential issue is how
to describe different aerosol physical/chemical properties, which is directly linked to the aerosol
type in aerosol remote sensing. The accuracy of aerosol type selection has significant influence
in atmospheric correction and surface reflectance retrieval. Previous studies show that different
aerosol model assumptions may cause approximately 10% differences in the estimated spectral
surface reflectance [1,2]. A popular method is to derive regional-representative aerosol information
using local in-situ measurements like AERONET. From the global scale, the main aerosol types
include biomass burning aerosol over Amazon and South Africa, urban/industry aerosol types over
North Africa, Europe and Eastern Asia, dust aerosol types over Africa and maritime aerosol over
ocean regions [14–16]. The investigation shows that single scattering albedo is a key parameter to
describe the positive/negative radiative forcing of atmospheric aerosol while asymmetry factor and
AOD shows the magnitude of these effects [16,17]. Thus, we can try to parameterize the aerosol
micro-physical properties using those key parameters, and further establish functions to describe
the properties of particle size distribution, shape and components [17–19]. The selection of optimal
aerosol properties which provide good accuracy and high-speed, is another important issue for fast
and accurate aerosol retrieval [20]. The MODIS DT algorithm provides the seasonal/geo-location
dependent aerosol type information [5]. One of the advantages is that this treatment tries to link all
aerosol physical/chemical information to the main retrieval parameter, AOD, and avoid introducing
new un-known parameters. Radiative calculations (atmosphere path reflectance, transmittance and
spherical albedo) for three pre-defined MODIS aerosol types can be further parameterized for the fast
and accurate aerosol retrieval.

Most satellite aerosol products have a spatial resolution of 10 km, which was initially designed
for climate applications [5]. However, as the applications like small-scale aerosol events observations
using aerosol products have been highlighted in recent years, providing aerosol products with higher
spatial resolution becomes a very important issue [21]. The standard aerosol product like MODIS
DT provides an operational aerosol product with a spatial resolution of 3 km besides the standard
10 km product in MODIS Collection 6.0 (C6) [21,22]. The MAIAC algorithm provides AOD product
at a spatial resolution of 1 km [9]. Many other studies also focus on obtaining even higher spatial
resolution AOD data product (with spatial resolution higher than 1 km). Zhang et al. [23] presented
an aerosol retrieval algorithm for Geostationary Ocean Color Imager (GOCI) instrument with spatial
resolution of 500 meter based on the assumption that change of AOD is the main factor for change
of satellite-observed TOA compared to surface reflectance within a short period. Li et al. [24] used a
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synergetic method by combing Chinese Huanjing-1 (HJ-1) CCD and MODIS data to retrieve AOD with
spatial resolution of 100 meter. Zhang et al. [25] utilized the pre-defined relationship between surface
reflectance at 0.47 µm and TOA Reflectance of 1.6 µm channels of HJ-1 data to obtain high-resolution
AOD (100 meter). Vermote et al. [26] proposed a “ratio map” method to retrieve AOD with spatial
resolution of 30 meter for Landsat 8 Operational Land Imager (OLI) instrument. The “ratio map”
is a 5.5 km auxiliary database for the surface reflectance ratio between channel 1/2 and channel 4
of the OLI instrument calculated by MODIS surface reflectance product. Other attempts have been
made to achieve high spatial resolution AOD from Landsat data [27–29] beside the classical method
as mentioned in [26]. Some other recent progress of European aerosol research focusing on AATSR
dual-view aerosol retrieval can be found in the Climate Change Initiative—Aerosol project [30].
The inversion from AERONET for aerosol and surface reflectance inversion were reported in the
AERONET Inversion Products document and can also be found in [31].

Chinese high-resolution earth observing system (CHEOS) has planned a series of high spatial
resolution satellite observations named GaoFen (GF) series. GaoFen-4 (GF4), launched on 29 December
2015, which will be used in this paper, is the first geostationary satellite in the GF series. There have
been limited attempts at the retrieval of aerosol properties using GF series. Wang et al. [32] applied the
modified DB algorithm to GF1 Wide Field of View (WFV) data to retrieve high spatial resolution AOD
over Eastern China. Bao et al. [33] proposed an AOD retrieval algorithm for GF1 data based on the
modified dynamic relationship of the red/blue surface reflectance. To our best knowledge, there has
been no publication related to the retrieval of aerosol properties using GF4 data till now.

In this paper, a Simplified AtmospHeric correction AlgoRithm for Chinese gAofen data (SAHARA)
is presented. The main idea is to propose parameterizations for the radiative transfer equation [12]
based on the MODIS DT aerosol types [5]. A similar idea to DB has been implemented for the
surface parameterization. A statistical relationship between GF4 visible channels (0.47 µm and
0.67 µm) and Rayleigh-corrected TOA reflectance at 0.87 µm for different surface types over China
has been obtained using MODIS surface reflectance data product. Then an iteration procedure using
Levenberg–Marquardt algorithm [34] is used to retrieve the optimal AOD.

The paper has been organized in the following structure. The details of spectral, spatial and
temporal characteristics of GF4 instrument have been listed in Section 2. The surface reflectance and
aerosol type parameterization, aerosol retrieval algorithm are included in Section 3. The retrieval
results and corresponding analysis/validation are in Section 4.

2. GaoFen-4 (GF4) Data

CHEOS intends to construct an independent and advanced earth observation system providing
satellite observations with high spatial, temporal and high spectral resolution [35]. GF4 has six channels
between visible and mid-infrared band listed as Table 1. It has a spatial resolution of 50 meter for
visible channels and 400 meter for infrared channel, with a swath width of 400 km. GF4 satellite is
centered at 105.6◦N and can observe China and the surrounding areas by point control. The high
temporal/spatial resolution enables GF4 to be widely used in resources, environment, agriculture,
disaster prevention and reduction. Table 1 shows the instrument characteristics of GF4. GF4 instrument
has similar bands as MODIS observations. The difference of band width between GF4 and MODIS
can be found. However, the analysis shows very good agreement between TOA reflectance between
GF4 and MODIS for selected wavelengths for SAHARA. The correlations coefficients and slopes for
selected wavelengths used for SAHARA are above 0.9, indicating the possibility to use MODIS product
to derive prior-knowledge for SAHARA.
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Table 1. Instrument characteristics of GaoFen-4 (GF4) camera (provided by China’s center for
resources satellite data and application) and Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument.

