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Abstract:



Change detection is one of the main applications in earth observation but currently there are only a few approaches based on radar imagery. Available techniques strongly focus on optical data. These techniques are often limited to static analyses of image pairs and are frequently lacking results which address the requirements of the user. Some of these shortcomings include integration of user’s expertise, transparency of methods, and communication of results in a comprehensive understandable way. This study introduces an index describing changes in the savanna ecosystem around the refugee camp Djabal, Eastern Chad, based on a time-series of ALOS PALSAR data between 2007 and 2017. Texture based land-use/land cover classifications are transferred to values of natural resources which include comprehensive pertinent expert knowledge about the contributions of the classes to environmental integrity and human security. Changes between the images are analyzed, within grid cells of one kilometer diameter, according to changes of natural resources and the variability of these changes. Our results show the highest resource availability for the year of 2008 but no general decline in natural resources. Largest loss of resources occurred between 2010 and 2011 but regeneration could be observed in the following years. Neither the settlements nor the wadi areas of high ecologic importance underwent significant changes during the last decade.
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1. Introduction


Detecting and understanding processes at the earth’s surface are among the key tasks of spaceborne remote sensing. Thousands of images stored in archives allow for the analysis of dense time-series of nearly every region of the earth. In particular is the Landsat continuity mission, delivering valuable data since the 1970s, which provides an excellent foundation of long-term observations [1,2]. Their potential for the mapping of land-use and land cover (LULC) has been demonstrated in numerous studies which exploit the temporal variability of the image information in different methodological frameworks [3,4,5,6,7,8,9,10]. Among others, Song et al. portray the problems regarding atmospheric disturbances in the data and raise the question to what extent these applications are affected by cloud cover [11]. Of primary concern is large-scaled classification of LULC often being constrained by cloud cover. According to the US Department of Energy, about 52% of global land surfaces are covered by clouds on average [12]. In particular, regions within the intertropical convergence zone (ITC) are highly affected by seasonal or full-year cloud coverage [13,14,15] which hinders proper analysis of LULC based on series of optical satellite imagery [16,17,18].



To overcome this dependency upon favorable atmospheric conditions, satellites with synthetic aperture radar (SAR), operating at wavelengths which can penetrate cloud cover, are employed. Their reliability in acquiring usable imagery is one of the main reasons to utilize them in LULC applications. Accordingly, the long-term missions of ERS-1/2 [19] and RADARSAT-1/2 [20], plus the relatively recent Sentinel-1 constellation [21] which was launched in 2014, show high potential for the investigation of changes in land cover over decades. They also serve well as complementary sources when operating at the same wavelength [22,23].



The use of SAR imagery has proven effective for LULC classification in many cases. Early studies mostly applied knowledge-based methods on SAR backscatter in order to separate different classes of land cover [24,25,26]. In fact, the first article published in Remote Sensing of Environment, back in 1969, was an interpretation key for SAR backscatter at the landscape level [27]. These studies require detailed a-priori knowledge about the study area but offer a high degree of control to the user. Additional features were used to further increase the classification quality in later approaches, mainly interferometric parameters such as coherence [28,29,30], but also textural information within the intensity values at different levels [31,32,33]. Besides these technological advances, new methods of supervised classification were developed to assign classes based on sample data. These were required because, in contrast to optical image information, SAR parameters are not necessarily of consistent units and value ranges. Among the most popular methods are Bayesian classifiers [34,35,36], neural networks [37,38,39] and random forest classifiers [40,41,42]. These developments targeting LULC classifications were complemented by progress in SAR polarimetry. Deeper knowledge of the backscattering behavior of surfaces and decompositions into different scattering mechanisms additionally increased the quality of analyses related to land cover [43,44,45,46].



Utilizing SAR imagery in a multi-temporal context to monitor changes in land-use or land cover requires particular attention because of the characteristics of image acquisition and signal propagation. While the very identification of areas of change is scientifically well-proven and widely-used [47,48,49], quantitative and long-term monitoring of distinct classes requires accurate calibration and a robust handling of speckle [50,51].



Studies investigating landscape sensitivity, the severity of disturbances and human impact based on SAR data are rare: Townsend and Foster proposed a statistical indicator for the intensity of flooding for the Roanoke River floodplain (United States) based on eleven RADARSAT-1 scenes acquired over a period of seventeen months [52]. They used the distinctive signature of water in SAR images expressed in usually very low backscatter values. They achieved overall model accuracies of 87.8%, however they only looked at two classes (flooded and non-flooded). Beisl et al. followed a similar approach for the estimation of landscape sensitivity towards floods based on two JERS-1 mosaics in Western Arizona [53]. Their study targeted four LULC classes and five levels of flood hazards but only compared two images (pre- and post-flooding).



Hoffmann et al. derived forest fire damage in East Kalimantan, Indonesia, based on 56 scenes of ERS-2 from 1997 [54]. They discriminated three different classes of burn severity and additionally derived a LULC classification. This study is one of the few making full use of large SAR archives for the assessment of impacts of disturbances on landscapes.



As well, human impacts upon forest systems deforestation of the Amazon rainforests is of special interest in remote sensing studies. Saatchi et al. made use of the polarimetric covariance between channels of SIR-C [55], comparing an intra-annual pair of images—interferometric signatures and coherence [56]. L-band data have been found to be of special importance due to its pronounced interaction with vegetation volumes such as canopy structures [57,58,59]. Most of the studies, however, do not make use of large sets of SAR images provided by the JAXA archives.



For the African continent, Mitchard et al. have found a robust relationship for the estimation of biomass changes in savanna ecosystems [60,61]. They derived change maps based on 7 biomass classes for an image pair from 1997 (JERS-1) and 2007 (ALOS PALSAR).



Shen et al. used polarimetric RADARSAT-2 data to derive landscape metrics from eight LULC classes in the Nanjishan Wetland Nature Reserve, PR China [62]. Although this approach aims at a deeper understanding of the classified landscape it doesn’t make allowance to investigate temporal changes.



