
remote sensing  

Article

A New Spatial Attraction Model for Improving
Subpixel Land Cover Classification

Lizhen Lu 1,*, Yanlin Huang 1, Liping Di 2,* and Danwei Hang 1

1 School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China;
hylgis@zju.edu.cn (Y.H.); hangdanwei@zjzhd.com (D.H.)

2 Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA 22030, USA
* Correspondence: llz_gis@zju.edu.cn (L.L.); ldi@gmu.edu (L.D.);

Tel.: +86-571-8795-1336 (L.L.); +1-703-993-6114 (L.D.)

Academic Editors: Qi Wang, Nicolas H. Younan, Carlos López-Martínez, Parth Sarathi Roy and
Prasad S. Thenkabail
Received: 14 January 2017; Accepted: 7 April 2017; Published: 11 April 2017

Abstract: Subpixel mapping (SPM) is a technique that produces hard classification maps at a spatial
resolution finer than that of the input images produced when handling mixed pixels. Existing spatial
attraction model (SAM) techniques have been proven to be an effective SPM method. The techniques
mostly differ in the way in which they compute the spatial attraction, for example, from the
surrounding pixels in the subpixel/pixel spatial attraction model (SPSAM), from the subpixels
within the surrounding pixels in the modified SPSAM (MSPSAM), or from the subpixels within the
surrounding pixels and the touching subpixels within the central pixel in the mixed spatial attraction
model (MSAM). However, they have a number of common defects, such as a lack of consideration of
the attraction from subpixels within the central pixel and the unequal treatment of attraction from
surrounding subpixels of the same distance. In order to overcome these defects, this study proposed
an improved SAM (ISAM) for SPM. ISAM estimates the attraction value of the current subpixel at
the center of a moving window from all subpixels within the window, and moves the window one
subpixel per step. Experimental results from both Landsat and MODIS imagery have proven that
ISAM, when compared with other SAMs, can improve SPM accuracies and is a more efficient SPM
technique than MSPSAM and MSAM.

Keywords: spatial attraction model (SAM); subpixel mapping (SPM); land cover; mixed pixel; spatial
distribution; hard classification

1. Introduction

Land use and land cover (LULC) information is very important in many scientific studies and
applications. Remote sensing is the only feasible way of obtaining LULC information for large
geographic areas. Many algorithms have been developed to classify various remote sensing data
to obtain LULC maps [1–4]. However, remote sensing images often contain mixed pixels, since the
sensor’s instantaneous field of view (IFOV) includes more than one land cover class [5,6]. The existence
of mixed pixels leads to three main problems which need be solved: (1) What classes of land cover
does a mixed pixel contain? (2) What are the proportions of land cover classes in a pixel? (3) What is
the subpixel spatial distribution of land cover classes [7]? For the first problem, end-member extraction
algorithms [8], such as the pixel purity index (PPI), N-FINDER, iterative error analysis (IEA), etc., have
been developed. For the second problem, soft or fuzzy classification algorithms, which allocate all
classes, in varying proportions, to each pixel [9], have been proposed. These algorithms can be broadly
categorized as linear spectral mixed models (LSMMs) and nonlinear mixture models [10–12]. Due to
the intrinsic complexity of the mixture modeling and the difficulty in obtaining scene parameters,
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nonlinear mixture models (NLMMs) have not been applied as widely as LSMMs [10,11]. For the third
problem, subpixel mapping (SPM) or super resolution mapping (SRM) methods, which produce hard
classified maps at a spatial resolution finer than that of the input images [13], have been developed
in recent decades. This paper focuses on SPM, which has been proved as an alternative method for
obtaining land use/land cover with an acceptable accuracy [14–19].

In 1993, Schneider first introduced a knowledge-based analysis technique for the automatic
localization of field boundaries in agricultural areas [20]. Atkinson formally proposed the concept of
SPM and mentioned that SPM can be considered as the post-processing of soft classification based
on spatial dependence theory [21]. With the assumption of spatial dependence, Verhoeye et al. [6]
proposed a spatial dependence mathematical model and employed linear optimization techniques to
find the maximum of the dependence. Considering each pixel as a neuron, Tatem et al. [22–24] and
Wang et al. [25] applied a Hopfield neural network (HNN) to map subpixel land cover. The HNN
increases the spatial correlation between neighboring subpixels and minimizes iterations to obtain
SPM results. Atkinson [13] utilized a two-point histogram method to optimize the match between
the target and the current realization of the two-point histograms for subpixel classes within pixels.
Atkinson [9,26] developed a pixel swapping algorithm (PSA) to maximize the spatial correlation
between neighboring subpixels, by changing the spatial arrangement of subpixels. PSA was initially
designed to work for binary-class images, and was later expanded to work on multiple-class
images [27–29]. Mertens et al. [30] proposed a subpixel/ pixel spatial attraction model (SPSAM)
to calculate the spatial attractions between subpixels and their neighboring pixels. In addition, the
Markov random field [31,32], genetic algorithms [33,34], and indicator cokriging-based geostatistical
methods [35,36], have also been successfully applied in SPM.