GF4 Band
Number

GF4 Band-Width
(µm) Resolution (m) MODIS Band

Number
MODIS

Band-Width (µm) Resolution (m)

1 0.45–0.9 50 m
2 0.45–0.52 50 m 4 0.459–0.479 500 m
3 0.52–0.60 50 m 3 0.545–0.565 500 m
4 0.63–0.69 50 m 1 0.620–0.670 250 m
5 0.76–0.90 50 m 2 0.841–0.876 250 m
6 3.50–4.10 400 m

3. Method

In this section, key steps including surface reflectance and aerosol type parameterization are
discussed in detail. The MODIS DT cloud screening algorithm without cirrus cloud test (1.38 µm
test) has been used with the current retrieval together and a visual-check according to the RGB
images. The surface parameterization is a MODIS DB similar approach [6] while the aerosol types are
parameterized by adapting the MODIS DT algorithm [5].

3.1. Surface Parameterization

Surface parameterization is one of the key issues for aerosol retrieval. In the SAHARA algorithm,
we follow a similar idea to the MODIS DB aerosol retrieval algorithm [6]. Statistical relationships of
surface reflectance between different wavelengths were obtained. To achieve accurate estimation of
the underlying surface reflectance, we performed a detailed statistical analysis for each surface type
according to the MODIS Land cover product (MCD12C1) with spatial resolution of approximately
5 km [36], in which land surface is classified into 16 classes. The land cover map for the region of
(70◦–140◦E, 15◦–55◦N) is depicted in Figure 1. The details of surface reflectance estimation for each
surface type are described below.
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Figure 1. The land cover over China mainland region.

Previous attempts show the possibilities of using MODIS data product for surface
parameterization and atmospheric parameters retrieval for instruments like Landsat (similar to
GF4) [26,37]. One year (2008) cloud-free MODIS C6 TOA reflectance and corresponding MODIS
surface reflectance product (MOD09A1) were collected over the study region as shown in Figure 1.
Previous studies show that certain relationships between the surface reflectance at visible channels (0.67
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and 0.47 µm) and reflectance at near-infrared/ infrared channels (e.g., 0.86, 1.6, 2.1 and 3.75 µm) can
be found for certain surface types depending on instruments [5,6,38–40]. Figure 2 shows an example
of the relationships between the spectral surface reflectance at visible and near-infrared channels for
different surface types over China. According to Figure 2, a linear relationship between the spectral
surface reflectance at the visible and near-infrared channels for most surface types can be found, which
agrees with previous studies listed above. The surface properties are affected by vegetation amount or
greenness [41] illustrated by NDVI’ (defined as Equation (1)). The relationships between visible and
near-infrared channels is also partly determined by NDVI’.

NDVI’ = (RCR0.86 − RCR0.67)/(RCR0.86 + RCR0.67) (1)

where RCR is Rayleigh Corrected TOA Reflectance for given wavelengths.
In order to avoid potential aerosol contamination in the analysis, match-ups with AODs at

0.55 µm were constrained to values smaller than 0.1 (obtained from MODIS C6 aerosol product) and
the scattering angle between 110◦ and 160◦ were used in the statistical analysis [38]. The contribution
of Rayleigh scattering for channel 0.86 µm was removed from the TOA reflectance following
DB algorithm.
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between 0.47 and 0.86 µm (b) during autumn 2008, as a function of surface types from MCD12C1 data.

Figure 3 shows the linear relationships between collocated MODIS surface reflectance in visible
channels and corresponding TOA reflectance data (after removing the Rayleigh scattering contribution)
in 0.86 µm channel over China during autumn 2008. Figure 3 confirms that this relationship is a
function of NDVI’, and the slopes of surface reflectance from 0.86 to 0.67 µm are more sensitive to
the NDVI’ values than the 0.86 to 0.47 µm slopes (clearly decrease of slopes with increase of NDVI
for slope0.67/0.86 compared to slope0.47/0.86). Besides NDVI’, Levy et al. [41] and Wu et al. [42] found
that the relationship for visible and near-infrared also depends on scattering angle. In the statistical
analysis, the surface reflectances at the visible channels were determined by Rayleigh-corrected TOA
reflectances at 0.86 µm (RCR0.86), NDVI’ and scattering angle (Ψ) for each surface type.

Based on the analysis above, we established an approach to estimate the surface reflectance at
visible channels (0.47 µm and 0.67 µm) determined by the Rayleigh-corrected TOA reflectances at the
near-infrared channel (0.86 µm), NDVI’ and scattering angle values using the following formulas:

R0.67 = slope0.67/0.86 × RCR0.86 + yint0.67/0.86 (2)
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slope0.67/0.86 = a0 × NDVI’ + a1×Ψ + a2 (3)

yint0.67/0.86 = b0 × Ψ + b1 (4)

R0.47 = slope0.47/0.86 × RCR0.86 + yint0.47/0.86 (5)

slope0.47/0.86 = c0 × NDVI’ + c1 × Ψ + c2 (6)

yint0.47/0.86 = d0 × Ψ + d1 (7)

where the R0.67 and R0.47 are the estimated reflectance, slope0.67/0.86 and slope0.47/0.86 are the slope of
the regressed relationships of 0.67 vs. 0.86 and 0.47 vs. 0.86, yint0.67/0.86 and yint0.47/0.86 are the offset
of the regression relationships. a0, a1, a2, b0, b1, c0, c1, c2, d0, and d1 are the regression coefficients
determined by least squares fitting to the real surface reflectance.

For each surface type defined in Figure 1, the regression coefficients were derived seasonally for
three NDVI’ groups similar to the MODIS DB algorithm: 0.10 < NDVI’ ≤ 0.20; 0.20 < NDVI’ ≤ 0.50;
0.50 < NDVI’, respectively. The coefficients for each land type and NDVI’ group for four seasons are
displayed in Tables 2–9 for 0.47 and 0.67 µm GF4 bands, respectively. Corresponding surface types of
Land cover values in Tables 2–9 are included in Table A1 (see Appendix A).

Table 2. Surface Reflectance Coefficients for 0.47 µm for March-April-May (MAM).

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 0.456, −2.450, −0.321, 1.730, −0.168 −0.053, −0.743, −0.337, 1.329, 0.020 −0.186, −0.358, −0.747, 1.912, 0.089
2 −0.951, −1.494, −1.250, 3.953, 0.414 0.170, −1.195, 0.563, 0.085, −0.130 0.354, −0.414, 1.063, −1.610, −0.189
3
4
5 −0.099, −1.886, 0.061, 1.358, −0.011 0.026, −0.432, 0.090, 0.181, −0.010 0.060, −0.499, 0.192, 0.065, −0.031
6 0.273, −1.445, 0.423, −0.499, −0.094
7 −0.006, −0.890, −0.072, 0.562, 0.021 0.583, −0.762, 0.684, −1.429, −0.202
8 −0.596, −0.573, −0.793, 3.101, 0.201 0.100, −0.377, 0.281, −0.254, −0.045 −0.010, −0.363, 0.022, 0.319, 0.003
9

10 0.029, −1.089, 0.059, 0.446, −0.013 0.028, −0.575, 0.091, 0.315, −0.017 0.012, −0.271, 0.052, 0.198, −0.007
11
12 −0.115, −1.219, −0.062, 1.208, 0.010 0.006, −0.500, 0.066, 0.308, −0.005 0.005, −0.433, 0.083, 0.236, −0.004
13 −0.046, −2.090, 0.001, 1.282, −0.013 0.113, −1.019, 0.152, 0.429, −0.050
14 −0.128, −1.445, 0.216, 1.163, −0.045 −0.039, −0.592, −0.057, 0.636, 0.012
15
16 −0.015, −2.396, −0.037, 0.806, 0.014 0.080, −1.502, −0.397, 1.542, −0.015

Table 3. Surface Reflectance Coefficients for 0.47 µm for June-July-August (JJA).