Based on the prior developments and findings we identified the following research deficits. While indices of spatial change based on optical data are numerous, there is almost no SAR-based methodology for long-term analysis of landscape developments at a class level. Pixel-based approaches developed for optical data are not applicable for SAR data as they do not allow for smaller misclassifications or isolated pixels arising from speckle effects. Additionally, most studies strongly focus on a stepwise comparison of image pairs without considering the total variation along the full time-series [63]. This is especially a problem in landscapes with high dynamics due to wild-fires, land degradation, vegetation encroachment or strong human impact. For those situations, distinct indices have to be developed, especially when dealing with SAR or very high resolution (VHR) optical data [64]. Other indices are highly elaborate but hard to read for people from outside the field of research. Accordingly, Walker and Peters argue that findings of multi-temporal remote sensing products are often complicated to read or even misleading and susceptible to making false conclusions [65].



In order to perform long-term analyses of landscape change independently from cloud cover, a robust and transparent approach based on radar data has to be developed. As a result, an integrative index should explain both the location and intensity of changes, as well as their implications for environmental integrity and human well-being. This index must be reproducible and adjustable to different needs of the users according to the significance of the targeted classes. Still, it has to be easy to interpret for anyone, especially because stakeholders and decision-makers are often not familiar with or interested in the technical background [66,67,68].



In this paper, we propose an approach challenging these requirements. For this purpose, we investigate landscape changes in a savannah ecosystem in Eastern Chad. As it is located at the southern border of the Sahel, desertification, impacts of climate change, and limited resources are of main concern [69,70]. These types of savannas are observed to show significant changes regarding vegetation persistence during the last two decades, both positive and negative [71]. The study is used to answer the following questions: How, where, and how much did the semi-arid landscape change during the last ten years? Can an overall decrease of natural resources, such as the availability of fire wood, be observed and to what extent? Do the LULC types show different developments regarding dynamics and variability? Can land degradation be observed in the direct surroundings of the settlements as an indicator of human impact? And finally, can these aspects be visualized in an output map which is easy to read and still includes the severity of changes during the entire period investigated?




2. Materials and Methods


2.1. Study Area


The study area is located in the center of the Sila region of Eastern Chad (Figure 1, upper right map). It hosts a total population of about 470,000 inhabitants, resulting in a moderately low population density of 12.5 inhabitants per square kilometer [72]. It includes the town of Goz Beïda and the refugee camp of Djabal which was opened to Sudanese refugees in 2004 as a consequence of the large influx of people seeking shelter from the Darfur crisis [73]. Djabal is one of numerous refugee settlements (both temporary and permanent) along the 500 km long Sudanese border within Chad’s territory which were established for people fleeing from civil war and environmental degradation [74,75].


Figure 1. Location and landscape characteristics of the study area.
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The region lies at the southern border of the Sahel and is regularly affected by droughts [76] but receives more than 600 mm of annual precipitation on average, allowing for small-scaled agricultural use [77]. A decrease of summer rains and an increase of temperatures by 0.8° Celsius for the past 25 years have been reported, leading to both stronger dependency on crop yields and higher pressure on usable land [78]. Precipitation is mainly limited to the rainy season between June and September while the rest of the year is considered as highly arid. Climate can therefore be described as BSh (Hot semi-arid climate), referring to the Köppen-Geiger scheme.



The area is dominated by Precambrian bedrock and Tertiary sediments as it lies at the transition between the geological Sud province and the Nubian Shield within the Chad Basin [79]. Both camp Djabal and Goz Beïda are located at around 575 m above sea level but they are framed by the Hadjer Arkop massif in the south and northwest reaching up to 900 m [80]. Due to its location at the transition from desert to savannas most of the study area is covered by edaphic grassland, rupicolous shrubs, and scattered dry forest. Generally, tree cover is sparse in this area and mainly consists of single deciduous trees of the Combretaceae family [81]. The ridges of the Hadjer Arkop massif are sparsely covered by various Boswellia trees and shrubs [82]. Wadi Aouada, ranging from West to North across the study area, is accompanied by smaller semi-deciduous riparian forests (Figure 1, main map). Agricultural use of this land lies at around 30% and mainly concentrates around the few settlements. It is composed of small-scaled semi-permanent cultivation and bush fallow.



Goz Beïda lies along an important transport axis of Eastern Chad which connects the large cities of the North (Fada) with the ones in the South (Sarh). A Dutch military base (Ciara) under the mandate of the European Union was temporarily established between 2008 and 2009 as an additional peace force in the region [83]. Today, only the Goz Beïda airport remains at this location.




2.2. Data and Pre-Processing


2.2.1. Satellite Imagery


As the investigated ecosystem shows strong seasonal dynamics, the data to be used should be selected carefully. Therefore, all investigated data were acquired during the dry season which extends from November until March where rainfall below 5 mm is expected. These conditions are favorable because SAR backscatter strongly varies with changing soil moisture. This could cause temporally misleading signatures during the rainy season, e.g., high values at smooth and non-vegetated bare soil. Additionally, overall vegetation dynamics are smaller during the dry season which increases the inter-annual comparability of the images despite smaller temporal differences.



Table 1 lists all satellite images used in this study. Considering its temporal coverage, wavelength, and high spatial resolution, ALOS PALSAR has been chosen as a main input. Landsat data was additionally used for the collection of reference data. For each year analyzed, a pair of ALOS and Landsat imagery has been found with a temporal difference Δt between 0 and 30 days. There is a gap of observation between 2012 and 2015 because the ALOS PALSAR archive only features data between 2006 and 2011 and ALOS-2 (Daichi) was launched in May 2014. Landsat ETM+ data experienced a failure of its Scan Line Corrector mechanism in May 2003 causing striped gaps in the data (SLC-off) [84]. However, our study area lies in the center of the scene where this effect is minimal, since 2015 data from Landsat 8 (OLI/TIRS) could be used instead.