Among all of the aforementioned SPM methods, SPSAM has several advantages in terms of both
its simplicity and its explicit physical meanings [30]. For example, spatial attraction, which calculates
the spatial correlation between subpixels and their surrounding pixels, is used in SPSAM as a simple
tool to directly convey spatial dependence. Without requiring prior knowledge on the spatial structure,
which is essential in some learning-based SPM methods, such as a two-point histogram, indicator
cokriging-based methods, and genetic algorithms, etc., SPSAM can obtain satisfactory SPM results.
However, SPSAM ignores the uncertainty of the spatial distribution of subpixels within surrounding
pixels and fails to adequately consider the spatial correlation between subpixels within the central
pixel. Consequently, the SPM results obtained by SPSAM are noisy and its accuracy is limited [37].
Therefore, based on SPSAM, Wang et al. proposed a modified SPSAM (MSPSAM) [37] which estimates
the spatial attractions according to the distribution of subpixels within neighboring pixels. They also
proposed a mixed spatial attraction model (MSAM) for improving the SPM result. MSAM integrates
the spatial attraction from both the immediate surrounding subpixels of the current subpixel within
the central pixel, and all of the subpixels within the immediate neighboring pixels of the central pixel.

Among the abovementioned spatial attraction models (SAMs), MSAM is the only SAM which
considers the spatial attractions generated by not only the subpixels of neighboring pixels, but also the
subpixels of the central pixel. However, MSAM assumes that the spatial attraction of a subpixel being
considered (called the current subpixel hereafter) is only influenced by the neighboring subpixels,
instead of all the subpixels within the central pixel. Yet, according to the spatial dependence theory, the
subpixels within the central pixel can exert stronger spatial attractions than those within neighboring
pixels because they are spatially closer to the current subpixel. In MSAM, after spatial attraction of all
subpixels within the central pixel is calculated, the calculation moves to the next pixels. As a result of
this, the same set of subpixels within the neighboring pixels is used in calculating the spatial attraction
of all the subpixels within the central pixel. When the current pixel, of which the spatial attraction is
being calculated, is not located at the center of the central pixels, the subpixels within the pixel next
to the neighboring pixels, which are closer to the current pixel than many of the subpixels within
the neighboring pixels, are not considered. This results in the unequal treatment of attraction from
surrounding subpixels of the same distance.
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This study proposes an improved spatial attraction model (ISAM) to overcome the shortcomings
of MSAM. ISAM estimates the attraction value of the current subpixel at the center of a moving
window from all the subpixels within the window, and moves the window one subpixel per step, to
improve the SPM result.

2. Methodology

2.1. Subpixel Mapping (SPM): Theory

SPM aims to determine the most likely locations of the class fractions within a pixel. The general
methods of SPM include three steps: (1) Utilizing spectral mixture analysis models to obtain soft class
fraction (proportion) images at an original (coarse resolution) pixel resolution; (2) Dividing the original
pixels into a series of subpixels, assuming that one subpixel only contains a specific class, to determine
the number of subpixels for each class; (3) Applying spatial distribution features of classes and other
prior knowledge, to map the subpixel spatial distribution of classes. From the abovementioned steps, it is
obvious that the spatial distribution features of classes are the critical factor of SPM. A random subpixel
distribution of classes can be assumed if prior knowledge is lacking. However, according to the spatial
dependence theory, the land covers of two adjacent subpixels are more similar than those of two distant
subpixels. Therefore, Atkinson considered the spatial dependence theory as the basis for SPM [21].

Figure 1 illustrates the spatial dependence theory of SPM. It shows a raster grid of 3 × 3 original
(coarse resolution or mixed) pixels, with associated fractions of a specific class (Figure 1a). Each pixel
is divided into S2 subpixels (S is scale factor), each corresponding to 1/ S2 area of the original pixel.
Although both Figure 1b,c can present the possible results of the subpixel allocation of the gray class
corresponding to the indicated proportion in Figure 1a, according to spatial dependence theory, this is
more likely to represent the ground truth.
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(a) 3 × 3 coarse resolution pixels with the indicated proportion of a specific (gray) class; (b) and
(c) The possible results of the subpixel allocation of the gray specific class.

Based on Atkinson’s study [21], Verhoeye et al. [6] presented a mathematical model for SPM,
which transformed the SPM problem into one of assigning classes to the subpixels using linear
optimization techniques. Suppose that the coarse resolution pixels are to be divided into S2 subpixels.
The number of subpixels that have to be assigned to class c is NSPc and has been derived from soft
class fraction images. A measure for spatial dependence SDVc,j will be computed for class c at each
subpixel j. Each subpixel has to be assigned a value of one or zero for each class, one indicating an
assignment to a particular class. Following this, the problem of assigning each subpixel to a specific
class emerges, which has the maximum value of the spatial dependence.

The mathematical model can be expressed as Equation (1):

Maximize Z = ∑
c

∑
j

xcj · SDVcj (1)

where c ∈ {1, 2, . . . , C}, C is the total number of classes in the study case; SDVcj, the model key
parameter, respresents the spatial dependence values (SDV) of subpixel pj when it is assigned to class
c; xcj, the choice variable of subpixel pj when it is assigned to class c, is defined in Equation (2):
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xcj =

{
1, i f subpix pj is assigned to class c

0, otherwise
(2)

The model meets two constraints:

∑
c

xcj = 1 (3)

∑
j

xcj = NSPc (4)

Equation (3) means that only one subpixel can be assigned to a specific class and Equation (4)
means that the number of subpixels belonging to class c within an original pixel has to be NSPc.