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 −0.115, −0.546, −0.211, 1.023, 0.047
2 0.008, −1.519, 0.187, 0.679, −0.002 0.168, −0.678, 0.314, −0.091, −0.076
3
4 0.167, −0.554, 0.522, −0.733, −0.075
5 0.094, −1.448, 0.268, 0.638, −0.067 −0.028, −0.571, −0.024, 0.605, 0.010
6
7 0.201, −1.350, 0.370, −0.433, −0.063
8 0.011, −1.650, 0.202, 1.010, −0.052 −0.124, −0.789, −0.079, 0.963, 0.034
9

10 −0.071, −1.848, −0.123, 1.098, 0.023 −0.039, −0.554, −0.054, 0.651, 0.013 0.021, −0.403, 0.058, 0.251, −0.009
11
12 −0.260, −2.270, −0.232, 1.886, 0.096 0.226, −1.249, 0.444, −0.062, −0.109 −0.189, −0.652, −0.296, 1.338, 0.073
13 −0.104, −1.362, −0.200, 1.471, 0.037
14 −0.563, −1.524, −0.674, 2.946, 0.205 −0.618, −0.703, −0.789, 2.491, 0.262
15
16 0.069, −1.567, 0.133, 0.270, −0.021 −0.009, −0.466, −0.005, 0.403, 0.015

Table 4. Surface Reflectance Coefficients for 0.47 µm for September-October-November (SON).

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 0.362, −2.306, 1.662, −1.471, −0.244 0.009, −0.890, 0.106, 0.424, −0.004 0.001, −0.344, 0.032, 0.287, 0.000
2 −0.095, −1.425, −0.025, 1.187, 0.025 −0.004, −0.365, 0.009, 0.343, 0.002
3
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Table 4. Cont.

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

4 −0.012, −0.439, −0.009, 0.455, 0.005 −0.227, −0.466, −0.573, 1.775, 0.100
5 0.010, −1.577, 0.291, 0.816, −0.066 −0.012, −0.446, 0.007, 0.406, 0.006 −0.011, −0.418, 0.001, 0.402, 0.006
6 −0.041, −0.501, −0.151, 0.795, 0.021
7 0.028, −0.469, 0.051, 0.221, 0.005 −0.061, −0.488, −0.124, 0.679, 0.041
8 −0.134, −2.022, 0.041, 1.201, 0.057 0.020, −1.193, 0.178, 0.609, −0.028 −0.016, −0.404, −0.004, 0.394, 0.008
9
10 0.010, −0.934, −0.017, 0.505, 0.002 −0.008, −0.595, 0.005, 0.470, 0.005 −0.003, −0.368, 0.029, 0.287, 0.003
11 −0.031, −2.031, 0.562, 0.527, −0.030 0.018, −0.993, 0.031, 0.565, −0.011
12 −0.048, −1.480, 0.044, 0.847, 0.003 −0.021, −0.501, −0.013, 0.473, 0.011 −0.029, −0.503, −0.026, 0.529, 0.012
13 −0.046, −1.490, 0.044, 0.891, 0.011 −0.269, −0.580, −0.692, 2.104, 0.122
14 −0.384, −1.422, 0.044, 1.144, 0.153 −0.035, −0.550, −0.031, 0.591, 0.011 −0.010, −0.422, 0.004, 0.380, 0.006
15
16 0.023, −1.344, 0.056, 0.413, 0.003 −0.034, −0.364, −0.046, 0.444, 0.033

Table 5. Surface Reflectance Coefficients for 0.47 µm for December-January-February (DJF).

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 −0.125, −1.788, −0.217, 1.542, 0.045 0.010, −0.959, 0.145, 0.448, −0.010 0.010, −0.365, 0.049, 0.258, −0.004
2 0.068, −0.847, 0.225, 0.237, −0.040 0.008, −0.334, 0.033, 0.265, −0.004
3
4 0.047, −0.550, 0.254, 0.010, −0.027
5 −0.003, −2.118, 0.407, 0.434, −0.026 −0.004, −0.760, 0.077, 0.563, −0.008 −0.009, −0.386, 0.007, 0.349, 0.006
6 −0.015, −0.557, 0.013, 0.438, 0.009
7 0.059, −0.874, 0.114, 0.200, −0.015 −0.040, −0.610, −0.029, 0.427, 0.044
8 −0.104, −1.499, 0.081, 1.068, 0.018 −0.003, −0.619, 0.027, 0.453, 0.000 0.004, −0.382, 0.033, 0.294, −0.001
9
10 0.004, −0.836, 0.090, 0.420, −0.007 −0.014, −0.560, 0.014, 0.471, 0.006 0.018, −0.317, 0.087, 0.132, −0.007
11 −0.061, −2.128, −0.019, 1.184, 0.010 −0.074, −0.696, −0.097, 0.768, 0.036
12 −0.108, −2.426, 0.059, 1.090, 0.025 0.011, −0.609, 0.094, 0.311, −0.006 −0.009, −0.365, 0.015, 0.353, 0.002
13 −0.071, −2.326, −0.018, 1.125, 0.023 −0.037, −0.941, 0.013, 0.694, 0.015 −0.012, −0.432, 0.001, 0.427, 0.005
14 −0.018, −0.572, −0.005, 0.508, 0.007 −0.007, −0.425, 0.003, 0.406, 0.002
15
16 −0.079, −0.365, −0.134, 0.603, 0.063

Table 6. Surface Reflectance Coefficients for 0.67 µm for MAM.