Table 1. Satellite imagery used in this study.







	
Year/Δt

	
Date

	
Sensor

	
Comment






	
2007/18 days

	
24 December 2006

	
ALOS PALSAR

	
SLC-off




	
11 January 2007

	
Landsat ETM+




	
2008/2 days

	
27 December 2007

	
ALOS PALSAR

	
SLC-off




	
29 December 2007

	
Landsat ETM+




	
2009/18 days

	
29 December 2008

	
ALOS PALSAR

	
SLC-off




	
16 January 2009

	
Landsat ETM+




	
2010/30 days

	
2 December 2009

	
Landsat ETM+

	
SLC-off




	
1 January 2010

	
ALOS PALSAR




	
2011/20 days

	
19 February 2011

	
ALOS PALSAR

	
SLC-off




	
11 March 2011

	
Landsat ETM+




	
2015/0 days

	
23 January 2015

	
ALOS-2




	
23 January 2015

	
Landsat OLI/TIRS

	




	
2016/6 days

	
22 January 2016

	
ALOS-2




	
28 January 2016

	
Landsat OLI/TIRS

	




	
2017/15 days

	
2 March 2017

	
ALOS-2




	
15 February 2017

	
Landsat OLI/TIRS

	











2.2.2. Pre-Processing and Collection of Samples


ALOS data was obtained as Level 1.1 products in Slant Range Complex format [85,86]. Pre-processing included radiometric calibration to radar brightness (Beta Naught, β° [87]), multi-looking (n = 2), terrain flattening to normalize radiometric effects caused by different incidence angles (Flattened Gamma Naught, γ° [88]) and Range-Doppler terrain correction to adjust topographic distortions using a digital elevation model (1 Arc-Second SRTM) [89]. All rasters were resampled to a common ground resolution of 30 m. No speckle filtering was applied in order to conserve image texture as accuracies of classifications based on SAR texture alone are reported to decrease when speckle was removed [90,91].



In order to derive additional information layers we derived image textures based on the concept of Grey-Level Co-Occurrence Matrix (GLCM) [92] consisting of Cluster Prominence, Cluster Shade, Correlation, Difference Of Entropies, Difference Of Variances, Energy, Entropy, Grey-Level Nonuniformity, HT10, Haralick Correlation, High Grey-Level Run Emphasis, IC1, IC2, Inertia, Inverse Difference Moment, Long Run Low Grey-Level Emphasis, Low Grey-Level Run Emphasis, Mean, Run Length Non-uniformity, Run Percentage, Short Run High Grey-Level Emphasis, Short Run Low Grey-Level Emphasis, Sum Entropy, Sum Variance, and Variance. Each of these 25 textures was calculated for kernels of 3, 9, and 15 pixels in order to extract patterns emerging at different spatial scales, leading to a total of 75 SAR texture layers per analyzed year.



Landsat data was obtained as Level-1T (terrain corrected) products. All rasters were radiometrically corrected by applying conversion top of atmosphere (TOA) reflectance and dark object subtraction (DOS) [93,94].



Six LULC classes were defined for the analysis: (1) urban areas, (2) bare soil, (3) bare rock, (4) grassland, (5) shrubland, and (6) forest. We did not include water as a separate class since the study area does not feature any permanent water bodies and the few remaining temporary flooded areas are covered by the forests of Wadi Aouada.



Each class is represented by training areas which were automatically derived from the Landsat scenes. We utilized indices and threshold values from several studies to define areas which characterize the corresponding class to a best possible degree in each scene. These are listed in Table 2. The selection of training samples underlies two steps. First, representative areas for every class are derived in each year observed (see Table 1). Areas which are assigned to the same class throughout all scenes were then considered as stable over time and transparent according to the corresponding LULC. For example, a Normalized Difference Vegetation Index (NDVI) value greater than 0.2 is reported as high for the dry season in Sudanian savanna as found in the study area [95]. If a pixel fulfills this criterion throughout all images it was considered as forest. Information from near infrared (NIR) and short wave infrared (SWIR) bands was used for criteria of the classes grassland and shrubland but also for thresholds for the abiotic surfaces of bare rock and soil. As reference for urban areas, the extent of camp Djabal in the year 2007 was digitized from the Landsat image. These areas are observed to be stable over time as the camp reached a stable phase.



Table 2. Land-use and land cover (LULC) classes and identification of sample areas in the study area.







	
Class

	
Samples

	
Criterion

	
Source






	
Urban area

	
161 (7.2%)

	
Area of the camp in 2007

	
-




	
Bare soil

	
390 (17.6%)

	
Red < 0.25 & SWIR1 > 0.35

	
Drury (2001) [98]




	
Bare rock

	
352 (15.9%)

	
SWIR1/SWIR2 > 1.5

	
Drury (2001) [98]




	
Grassland

	
374 (15.6%)

	
NDVI > 0.15 & NDVI < 0.25

	
Forkuor et al. (2012) [95]




	
Shrubland

	
126 (5.6%)

	
Red < 0.2 & NIR > 0.3 & SWIR < 0.3

	
Liu et al. (2016) [99]




	
Forest

	
172 (7.8%)

	
NDVI > 0.2

	
Forkuor et al. (2012) [95]




	
Burnt areas

	
0 (0%)

	
NBR > 0.15

	
López-García & Caselles (1991) [97]










To prevent misclassifications, we removed areas smaller than 500,000 m2 from the identified sample areas. Recognizing the these kinds of savanna ecosystems are highly affected by wildfires [96], we calculated the Normalized Burn Ratio (NBR [97]) for all years and scenes. This characterizes burnt areas which were excluded from the identification of sample areas because they no longer reveal which land cover was present before the fire. Furthermore, clouded areas were excluded throughout all scenes.



In a second step, a number of 1600 random points was generated within the remaining areas as sample locations for the SAR classification (see Section 2.3). This technique guarantees that the sample points were chosen both stratified and random while partially respecting the spatial occurrence of each class within the study area. Table 2 lists the criteria used for their identification of the sample areas and the final number of samples per class.