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 0.0036, −1.657, −0.116, 1.353, 0.010 0.027, −1.551, −0.033 1.124, 0.003 0.063, −0.542, 0.196, 0.049, −0.0088
2 −0.159, −3.625, −0.121, 1.765, −0.079 −0.251, −0.69, −0.443, 1.617, 0.129 −0.019, −0.661, −0.127, 0.902, 0.028
3
4 −0.281, −1.230, −0.302, 1.791, 0.113
5 −0.081, −1.512, −0.196, 1.496, 0.044 −0.161, −1.071, −0.336, 1.679, 0.082 −0.066, −0.631, −0.205, 1.033, 0.049
6 0.1435, −4.187, 0.358, 0.624, −0.055
7 0.0289, −1.909, −0.046, 1.294, −0.005 −0.081, −0.788, −0.236, 1.550, 0.035
8 −0.0364, −1.963, −0.151,1.500, 0.027 −0.257, −1.287, −0.467, 2.030, 0.123 −0.123, −0.544, −0.351, 1.215, 0.080
9
10 0.0217, −1.2854, 0.069, 0.934, −0.008 −0.0002, −1.075, −0.0536, 1.136, 0.005 −0.043, −0.708, −0.217, 1.111, 0.038
11
12 −0.0228, −2.366, −0.083, 1.399, 0.020 −0.091, −1.244, −0.234, 1.529, 0.049 −0.080, −0.662, −0.218, 1.151, 0.046
13 −0.124, −0.240, −0.329, 1.571, 0.067 −0.0525, −1.233, −0.216, 1.456, 0.034
14 0.008, −2.698, −0.0189, 1.466, −0.013 −0.172, −0.976, −0.392, 1.793, 0.082 −0.0115, −0.60, −0.119, 0.831, 0.023
15 −0.0645, −1.530, −0.191, 1.563, 0.037 0.051, −1.400, −0.0214, 1.058, −0.006 0.032, −0.520, 0.065, 0.435, −0.002
16 0.020, −1.657, −0.116, 1.353, 0.010 −0.001, −1.349, −0.084, 1.234, 0.0136 0.059, −0.846, −0.041, 0.841, −0.009

Table 7. Surface Reflectance Coefficients for 0.67 µm for JJA.

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 −0.027, −0.378, −0.371, 1.141, 0.037 0.032, −0.553, 0.006, 0.442, 0.007
2 0.061, −1.330, 0.024, 1.023, −0.024 −0.063, −0.545, −0.196, 0.910, 0.050
3
4 −0.242, −0.459, −0.425, 1.405, 0.121
5 0.091, −1.237, 0.061, 0.956, −0.049 −0.051, −0.409, −0.130, 0.644, 0.041
6 0.144, −0.737, 0.254, 0.055, −0.049
7 −0.077, −1.976, −0.189, 1.725, 0.033 −0.029, −1.351, −0.143, 1.362,0.026
8 −0.041, −1.451, −0.151, 1.480,0.013 −0.120, −0.404, −0.268, 0.954, 0.071
9
10 0.0494, −1.524, 0.017, 1.076, −0.013 0.011, −1.344, −0.060, 1.161, 0.008 −0.033, −0.636, −0.131, 0.870, 0.034
11 0.155, −1.337, 0.464, 0.114, −0.075 −0.112, −0.600, −0.067, 0.668, 0.064
12 −0.359, −2.430, −0.441, 2.403, 0.145 0.135, −0.974, 0.230, 0.257, −0.044 −0.013, −0.647, −0.080, 0.734, 0.025
13 0.016, −1.118, −0.070, 1.015, 0.010 −0.056, −0.687, −0.151, 0.952, 0.043
14 0.045, −1.479, 0.009, 1.018, −0.008 −0.096, −0.490, −0.207, 0.865, 0.064
15
16 0.027, −1.585, −0.032, 1.197, −0.002 0.005, −1.434, −0.083, 1.254, 0.011 0.102, −0.859, 0.086, 0.586, −0.028
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Table 8. Surface Reflectance Coefficients for 0.67 µm for SON.

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 0.156, −2.234, 0.369, 0.429, −0.078 0.003, −0.860, −0.115, 0.963, 0.014 0.009, −0.433, −0.182, 0.794, 0.018
2 −0.0622, −1.245, −0.149, 1.378, 0.021 −0.032, −0.419, −0.128, 0.636, 0.040
3
4 −0.098, −0.616, −0.366, 1.450, 0.056 −0.039, −0.654, −0.248, 1.105, 0.038
5 0.005, −1.455, 0.147, 1.089, −0.044 −0.032, −0.770, −0.1545, 0.964, 0.032 0.017, −0.387, −0.064, 0.472, 0.015
6 −0.783, −2.326, −1.77, 5.309, 0.337 −0.028, −0.393, −0.202, 0.988, 0.027 −0.016, −0.901, −0.043, 0.969, 0.023
7 −0.062, −0.483, −0.128, 1.147, 0.039 −0.123, −1.233, −0.315, 1.657, 0.074
8 0.176, −2.467, 0.321, 0.798, 0.111 0.011, −1.164, 0.003, 0.902, 0.001 −0.023, −0.406, −0.123, 0.613, 0.035
9

10 −0.017, −0.990, −0.056, 1.095, 0.016 −0.055, −1.310, −0.188, 1.357, 0.044 −0.016, −0.678, −0.164, 0.963, 0.028
11 −0.039, −2.334, −0.408, 1.666, 0.0467 0.007, −0.968, −0.113, 1.117, 0.005 0.034, −0.778, −0.036, 0.825, −0.009
12 −0.008, −0.926, −0.058, 1.081, −0.002 −0.006, −0.901, −0.071, 0.925, 0.019 −0.018, −0.589, −0.126, 0.785, 0.031
13 −0.069, −1.395, −0.284, 1.565, 0.043 0.000, −1.036, −0.090, 0.948, 0.022 −0.048, −0.526, −0.195, 0.863, 0.050
14 −0.593, −2.030, −0.592, 2.400, 0.309 −0.073, −0.578, −0.237, 1.081, 0.054 −0.012, −0.575, −0.097, 0.707, 0.029
15
16 −0.023, −0.928, −0.100, 1.195, 0.021 −0.045, −1.246, −0.146, 1.301, 0.038

Table 9. Surface Reflectance Coefficients for 0.67 µm for DJF.

Land Cover 0.10 < NDVI’ < 0.20 0.20 ≤ NDVI’ < 0.50 0.5 ≤ NDVI’

1 −0.114, −0.704, −0.167, 1.165, 0.083 −0.091, −1.735, −0.198, 1.412, 0.073 −0.086, −0.486, −0.338, 1.188, 0.057
2 −0.387, −0.532, −1.176, 3.248, 0.180
3 0.080, −2.328, 0.056, 1.233, −0.04
4 −0.074, −1.169, −0.192, 1.238, 0.049 −0.377, −0.622, −1.24, 3.304, 0.188
5 0.118, −1.00, 0.138, 0.779, −0.064 −0.082, −1.513, −0.140, 1.386, 0.050 −0.094, −0.513, −0.264, 0.989, 0.065
6
7 0.084, 0.511, −0.483, 1.49, 0.070 −0.196, −1.523, −0.562, 2.072, 0.125 −0.071, −0.522, −0.234, 0.911, 0.060
8 −0.388, −1.127, −0.479, 1.937, 0.203 −0.018, −2.23, 0.011, 1.037, 0.047 −0.070, −0.390, −0.296, 1.008, 0.050
9