Figure 2 shows the remaining areas which were used for the stratified random sampling. It shows the result of the criteria given in Table 2 which helped to identify stable LULC areas over the investigated period. Clearly visible are camp Djabal in the middle, surrounded by mostly bare soil resulting from less vegetation cover and agricultural use, the bare rocks of Hadjer Arkop and the denser forests of Wadi Aouada in the Northwest. As indicated in Figure 1 grassland and shrubland cover the wide plains in the North and East.


Figure 2. Identified areas used for the stratified random sampling.
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2.3. Image Classification


Image classification was performed for each SAR image in Table 1 in order to analyze the temporal developments in the study area. However, as a huge number of SAR textures are used covering many different value ranges in various units, traditional classifiers for pixel-based approaches—such as k-means clustering [100] or Maximum Likelihood estimation [101]—are not suitable. We therefore chose a Random Forest classifier (RF [102]) for our study. It is based on the concept of classification and regression trees (CARTs [103]) and repeatedly uses random subsets of the training data for the modeling of target classes. This automatically makes the best use of the feature data (texture layers in our case) with the best prediction ability to make LULC estimations for the full scene. For each year, we calculated a number of n = 500 classification trees based on random subsets of √n = 22 features. Figure 3 shows the outcomes of the classification as an intermediate product of the analysis.


Figure 3. Calculation of the weighted Natural Resource Depletion Index (NRDw).
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An accuracy assessment has been performed by manually collected sampling points. These points were visually placed on the Landsat image of each year independently from the sampling areas described in Section 2.2 so they represent the real occurrence of each LULC during each time step. A number of 150 points was collected per class and year which were then compared with the results from the SAR classification for the generation of a confusion matrix.



We achieved overall accuracies of 84.4% (2007), 83.3% (2008), 85.7% (2009), 85.0% (2010), 84.0% (2011), 80.3% (2015), 82.3% (2016) and 81.47% (2017) with respective Kappa values of 0.81 (2007), 0.80 (2008), 0.83 (2009), 0.81 (2010), 0.81 (2011), 0.76 (2015), 0.78 (2016) and 0.77 (2017). These may appear low for change detection approaches at first sight, but the proposed evaluation of changes by an aggregated index (see Section 2.4) is not pixel-based and compensates smaller misclassifications. As shown in Table 3 and Table 4, urban areas and bare rock show the highest accuracies due to their clear signal in both the optical and the radar images. Bare soil areas also show high accuracies because of its distinct backscatter characteristics during the dry season, but were misclassified as grassland in some areas of transition. The tables also show that grassland was over-estimated throughout all images (low user’s accuracies) while shrubland and forest reveal the lowest producer’s accuracies due to their similar signature in the SAR data.



Table 3. Producer’s accuracy for the texture-based classification of SAR images using the Random Forest classifier.







	

	
2007

	
2008

	
2009

	
2010

	
2011

	
2015

	
2016

	
2017






	
Urban area

	
89.3%

	
91.3%

	
90.7%

	
92.0%

	
89.3%

	
86.0%

	
90.7%

	
70.53%




	
Bare soil

	
92.0%

	
90.7%

	
92.0%

	
93.3%

	
92.0%

	
89.3%

	
86.7%

	
77.88%




	
Bare rock

	
96.0%

	
95.3%

	
96.0%

	
94.0%

	
96.0%

	
94.0%

	
93.3%

	
90.91%




	
Grassland

	
83.3%

	
80.7%

	
88.7%

	
83.3%

	
82.0%

	
94.0%

	
76.7%

	
82.23%




	
Shrubland

	
75.3%

	
70.7%

	
76.0%

	
77.3%

	
75.3%

	
68.7%

	
76.7%

	
82.64%




	
Forest

	
70.7%

	
71.3%

	
70.7%

	
70.0%

	
69.3%

	
67.3%

	
64.0%

	
66.92%










Table 4. User’s accuracy for the texture-based classification of SAR images using the Random Forest classifier.







	

	
2007

	
2008

	
2009

	
2010

	
2011

	
2015

	
2016

	
2017






	
Urban area

	
100.0%

	
100.0%

	
100.0%

	
100.0%

	
98.5%

	
99.2%

	
100.0%

	
100.0%




	
Bare soil

	
82.6%

	
84.5%

	
84.7%

	
85.4%

	
82.1%

	
76.1%

	
79.3%

	
82.5%




	
Bare rock

	
97.3%

	
95.3%

	
99.3%

	
97.2%

	
94.1%

	
95.9%

	
94.0%

	
95.9%




	
Grassland

	
63.1%

	
61.4%

	
64.6%

	
62.8%

	
64.7%

	
57.8%

	
59.3%

	
57.6%




	
Shrubland

	
83.7%

	
84.8%

	
85.7%

	
82.3%

	
82.5%

	
80.5%

	
80.5%

	
78.4%




	
Forest

	
89.8%

	
82.3%

	
90.6%

	
92.9%

	
89.7%

	
84.2%

	
93.2%

	
87.3%











2.4. Index of Landscape Change


As described in the previous section, pixel-based image classifications based on SAR data can reveal smaller misclassifications due to the lack of spectral diversity. These can, of course, lead to false conclusions in multi-temporal approaches when wrongly classified pixels may appear as change in land-use or land cover. Furthermore, changes from one class into another within single pixels do not allow for implications on the state of the environment, nor do they reveal the consequences of these changes for man. For this reason, Hagenlocher et al. proposed a weighted index which estimates the impact of LULC changes within larger aggregated units in terms of environmental integrity and human security [104]. It is uses expert-based weightings which determine its ecologic and social-economic value of each LULC class so that changes can directly be interpreted as a percentage of resource depletion for different sectors in the study area. This weighted natural resource depletion index (NRDw) was originally designed for very high-resolution data which needed to be aggregated at a larger level in order to overcome the limitations of pixel-based approaches for change detection. We transferred this concept on to the SAR data to compensate the deficiencies of our classification resulting from lack of spectral diversity, as reported in Section 2.3.



The weights were defined by two regional experts with ecological and humanitarian background as shown in Table 5. They refer to environmental integrity (EnvInt) and human security (HumSec) which were then averaged to a mean value of abundant natural resources (NR) of each pixel. As our study addresses the human-related aspects of landscape change, we used a ratio of 0.35/0.65 for the calculation of NR to place emphasis on their socio-economic impact.



Table 5. Importance of the analyzed land-use and land cover classes on environmental integrity (EnvInt) and human security (HumSec) for the calculations of an integrated value of natural resources (NR).







	
Class

	
EnvInt 35%

	
HumSec 65%

	
NR 100%






	
Urban area

	
0.00

	
0.50

	
0.313




	
Bare soil

	
0.30

	
0.35

	
0.331




	
Bare rock

	
0.20

	
0.25

	
0.231




	
Grassland

	
0.50

	
0.45

	
0.469




	
Shrubland

	
0.70

	
0.75

	
0.731




	
Forest

	
0.95

	
0.90

	
0.919










We chose a hexagon grid with a diameter of 1 km as a unit of analysis which aggregates the NR values of inherent LULC classes according to their spatial proportions within the grid cells. We chose hexagons as spatial units because they are suitable to represent nearest neighbor areas in a regular structure and, compared to rectangles, reduce sampling bias at their edges. Additionally, they are reported to support visual inspection of spatial patterns [105]. These NR values can then pairwise be compared per grid cell in order to retrieve its percentage increase or decrease of resources for different time increments. An example for the calculation of the NRDw is given in Figure 3.



Figure 4 shows the design of the study: Based on the eight SAR images eight LULC classifications have been derived. The weighted index for Natural Resource Depletion is then calculated per image pair. The result is shown as an example for the first image pair of 2007 and 2008. This map indicates the spatial distribution of changes as well as their estimated impact on natural environment.


Figure 4. Left: Design of the approach: Each classified image delivers aggregated values of natural resources. Right: Changes between the years are expressed as weighted Natural Resource Depletion (NRDw), demonstrated for the period between 2007 and 2008.
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2.5. Index of Landscape Variability


Besides observing inter-annual changes, general conclusions about developments within an area can be derived best based on direct comparisons of conditions at the beginning and the end of the investigated time. However, this excludes two major points in change detection.



Firstly, savanna ecosystems are subject of large biotic and abiotic variation at multiple spatiotemporal scales [106]. It is a key task of remote sensing to reveal these variations to an adequate degree [107]. Besides simply comparing the intensity of changes, information on the temporal variability of regions—or in other words, the sum of all changes along the investigated period—has to be communicated as well. Surely, some areas remain stable after the transition of one LULC class into another while others tend to underlie regular variations. Analyzing changes over multiple images, especially in a region at the border between two ecosystems, surely should include the aspect of resilience towards long-term exterior influences.



Secondly, class-based measurements are always subject to smaller misclassifications, especially if the data source is challenging. It is still widely reported that classifications based on SAR data alone are outperformed by approaches using multispectral optical data [108,109,110]. Similarly, single misclassifications within a time-series can distort the results towards changes which did not happen. In addition to that, the dates of image acquisitions are highly sensitive towards seasonal variations. Even if all images were taken at the same date of the year, inter-annual shifts in phenology of even a few weeks could cause the erroneous detection of ‘pseudo changes’.



Consequently, a second indicator is needed which spatially allocates high temporal variation within the study area and simultaneously quantifies the number of smaller changes which might only be subject to seasonal shifts in phenology.



We therefore decided to apply a post-classification change vector analysis. Vector-based approaches make use of a feature space consisting of spectral or classified information and the temporal dimension [111,112]. In our case, the variable determining the value of each hexagon grid cell is its weighted sum of natural resources as described in the previous section. These values are then plotted against the temporal period which is analyzed as exemplified in Figure 5: In a first step, the length of the vector describing overall change (Co) is calculated based on the NR values of 2007 and 2017. As a second variable contributing to the variability of an area, the length of the change vectors between each chronological image pairs are summed up to create the sum of annual changes (Ca). For reasons of normalization, a factor of 10 has been applied to NR values for the calculation of vector lengths (e.g., a NR decrease of 0.55 to 0.40 during one year leads to a x-distance of 1.5 instead of 0.15. This is done because the y-distance is 1 except for 2011–2015). The ratio of Co and Ca is then calculated and describes the variability (v) of the corresponding hexagon cell throughout the observed period. If Co and Ca are of same length, v gets the value of 1. The longer the vectors of annual changes in relation to the overall change, the higher is the calculated variability v which is therefore a dimensionless value between 0 and 7, as the sum of the maximum NR value of 1 for a period of seven investigated years. This information can then be included in the discussion of the results as an indicator of variability and instability of an area.


Figure 5. Calculation of the variability v of an area.
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3. Results


3.1. Annual Changes


3.1.1. Natural Resources


The results gathered based on the LULC classifications were transferred into NR for a hexagon grid as described in Section 2.4. A summary of different statistics over all 1793 grid cells is given in Table 6. It shows that overall resources did not significantly decline within the study area during the investigated period. Neither their mean (NRmean) nor their median (NRmedian) shows significant trends. A smaller drop of NRmedian can be observed for 2015. This indicates that natural resources were slightly the lowest in that year or at least at the time of image acquisition. This is supported by the value of the overall sum of all Natural Resources (NRsum). However, the percentiles of 95% and 5% (NR95% and NR5%) indicate that this could also have been caused by a smaller proportion of outliers for the year 2015.



Table 6. Development of Natural Resources (NR) and weighted Natural Resource Depletion (NRDw).