10 −0.011, −0.703, −0.058, 1.071, 0.014 −0.057, −1.501, −0.1256, 1.337, 0.036 −0.033, −0.518, −0.157, 0.780, 0.037
11
12 −0.027, −1.456, −0.111, 1.323, 0.017 −0.036, −1.222, −0.193, 1.254, 0.032 −0.090, −0.446, −0.321, 1.065, 0.061
13
14 0.056, −1.074, 0.348, 0.509, −0.034 −0.021, −1.902, −0.075, 1.311, 0.026 0.186, −0.376, 0.148, 0.005, −0.066
15 −0.078, −3.385, −0.034, 1.416, 0.048 0.043, −1.000, −0.114, 1.096, −0.013 −0.009, −0.465, −0.103, 0.597, 0.027
16 −0.070, −0.736, −0.139, 1.291, .0326 −0.041, −1.349, −0.149, 1.311, 0.030 0.018, −0.544, −0.079, 0.655, 0.009
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Figure 3. MOD09 surface reflectance at 0.67 µm (a) and 0.47 µm (b) as function of Rayleigh-corrected
TOA reflectance at 0.86 µm and NDVI’ for the summer season. Color bar shows the values of the NDVI’
for each point.

The surface reflectances for selected wavelengths are calculated for each valid observation and
subsequently fitted as a function of NDVI’ and scattering angles. This manner allows to capturing
the potential seasonal/annual variability of the surface reflectance, enables one to scale this quantity
down to the spatial resolution of GF4 and uses it in the retrieval of AOD at GF4 pixel level [26]. At the
meantime, the regression has been performed after filtering surface reflectance ‘outliers’ which can
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be caused by the strong inhomogeneity inside the 5 km land cover resolution. However, the spatial
resolution problem still brings larger impact on surface types like urban, where surface variability
is large.

Figure 4 shows comparisons of the estimated surface reflectance at 0.67 (a–d) and 0.47 µm
(e–h) with the surface reflectance from MOD09A1 data for four seasons: spring (March-April-May,
MAM), summer (June-July-August, JJA), autumn (September-October-November, SON), and winter
(December-January-February, DJF) in 2009. The color of the symbol indicates the AOD value for each
pixel, the AOD is obtained from MODIS C6 DT-DB combined aerosol product [5]. The comparisons
show that the estimations for both 0.47 and 0.67 µm have good correlations with the MOD09 surface
reflectance for all four seasons, except for high AOD cases. The regression pattern for 0.67 µm is
slightly better than 0.47 µm as presented in Figure 4, which may be due to the potential higher chance
of aerosol contamination in the atmospheric correction procedure of MODIS surface product for shorter
wavelengths [43]. The performance of the atmospheric correction algorithm degrades with increase
of AOD values and the atmospheric correction is also less accurate for shorter wavelengths [43].
The regions in Eastern Asia are often covered by high aerosol loading, especially in Eastern China [44].
However, surface reflectance at 0.67 µm for high AOD cases show higher systematical bias compared
to 0.47 µm, as the yellow/red dots in Figure 4b and 4c are slightly away from the 1:1 line. This is likely
due to the fact that the slopes of surface reflectance from 0.86 to 0.67 µm are more sensitive to the
NDVI’ values than the 0.86 to 0.47 µm slopes, as shown in Figure 3. Thus, bias in NDVI’ caused by the
presence of aerosols has a stronger impact on the estimated surface reflectance at 0.67 than at 0.47 µm
following the above statistical analysis [6].

In addition, we also calculated season-average surface reflectance at 0.47 and 0.67 µm channels for
2009 based on SAHARA regression coefficients listed in Tables 2–9 and DB coefficients [6], respectively.
SAHARA and DB estimated surface reflectances are also compared to the MOD09 surface reflectance
products in two visible channels as shown in Figure 5 (0.47 µm) and Figure 6 (0.67 µm). All three
surface reflectances show similar distribution. The surface reflectances are relatively lower in the
Southern part of China compared to the Northern and Western parts for selected wavelengths. At the
meantime, the difference between SAHARA surface reflectance and MOD09 is smaller compared to the
difference between DB reflectance and MOD09. For example, the overall differences for all seasons are
1.9%, 7.3%, 2.1%, 5.8% for SAHARA and MOD09 for 0.47 µm and 1.2%,−24%,−8%,−6.8% for DB and
MOD09, respectively. As to 0.67 µm, the overall difference for all seasons are 8.9%, 5.3%, 8.3%, 6.6%
for SAHARA and MOD09 and −15.1%, −16.4%, −22.1%, −18.5% for DB and MOD09. We can also
find that the estimation based on DB coefficient tends to underestimate the surface reflectance in most
of the seasons and land types causing slight overestimation of AOD over China [44]. The SAHARA
coefficients estimated surface reflectances are generally larger than the MOD09 product.
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Figure 4. Comparisons of the estimated surface reflectance at 0.67 µm (a–d) and 0.47 µm (e–h) with the
surface reflectance from MOD09 for four seasons. (a,e) for MAM, (b,f) for JJA, (c,g) for SON, (d,h) for
DJF. The colors of the symbols indicate the AOD value at 0.55 µm.
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3.2. Aerosol Type Parameteirzation

The aerosol types were predefined according to the season and geo-location, they are: weakly
absorbing, moderately absorbing and strongly absorbing, adapted from the current MODIS C6 DT
aerosol retrieval algorithm [5]. Levy et al. [41] performed a cluster analysis of the entire AERONET
dataset of sun-sky inversions [45] up to 2010. Following this way, an “expected aerosol type” map for
all locations at 1◦ × 1◦ spatial resolution for each season has been created and used for aerosol retrieval.
Figure 7 presents the three absorption aerosol types for the MODIS DT aerosol retrieval algorithm
based on the AERONET information [41]. The asymmetry factor (g) and Single Scattering Albedo
(SSA) were further parameterized to different aerosol types. After numerical calculation, it is found
that the g, SSA and the Angstrom coefficient (Alpha) can be parameterized by the AOD at 0.55 µm
using polynomial form. g can be parameterized as follows:

g = a0 + a1τ550nm + a2τ2
550nm (8)

The SSA and Alpha are also parameterized similar as the parameterization for g. The coefficients
(a0, a1, and a2) are listed in the Tables 10–12 for SSA, Alpha, and g, respectively.

Table 10. The polynomial coefficients for the Single Scattering Albedo (SSA).

SSA a0 a1 a2

Weakly absorbing 0.921 0.049 −0.018
Moderately absorbing 0.899 0.048 −0.012

Strongly absorbing 0.831 0.044 −0.018

Table 11. The polynomial coefficients for the Angstrom coefficient.