	

	
2007

	
2008

	
2009

	
2010

	
2011

	
2015

	
2016

	
2017






	
NRmax

	
91.9%

	
91.5%

	
90.7%

	
90.1%

	
91.4%

	
91.7%

	
89.5%

	
88.6%




	
NR95%

	
73.5%

	
76.2%

	
74.7%

	
74.3%

	
74.6%

	
73.9%

	
73.1%

	
73.3%




	
NRmean

	
46.9%

	
47.1%

	
47.0%

	
47.1%

	
46.9%

	
46.5%

	
46.8%

	
47.0%




	
NRmedian

	
45.7%

	
45.4%

	
45.9%

	
45.9%

	
45.8%

	
44.3%

	
45.6%

	
45.1%




	
NR5%

	
24.8%

	
24.4%

	
25.0%

	
24.9%

	
24.2%

	
25.0%

	
25.4%

	
25.6%




	
NRmin

	
23.1%

	
23.1%

	
23.1%

	
23.1%

	
23.1%

	
23.1%

	
23.1%

	
23.1%




	
NRsum

	
840.8

	
844.6

	
843.5

	
843.8

	
840.7

	
833.1

	
839.9

	
842.8




	
NRDw mean

	

	
0.187%

	
−0.037%

	
0.016%

	
−0.175%

	
−0.421%

	
0.379%

	
0.158%




	
NRDw net

	

	
3.36

	
−0.65

	
0.28

	
−3.14

	
−7.55

	
6.79

	
2.83










A small decline in the maximum NR value (NRmax) reached can be observed as it decreases from 91.9% to 88.6% over the investigated period. The minimum (NRmin) was constant each year as it represents cells which are completely covered by bare rock—this being the class with the lowest attributed importance (see Table 5).



Overall, no significant change can be observed for the investigated area. A spatially explicit description of changes based on the weighted Natural Resource Depletion is presented in Section 3.1.2.




3.1.2. Natural Resource Depletion


Based on the derivation of NR values for each grid cell their impact upon environmental integrity (EnvInt, 35%) and human security (HumSec, 65%) can be estimated. Their summarized temporal development is demonstrated in Table 6: The mean change of resources (NRDw mean) ranges between +0.379% (2015–2016) and −0.421% (2011–2015). This means that positive and negative changes widely balance within the study area. At no time are changes dominated in one direction only. This is even more clearly shown by the median, which is not given in the table, as it levels at 0.0 throughout all years. Still, there are some years which show a slightly higher impact than others. If the NRDw values of all grid cells are added together per year (NRDw net), values between 6.79 and −7.55 emerge. These reveal a more distinct view on the impact of changes over time. While the overall changes in the study area are around ±3, a more pronounced impact of −7.55 can be assigned to the period between 2011 and 2015 as a consequence of missing data for an annual change detection.



However, the large increase between 2015 and 2016 (+6.79) indicates that the remarkably low value in 2015 of (−7.55) is not only caused by the longer time span but also depicts a local negative peak which needs to be discussed in Section 4.



The main advantage of the NRDw is that a value of percentaged increase or decrease of landscape quality can be assigned to each grid cell. This allows for the spatial characterization of landscape changes and their impacts. The results are provided as maps for the image pairs throughout the investigated period as demonstrated in Figure 6. It shows where the environment within the study area changed during the investigated years and in which directions changes occured regarding the expert-based weights shown in Table 5. At a first impression, no clear trends can be recognized in the maps. In particular, the regions around Camp Djabal and Goz Beïda show no considerable decrease in environmental resources during the last ten years. Also, the Hadjer Arkop massif is predominantly stable during the investigated period. Variations in NR can well be observed around Wadi Aouada and its areas of higher and more developed vegetation. Whether these are just of seasonal nature or a steady development cannot be clarified by comparing single conditions within time-series. This will be addressed more specifically in Section 3.2. In general, the areas of strongest developments are shrubland in the Southeast of the study area and grassland-covered plains in the North.


Figure 6. Weighted Natural Resource Depletion Index (NRDw) for the study area during the investigated period. Note that, due to lack of available L-band SAR data, an annual investigation was not possible between 2011 and 2015.
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3.2. Overall Change and Variability of Natural Resources


As indicated in Section 2.5, attentive interpretation of change intensities requires information on the variability of the different grid cells. If an area shows moderate change between 2007 and 2017, but a high variability, as derived according to Figure 5, this area is either subject to higher intra-annual or inter-annual seasonal changes or to generally observable instabilities regarding the interrelations between related types of land cover (such as shrubland or grassland). In turn, if a low variability (smaller than 1.5) can be observed, changes are rather of long-term nature, such as trends in vegetation cover or transitions between types of land-use (bare soil to built-up areas). Figure 7 shows the changes as assessed by the NRDw between 2007 and 2017 in combination with the variability v per grid cell. While colors indicate the direction and severity of changes, line signatures within the grid cells indicate their variability. Developments can now be interpreted regarding their long-term information content and the affinity of an area towards changes. The indications from Section 3.1.2 can be affirmed and specified: There is no general loss of natural resources in the study area but certain areas are more prone to change than others. Areas around the settlements are almost stable whereas grids of both positive and negative development are accumulated at the South East of the study area. These result from the transition between forest and shrubland. Variability values of mostly above 2.00 indicate that this area is not gradually changing but generally prone to changes. Similar developments can be attached to Wadi Aouada where forest, shrubland, and grassland underlie both seasonal and inter-annual changes.


Figure 7. Weighted Natural Resource Depletion Index (NRDw) and variability for the study area between 2007 and 2017.
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General conclusions about the study area can be drawn based on the statistical distribution of the different variability values compared to their NRDw value as shown in Figure 8. It clearly demonstrates that areas of smaller variability (v < 2.00) form the majority in the study area whereas areas with distinctively high variability (v > 4.00) are very rare. It furthermore shows that areas with slight changes (±2%) are more frequent than areas with no change at all, especially for higher variabilities. This indicates that many areas within the study area are affected by smaller changes and show a relatively unsteady development. It is additionally interesting that areas of highest positive development (>8%) increase with larger variability. This leads to the conclusion that some of them may also result from misclassifications as the classes of high variability no longer show an equal distribution.