Alpha a0 a1 a2

Weakly absorbing 1.926 −0.217 −0.162
Moderately absorbing 1.865 0.052 −0.268

Strongly absorbing 2.028 0.008 −0.096

Table 12. The polynomial coefficients for the asymmetry factor.

g a0 a1 a2

Weakly absorbing 0.607 0.081 −0.014
Moderately absorbing 0.59 0.053 −0.003

Strongly absorbing 0.548 −0.003 0.024

In order to evaluate the accuracy of the aerosol type parameterization, a comparison between
proposed parameterization and AERONET observations was performed. AERONET observations
corresponding to time span of GF4 observations for selected regions have been used. Firstly, AODs at
0.55 µm from AERONET level 2.0 were selected from AEROSOL OPTICAL DEPTH (v2) and calculate
single scattering albedo and asymmetry factor using Tables 10–12, and then the calculated values
were compared to AEROSOL INVERSIONS (v2). Figure 8 shows that approximately 85% of estimated
asymmetry factor falls into the 10% error envelope (EE) while about 94% single scattering albedo meet
the accuracy of 10% EE. About 50% estimated asymmetry factor and 70% estimated SSA fall into 5%
EE. Potential overestimation of SSA for strong absorbing aerosol type and a slight underestimation of
SSA for moderately/weakly absorbing aerosol types can be found from Figure 8, indicating possible
overestimation/underestimation of AOD in SAHARA algorithm depending on aerosol absorption.
The comparison with AERONET shows that the aerosol type parameterization provides accurate
estimation for aerosol retrieval.
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3.3. Aerosol Retrieval Algorithm

The reflectance at the top of the atmosphere (TOA) is described by Equation (9) [12,46]

RTOA(λ, µ0, µ, ϕ) = Tg

[
RR+A(λ, µ0, µ, ϕ) +

A(λ) · T(λ, µ0, µ)

1− A(λ) · s(λ)

]
(9)

where θ = arccosµ is the satellite zenith angle, θ0 = arccosµ0 is the solar zenith angle, ϕ is the
relative azimuth angle, RTOA(λ, µ0, µ, ϕ) is the contribution of the Earth surface and atmosphere to
the TOA reflectance, RR+A(λ, µ0, µ, ϕ) is the contribution of the atmosphere reflectance to the TOA
reflectance. Tg is the gas absorption transmission, A(λ) is the surface spectral albedo, T(λ, µ0, µ) is
total transmission and s(λ) is the atmospheric hemispherical albedo and the basic definition of the
above parameters can be found below.

Kokhanovsky [47] provided parameterization equations for s(λ) and T(λ, µ0, µ) using the AOD
information, which are also used in the SAHARA algorithm. In the SAHARA algorithm, the
atmosphere path reflectance is calculated from the Rayleigh reflectance ρRay and the aerosol reflectance
ρaer. Equations (10)–(12) describe the calculation of Rayleigh reflectance [48]. PRay(Φ) is the Rayleigh
scattering phase function, τRay is Rayleigh Optical Depth (ROD) and Φ is the phase angle between
incident direction and scattering direction.
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ρRay =
τRay · PRay(Φ)

4µµ0
(10)

τRay = 0.00864λ−(3.916+0.074+ 0.05
λ ) (11)

PRay(Φ) =
3
4

(
1 + cos2 Φ

)
(12)

The aerosol reflectance can be parameterized to the aerosol Single Scattering Albedo (SSA, $),
aerosol phase function (Paer(Φ)) and AOD (τ). The single scattering approximation can be used for
relatively small AOD, which has been used in the Aerosol Retrieval Technique (ART) [10] and SARA
algorithm [7]. Equation (13) describes the single scattering approximation of the aerosol reflectance.
The Henyey-Greenstein (H-G) aerosol phase function is used [49], as Equation (14) describes, where g
is the asymmetry factor.

ρaer =
v · τ · Paer(Φ)

4µµ0
(13)

Paer(Φ) =
1− g2

(1 + g2 + 2g cos Φ)
3
2

(14)

Then the optimal AODs are obtained by minimize the difference of TOA reflectance at 0.47
and 0.67 µm between observed by GF4 and calculated by Equation (9) using Levenberg–Marquardt
iteration algorithm [34]. Figure 9 show the flowchart of SAHARA algorithm.
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4. Results and Discussion

In order to show the accuracy of the SAHARA algorithm, the complicated scenes over Eastern
and Middle China are selected for testing. Please note that GF4 starts providing stable observations
with relative good calibration accuracy in May 2016, the calibration radiance accuracy of GF-4 PMS
images are better than 3% [50]. Figures 10 and 11 show the comparisons of AOD retrieved by SAHARA
using GF4 data and MODIS C6 DT-DB combined AOD over different surface types. Considering the
urgent requirement of high spatial resolution AOD for the investigation of aerosol properties in a local
scale, the figures contain the 10 km AOD results for both MODIS and GF4 and 50 meter GF4 retrieved
AODs to illustrate the capability of the usage of SAHARA algorithm to very high spatial resolution
aerosol retrievals.



Remote Sens. 2017, 9, 253 15 of 21

Remote Sens. 2017, 9, 253  15 of 22 

 

ܲ(ߔ) = 1 − ݃ଶ(1 + ݃ଶ + 2݃ cosߔ)యమ (14) 

Then the optimal AODs are obtained by minimize the difference of TOA reflectance at 0.47 and 
0.67 µm between observed by GF4 and calculated by Equation (9) using Levenberg–Marquardt 
iteration algorithm [34]. Figure 9 show the flowchart of SAHARA algorithm. 

 
Figure 9. Flowchart of SAHARA algorithm. 

4. Results and Discussion 

In order to show the accuracy of the SAHARA algorithm, the complicated scenes over Eastern 
and Middle China are selected for testing. Please note that GF4 starts providing stable observations 
with relative good calibration accuracy in May 2016, the calibration radiance accuracy of GF-4 PMS 
images are better than 3% [50]. Figures 10 and 11 show the comparisons of AOD retrieved by 
SAHARA using GF4 data and MODIS C6 DT-DB combined AOD over different surface types. 
Considering the urgent requirement of high spatial resolution AOD for the investigation of aerosol 
properties in a local scale, the figures contain the 10 km AOD results for both MODIS and GF4 and 
50 meter GF4 retrieved AODs to illustrate the capability of the usage of SAHARA algorithm to very 
high spatial resolution aerosol retrievals.  

 
Figure 10. The comparison between SAHARA AOD using GF4 data and MODIS C6 combined AOD 
on 25 June 2016: (a) MODIS C6 combined AOD; (b) SAHARA 10 km AOD; (c) SAHARA 50 m AOD.  