Figure 8. Frequency distribution of the variability of grid cells within the study area compared to their NRDw index for the time between 2007 and 2017. Note the logarithmic scaling of the y-axis.
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4. Discussion


Altogether, the proposed approach allows the derivation of detailed change maps along a series of SAR images which exceed the information content of standard transition matrices between classes. However, there are things to notice in both the ecologic and methodic domain. This section aggregates our findings in the perspective of landscape development and according to the requirements defined in the introduction.



4.1. Landscape Changes


One main point to report is that the landscape in the study area did not underlie large-scale changes, neither positively nor negatively. As shown in Figure 6, there in fact are certain hot spots of accumulated change over the investigated period, however, these did not add up to a gradual overall increase or decrease of landscape quality for larger areas.



Addressing anthropogenic impact on the investigated landscape, neither of the two main settlements of camp Djabal and the city of Goz Beïda, nor the plains within the Hadjer Arkop massif, had noticeable impact on their surrounding landscapes. These findings were expected in terms of no reported growth of these settlements during the investigated period [113,114,115]. It is still notable that this landscape did not negatively respond to the direct presence of human activities as arid savannas are often observed to be susceptible towards anthropogenic pressure [116]. One reason for the described stability within this area is the high amount of bare soil as a consequence of the relatively intensive agricultural use. Accordingly, their NR values were already quite low and only expansion of human settlements—or the transition from soil areas to bare rock—would have caused negative NRDw developments. In addition to that, no source of land degradation or desertification, as it might be indicated by transitions from vegetation to bare soil or soil to rock, could be observed among the bare rock areas of the Hadjer Arkop massif.



One region which was prone to many changes during the investigated period is Wadi Aouada, reaching from the West to the North of the study area. As it is the only area with vital vegetation of higher orders during the whole year, it is particularly prone to changes in external circumstances. A direct comparison of the NR of 2007 with 2017 (Figure 7) does not depict a clear image on which parts of the wadi underlay significant positive or negative developments. It can, however, be stated that the core area of the wadi did not change in a critical degree—for example, due to erosion or lesser subsurface drainage. Looking at the annual changes in Figure 6 indicates that there are some years where the wadi is subject to larger changes, notably 2008–2009 (positive) and 2010–2011 (negative). These observations could be linked to climatic variations. However, comparison to records of temperature and precipitation provided by the Climatic Research Unit (CRU) of University of East Anglia (UEA) [117] does not confirm these trends. As Figure 9 shows, the contrary could have been expected as a considerable decrease in precipitation occurred between 2008 and 2009, which in turn shows the most visible positive development within Wadi Aouada. So it can be concluded that climatic variations are most likely not responsible for the smaller changes within the wadi. We expect them to result from overall variation in the vegetation signature within the SAR data.


Figure 9. Monthly precipitation and temperature for the study area.
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Another mentionable point is the striking accumulation of negative NRDw values in for 2011–2015 in the North of the Hadjer Arkop massif near the center of the study area. However, the fact that this area is again strikingly positive for the subsequent image pair from 2015–2016 indicates that this anomaly is rather the outcome of a wrong classification. The low variability values in this area (Figure 7) furthermore support this indication and lead to the conclusion that this area is in fact stable regarding LULC and the assessed changes are wrong. Nevertheless, many larger changes for the period from 2011–2015 are realistic results obtained by the observed increment of 4 years instead of one. But this is one example of how investigating variabilities along a time-series can help to detect errors and check the results for plausibility.



To further test the overall condition of the landscape for interrelations with climatic conditions, we compared the sum of all NRDw values per year, (NRDw net), with the corresponding change in annual precipitation (Δprec) as shown in Table 7. We found a Pearson correlation coefficient of r = 0.47 between both variables which affirms that overall sum of natural resources could in fact fluctuate to a certain degree according to the water availability in the study area. A correlation of r = −0.61 was found for the relationship between NRDw net and the temporal baseline between the respective SAR images (SAR Δd), defined as the absolute difference in days from an optimum temporal difference between two images of 365 days. It seems obvious that potential changes increase if both images are not taken on the same day of the year. The larger the difference of two images regarding their time of acquisition (see Table 1), the higher is the risk of identifying changes related to phenology instead of identifying changes to overall development of a landscape.



Table 7. NRDw net values for the investigated time-steps compared to trends in precipitation (Δprec) and temporal baselines of the used SAR images (SAR Δd).







	

	
2007–2008

	
2008–2009

	
2009–2010

	
2010–2011

	
2011–2015

	
2015–2016

	
2016–2017

	
r (NRDw)






	
NRDw net

	
3.36

	
−0.66

	
0.28

	
−3.14

	
−7.55

	
6.80

	
2.833

	
1.00




	
Δprec

	
−37.7

	
−55.7

	
97.7

	
−49.9

	
−74.6

	
15.8

	
- *

	
0.47




	
SAR Δd

	
12

	
12

	
18

	
88

	
1078 **

	
8

	
12

	
−0.61








* Changes in precipitation could not be assessed between 2016 and 2017 as no all-season records were available at the time of the study. ** In order to not distort the statistics, the temporal baseline of four years was excluded from the calculation of r.








Lastly, the histogram in Figure 8 demonstrates how changes in the image can be interpreted regarding their long-term predication. Overall changes with low variabilities (between 1.00 and 1.50) make up 72% in our study. If frequencies are not equally distributed in both positive and negative directions, trends can be evaluated regarding their variability. We found that high variability values either indicate single misclassifications between scenes or, when spatially aggregated, characterize areas of constant change. In the latter case, intensities of changes should be interpreted with more care.




4.2. Methods


On the technical side the following points can be highlighted. As the first findings made by Braun et al. [23] indicated, the application of the NRDw concept from Hagenlocher et al. [104] is transferable to radar imagery of medium spatial resolution. This study was able to provide a framework more robust towards smaller misclassifications as they often occur in SAR data which is still flexible enough to be based on different sensors or to be transferred to other regions. The results created reflect different aspects of landscape changes: namely environmental integrity and human security which can be weighted according to the expertise and the needs of the user. The final maps include information on both spatial and temporal variation of landscape changes but are still easy to read and interpret. These maps highlight regions which require special attention and allow a more differentiated dealing with the outcomes.



ALOS PALSAR proved to be suitable for long-term landscape monitoring due to its long wavelength interaction with volume scatterers for the discrimination of different types of vegetation. It would have been interesting to observe how the study area changed annually in this perspective between 2011 and 2015 but no accessible L-band data is available for this period. It is however expected that other SAR sensors with similar archives such as ERS, Radarsat, and Envisat bear the same potential, especially at the temporal scale. Regarding seasonality, additional data at the middle or end of the rainy season would surely have substantially increased the validity of the approach as it could have been used to depict a clearer image of each year’s resources. However, this data was not available for all the investigated years. Future approaches surely should consider using a combination of several scenes at crucial points in the study area’s phenology which can be determined by the variation of NDVI, for example [118,119,120]. This would also decrease the weight of textural information in favor of additional seasonal effects.



However, the used textures were able to discriminate all selected LULC classes to a sufficient degree. As Table 3 and Table 4 demonstrate, Grassland was the class with lowest accuracies due to its indifferent degree of coverage in the study area and comparably low interaction with the L-band signal. Using these large numbers of input rasters surely requires classifiers based on machine-learning which extract the most valuable information. The random forest classifier performed efficient but other approaches, such as support vector machines (SVM) or artificial neuronal networks (ANN), can be employed as well for these kinds of analyses, especially when phenological variation is additionally introduced as suggested above [121,122].



The automatic and literature-based selection of training areas proved to increase the study’s credibility as it reduces the possible bias of manual sampling collection. In our case, field investigations were not possible due to security reasons but using optical data from Landsat grants for independency of the training and validation process from the actual image classification was possible. Also worth noting, optical data does not have to be complete or cloud free. As only the areas which consistently fulfilled the criteria listed in Table 2 throughout all images were used for possible locations of the randomized samples, we could flexibly deal with cloud coverage, burnt areas and missing scan lines in Landsat ETM+ products.



Smaller misclassifications occurred between classes with similar response to the radar signal as shown in Table 3 and Table 4. These could, however, be compensated by the creation of hexagon grid cells as a main unit of analysis. Each of them aggregates information of 1280 pixels and represents their percentaged share as one value of natural resources. This reduces the effect of ambiguities at the transition between two LULC classes and facilitates both the visual inspection and interpretation of results. Detailed changes at borders between two classes are no longer visible in this approach but since the fact that savanna ecosystems often consist of a mosaic of continuous LULC this is neither possible nor considered as reasonable. Shifts in phenology could, however, been better handled with an investigation over a longer time span. The longer the time-series of images, the more stable is the approach as it more clearly reveals outliers along the investigated period. ESA’s Sentinel-1 mission lays a solid foundation for multi-decade investigations as it was designed to continue the archived data of ERS and Envisat. All of them operate at C-band wavelengths and a comparable spatial resolution.



One crucial point is the definition of investigated LULC classes and their corresponding contribution to both environmental integrity and human security (see Table 5). As this has to be done at the beginning of the study, changes in the numbers of investigated classes can, of course, strongly affect the later results. If interest is placed on the change of a certain type of LULC, the definition of classes should be appropriate and respectively balanced in this context. Also, the expert-based weights have large influence on the evaluation of the changes. It is therefore advisable to include the expertise of as many people as possible, preferably from different domains (local population, humanitarian units, authorities, and other stakeholders). This not only provides for a balanced assessment of weights but also prevents the abuse of weights to intentionally target desired results. As Laczko & Aghazarm argue, research on the impacts of refugee camps upon their environment is needed but cannot act as the only argument for repatriation in political debates [123].



Lastly, the proposed variability can be a valuable measure for both the quality and the long-term information content of results. However, a way of normalization has to be performed when comparing index values along a temporal sequence. We used a rather basic model of change vectors as it met our requirements for the comparison of eight images. If longer or more detailed time-series are employed, the concept of variability has to be refined according to variation at different temporal scales—such as the differentiation between seasonal, inter-annual, and overall variation of a grid cell.





5. Conclusions


Our study showed that landscape changes can be analyzed by radar imagery in a transparent and adaptive way. It is not limited to certain landscape types or specific sensors, but requires a minimum number of consecutive images from the same time of the year. The proposed approach substantially contributes to field of post-classification change analysis as it overcomes limitations regarding the number of investigated scenes, the variation within the investigated time, and the occasionally criticized complexity of high-level approaches which cannot be adapted by users with limited technical or scientific background. It therefore serves as an ideal intermediate between innovative analyses and user-friendly, adaptable frameworks. These will gain further importance with the growing availability of archived and newly acquired SAR data for scientific, organizational, and commercial operational use.



The integration of user expertise about the relevance of land-use and land cover classes hinders the automation of the process but clearly improves the validity of the results. Attaching weights to the selected classes allows for the generation of an index which refines the results according to the knowledge of the user and the information he requires.



Although it did not reveal large scale trends in our study area, the proposed index is a good approach for a semi-automated evaluation of changes over long time spans and within greater regions. The use of radar data additionally reduces the dependency from atmospherically undisturbed conditions. All parts of the study were performed on free and open source tools (QGIS, ESA SNAP, OTB, Python) which allows for a transfer of the method onto other case areas. We encourage readers to implement and further improve the proposed approach in order to increase the quality of time-series analyses of radar data. This work is a first step towards new standards in change detection applications which are comprehensible and still specified to the users’ needs.
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