Figure 10. The comparison between SAHARA AOD using GF4 data and MODIS C6 combined AOD
on 25 June 2016: (a) MODIS C6 combined AOD; (b) SAHARA 10 km AOD; (c) SAHARA 50 m AOD.Remote Sens. 2017, 9, 253  16 of 22 

 

 
Figure 11. The comparison between SAHARA AOD from GF4 data and MODIS C6 combined AOD 
on 18 May 2016: (a) MODIS C6 combined AOD; (b) SAHARA 10 km AOD; (c) SAHARA 50 m AOD. 

Figure 10 presents the 10 km (a and b) and 50 meter (c) resolution AOD at 0.55 µm over 
Shandong Peninsula and Jiangsu province on 25 June 2016, from MODIS (a) and SAHARA retrieval 
(b and c), respectively. The spatial distribution of AOD shows large variability for this scenario with 
minimal and maximal AOD about 0.15 and 1.5. Both MODIS and GF4 retrievals catch the large 
variability. MODIS and GF4 results are slightly different for the high AOD patterns, mainly due to 
the different overpass time. The overpass time for GF4 and MODIS/Aqua, used for comparison are 
07:00 UTC and 05:10 UTC. According to the wind data from the dataset (V3.0) of daily values of 
climate data from Chinese surface stations for global exchange, the daily-average wind-speed over 
Shandong Peninsula is about 5 m/s, and the direction of the maximum wind speed is southwest on 
25 June 2016. The southwest wind blows the polluted air mass to the northeast, causing higher 
aerosol loading over the north of Shandong peninsula in SAHARA retrieval compared to MODIS 
retrieval. According to the two 10 km retrievals, we can see that the AODs for the upper part of the 
image (Shandong Peninsula) are much smaller compared to the lower part (Jiangsu Province). The 
main reason for this is that there are more industries in Jiangsu province while the main aerosol 
source because the straw combustion season (starting from late August) over Shandong has not yet 
started [51]. We can clearly see a large difference near the cloud edge (lower part of the image), 
indicating potential cloud contamination for GF4 aerosol retrieval. When comparing the 50 meter 
AOD to the 10 km resolution AOD, a good local transportation pattern can been seen from the 50 
meter result while this is not the case for 10 km results. Another evidence of possible cloud 
contamination is that there are some red outliners in GF4 10 km while this is not the case for 50 meter 
AOD because potential cloud contributes to the averaged 10 km GF data. Another interesting thing 
is that GF4 10 km retrievals lose information near the coastline while the 50 meter AOD has more 
coverage close to the water. A similar pattern can be found for Figure 11, illustrating the AOD over 
Inner Mongolia, which is mainly covered by grasslands. The shift of the high AOD pattern can be 
explained by the difference of overpass time, the GF-4 image is obtained at 03:00 UTC, while the 
MODIS result is from 04:10 UTC. The meteorological condition can be another possible reason for 
the quick change of the aerosol spatial distribution between GF4 and MODIS. During this day, west 
wind is prevailing over Inner Mongolia, the maximum speed reached 10 m/s and the average speed 
is about 5–6 m/s.  

Figures 10 and 11 also show the dynamical presentation of the parameterization method 
proposed in the paper for different months, which is linked to the seasonal/geo-location dependent 
aerosol types. For the current retrieval, a fixed AOD a-priori value (0.2), which approaches the AOD 
global mean value, is used [4]. According to Figures 10 and 11, the SHARA AOD agrees quite well 
with MODIS C6 aerosol product. However, the SAHARA AODs are lower compared to MODIS 
product in the high aerosol loading regions. This can be explained from four aspects. Firstly, the 
MODIS aerosol product over China is validated to be overestimated [44,52]. Secondly, the 
parameterization method proposed in this paper works pretty well for AODs range from 0.1 to 1, 
which may produce some uncertainty for large AODs [53,54]. Thirdly, the underestimation of SSA 
for aerosol type parameterization may lead to the underestimation of AOD. Fourthly, the SAHARA 
surface parameterization may slightly overestimate the surface reflectance cause underestimation of 

Figure 11. The comparison between SAHARA AOD from GF4 data and MODIS C6 combined AOD on
18 May 2016: (a) MODIS C6 combined AOD; (b) SAHARA 10 km AOD; (c) SAHARA 50 m AOD.

Figure 10 presents the 10 km (a and b) and 50 meter (c) resolution AOD at 0.55 µm over Shandong
Peninsula and Jiangsu province on 25 June 2016, from MODIS (a) and SAHARA retrieval (b and c),
respectively. The spatial distribution of AOD shows large variability for this scenario with minimal
and maximal AOD about 0.15 and 1.5. Both MODIS and GF4 retrievals catch the large variability.
MODIS and GF4 results are slightly different for the high AOD patterns, mainly due to the different
overpass time. The overpass time for GF4 and MODIS/Aqua, used for comparison are 07:00 UTC
and 05:10 UTC. According to the wind data from the dataset (V3.0) of daily values of climate data
from Chinese surface stations for global exchange, the daily-average wind-speed over Shandong
Peninsula is about 5 m/s, and the direction of the maximum wind speed is southwest on 25 June 2016.
The southwest wind blows the polluted air mass to the northeast, causing higher aerosol loading over
the north of Shandong peninsula in SAHARA retrieval compared to MODIS retrieval. According to the
two 10 km retrievals, we can see that the AODs for the upper part of the image (Shandong Peninsula)
are much smaller compared to the lower part (Jiangsu Province). The main reason for this is that there
are more industries in Jiangsu province while the main aerosol source because the straw combustion
season (starting from late August) over Shandong has not yet started [51]. We can clearly see a large
difference near the cloud edge (lower part of the image), indicating potential cloud contamination
for GF4 aerosol retrieval. When comparing the 50 meter AOD to the 10 km resolution AOD, a good
local transportation pattern can been seen from the 50 meter result while this is not the case for 10 km
results. Another evidence of possible cloud contamination is that there are some red outliners in
GF4 10 km while this is not the case for 50 meter AOD because potential cloud contributes to the
averaged 10 km GF data. Another interesting thing is that GF4 10 km retrievals lose information near
the coastline while the 50 meter AOD has more coverage close to the water. A similar pattern can be
found for Figure 11, illustrating the AOD over Inner Mongolia, which is mainly covered by grasslands.
The shift of the high AOD pattern can be explained by the difference of overpass time, the GF-4 image
is obtained at 03:00 UTC, while the MODIS result is from 04:10 UTC. The meteorological condition can
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be another possible reason for the quick change of the aerosol spatial distribution between GF4 and
MODIS. During this day, west wind is prevailing over Inner Mongolia, the maximum speed reached
10 m/s and the average speed is about 5–6 m/s.

Figures 10 and 11 also show the dynamical presentation of the parameterization method proposed
in the paper for different months, which is linked to the seasonal/geo-location dependent aerosol types.
For the current retrieval, a fixed AOD a-priori value (0.2), which approaches the AOD global mean
value, is used [4]. According to Figures 10 and 11, the SHARA AOD agrees quite well with MODIS C6
aerosol product. However, the SAHARA AODs are lower compared to MODIS product in the high
aerosol loading regions. This can be explained from four aspects. Firstly, the MODIS aerosol product
over China is validated to be overestimated [44,52]. Secondly, the parameterization method proposed
in this paper works pretty well for AODs range from 0.1 to 1, which may produce some uncertainty
for large AODs [53,54]. Thirdly, the underestimation of SSA for aerosol type parameterization may
lead to the underestimation of AOD. Fourthly, the SAHARA surface parameterization may slightly
overestimate the surface reflectance cause underestimation of AOD. We also notice that there are higher
chances to retrieve negative values due to the calibration uncertainty in GF4 compared to MODIS
observations. The negative values in MODIS aerosol product [41] indicate the potential calibration
error and the uncertainty of calibration error can be enhanced due to the simplification in SAHARA
algorithm, which also increases with the increase of the aerosol absorption characteristics.

The case studies show that the SAHARA algorithm is able to capture the aerosol information, and
can obtain high resolution AOD. We perform an additional comparison with MODIS aerosol product
and validate using AERONET observations. We quantitatively compare SAHARA-derived 10 km
AOD and MODIS C6 combined AOD in Figure 12b for the scenario shown in Figure 10. SAHARA
AOD shows good agreement with MODIS AOD, with a correlation coefficient of R2 = 0.72. All
GF4 observations starting from May 2016 are used in the validation with AERONET observations.
Due to limited GF4 data and ground-based observations (all available and released GF4 data from
16 May to 30 August have been used), we can only obtain several station data after the collocation.
Figure 12a shows the scattering plot of AERONET AOD and SAHARA 50 meter AOD. Good agreement
between SAHARA AOD and AERONET AOD, with correlations coefficient R2 = 0.86. Besides, the
Root-Mean-Square Error (RMSE) is about 0.13 and the Mean Absolute Error (MAE) is 0.12. About
78% of the SAHARA retrieved AOD fall within the EE (Expected Error, 0.20 ∗ AODAERONET ± 0.05)
envelope ((AODAERONET − |EE|) < AODSAHARA < (AODAERONET + |EE|)) [5], which indicates the
retrieved AOD of good quality.
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5. Conclusions

A new aerosol retrieval algorithm, SAHARA is presented, which enables the retrieval of the
AOD, which will be further used for the atmospheric correction for Chinese GaoFen4 instrument.
Without using LUT, the SAHARA algorithm uses the parameterized radiative transfer equation for
different aerosol types. They are weakly absorbing, moderately absorbing and strongly absorbing,
and are adapted from the current MODIS DT C6 aerosol retrieval algorithm [5]. The aerosol types
are predefined according to season and geo-location. The asymmetry factor, SSA and the Angstrom
coefficient are parameterized by the AOD at 0.55 µm using polynomial form for each aerosol type,
which is proved to be accurate enough for the AOD range from 0.1 to 1.0. SAHARA algorithm
has a surface parameterization following a similar idea to the MODIS DB algorithm. The surface
reflectances at GF4 visible channels have been parameterized by the Rayleigh-corrected TOA reflectance
at 0.86 µm, vegetation amount determined by the NDVI’ as well as the scattering angles. Seasonal
based coefficients for different surface types are obtained by fitting to the MODIS surface reflectance
product. Comparison between SAHARA, DB surface parameterization and MODIS surface reflectance
products shows good agreement. SAHARA parameterization shows slight overestimation of surface
reflectance while DB estimations underestimate compared to MODIS surface reflectance product. Both
SAHARA and DB surface parameterizations show high accuracy for aerosol retrieval.

Two complicated scenes over China are used to test the SAHARA algorithm, the retrieval results
from SAHARA agree quite well with the MODIS aerosol product for 10 km spatial resolution. SAHARA
is applied for the retrieval of GF4 data based on the original pixel resolution (50 meter) and the retrieval
results of 50 meter show reasonable patterns for aerosol distribution. The transportation features
of high aerosol loading are well-caught. The validation using AERONET observations shows good
performance with correlation coefficient of R2 = 0.86 and the slope of 1.05 shows acceptable accuracy
of the parameterization of aerosol types and relatively small bias (0.01), showing good accuracy of
surface parameterization.

SAHARA has the potential ability to retrieve AOD over both bright and dark surfaces.
The retrieved AOD can be used for atmospheric correction of GF4 data which have a spatial resolution
of 50 meter. This algorithm can also be used in other satellite data which have similar bands with
GF4 instruments, such as Landsat and Sentinel observations [55]. The retrieved AOD shows great
potential in monitoring the local air pollution with high spatial resolution to capture local pollution
sources. The retrieved AOD can also be used for data assimilation with other satellite data (MODIS,
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol product, etc.), ground-based
measurements (AERONET, particulate matter (PM) observations, and meteorological observations) and
model data (GOCART aerosol data) to further improve the air quality analyses and forecasts [56,57].

There are several aspects to be considered regarding to the SAHARA aerosol retrieval algorithm
in the future. The first aspect is the cloud screening. The MODIS DT cloud screening algorithm without
cirrus cloud test (1.38 µm test) has been used with the current retrieval together with a visual-check
according to the RGB images. An individual team is still working on the development of cloud
detection of GF4, which will be used in the next retrieval version of SAHARA. The second aspect
is linked to the surface parameterization. Currently only one year data were used for the statistical
analysis and there are no coefficients for certain surface types of some seasons, which will be solved by
extending the regression dataset. The possible uncertainty of surface reflectance estimation due to the
BRDF effect, especially for high spatial resolution AOD retrieval, needs to be considered. The Ross-Li
BRDF model will be implemented in future work [58,59]. The third aspect is linked to the aerosol type
parameterization. According to previous evaluation, the MODIS DT algorithm provides overestimated
AOD partly due to the aerosol type, which is parameterized by limited AERONET observation. Thus,
an updated aerosol type parameterization will be necessary based on both AEROENT and CARSNET
and other in-situ measurements.
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Appendix A

Table A1. Land Cover types corresponding to the integer in Tables 2–9. Defined according to the
International Geosphere-Biosphere Programme (IGBP).

No Land Cover No Land Cover

1 Evergreen Needleleaf Forest 9 Savannas
2 Evergreen Broadleaf Forest 10 Grasslands
3 Deciduous Needleleaf Forest 11 Permanent Wetlands
4 Deciduous Broadleaf Forest 12 Croplands
5 Mixed Forests 13 Urban Areas
6 Closed Shrublands 14 Cropland - Natural Vegetation Mosaic
7 Open Shrublands 15 Snow and Ice
8 Woody Savannas 16 Barren or Sparsely Vegetated
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