2.2. SPSAM, MSPSAM, and MSAM

2.2.1. SPSAM

SPSAM was proposed based on the theory of spatial dependence. The assumptions of SPSAM
are: (1) the fraction values of neighboring pixels exert the attraction toward subpixels within a central
pixel; (2) a subpixel within the central pixel can only be attracted by pixels surrounding the central one;
and (3) other pixels are assumed to be too distant to exert any attraction. Assuming that closer pixels
attract the subpixel more than the distant ones, SPSAM calculates the attraction value of a neighboring
pixel to a subpixel, based on their Euclidean distance.

Figure 2 illustrates the labeled pixels and subpixels, the coordinate system, and the distance
between pixels and subpixels in SPSAM. A scale factor of S = 4 means that the original central pixel P11

contains 16 subpixels with labels: p44, p45, p46, p47, . . . , p74, p75, p76, p77. The distance between subpixel
pij within the central pixel and the neighboring pixel PMN can be defined as:

d
(

PMN , pij
)
=
√
[i + 0.5− S(M + 0.5)]2 + [j + 0.5− S(N + 0.5)]2

(i, j = 0, 1, . . . , 8; M, N = 0, 1, 2)
(5)

SDVc,ij, the attraction values of subpixel pij, which is assigned class c, by the neighboring pixels, can
be defined using Equation (6).

SDVc,ij = ∑M ∑N
1

d
(

PMN , pij
) Fc(PMN) (6)

where Fc(PMN) is the fraction value of class c of the neighboring pixel PMN .
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2.2.2. MSPSAM and MSAM

SPSAM estimates the spatial attractions of subpixel pij by the neighboring pixel, ignoring that
the other subpixels within the central pixel can exhibit spatial attraction toward the subpixel pij, and
the different spatial distribution of classes of the neighboring pixels can also have different spatial
attraction values. Therefore, Wang et al., 2012b, proposed MSPSAM and MSAM to improve the SPM
results. As illustrated in Figure 3a, MSPSAM calculates the spatial attractions of subpixel pij within the
central pixel for a given class by using all of the subpixels within the neighboring pixels that have been
assigned to the same class as the given class of subpixel pij. MSAM, illustrated in Figure 3b, computes
the spatial attraction of subpixel pij by using not only the subpixels within the neighboring pixels, but
also the neighboring subpixels of subpixel pij within the central pixel.
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2.3. Improved Spatial Attraction Model (ISAM)

Referring to PSA in Atkinson [9,26] and the modified pixel swapping algorithm (MPSA) in [29],
ISAM computes the spatial attractions of the current subpixel at the center of a moving window by
the surrounding subpixels within the window, which can be 2S + 1 times the size of the subpixel and
moves the window one subpixel per step. As an illustration of ISAM, Figure 4 shows that subpixel pij
within the central pixel Pcen is attracted by the surrounding subpixels within a moving window that is
double the size of the original pixel. In Figure 4, S is the scale factor, which divides an original pixel
into S2 subpixels, each corresponding to 1/S2 area of the original one.
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Therefore, defined in Equation (7), Jc,ij, the spatial attraction of subpixel pij which is assigned to
class c (c can be any class in the study case), can be estimated as an inverse-distance weighted function
of its surrounding subpixels within the moving window.

Jc,ij = ∑m ∑n

xc,ij

d
(

pmn, pij
) (7)

where d
(

pmn, pij
)

is the distance between subpixel pij and the surrounding subpixel pmn defined in
Equation (8), and xc,ij is a choice variable defined in Equation (9).

d
(

pmn, pij
)
=

√
(i−m)2 + (j− n)2 (8)

xc,ij =

{
1, i f subpixel pij and pmn are assigned to the same class c

0, otherwise
(9)

The mathematical model thus becomes Equation (10):

Maximize J = ∑c ∑i ∑j ∑m ∑n

xc,ij

d
(

pmn, pij
) (10)

The model constraints of ISAM are shown as Equations (11) and (12):

∑
c

xc,ij = 1 (11)

∑
i

∑
j

xc,ij = nc (12)

Equation (11) means that only one subpixel can be assigned a specific class, and Equation (12)
means that the number of subpixels that have to be assigned class c is nc, which has been determined
from the fraction images.

Based on spatial dependence theory, maximum J will be retrieved when the top nc subpixels
within the central pixel are assigned to class c.

The ISAM proposed in this study is similar to the MPSA proposed by Shen et al., 2009 [29], but
there are three differences between them, including: (1) the initialization of subpixel class allocation.
The former uses the random allocation and the latter allocates the subpixel class based on spatial
attractiveness; (2) the size of the moving window. The former’s is 2S + 1 times the size of the sub-pixel,
and the latter’s is unfixed; and (3) the calculation of the distance weighting parameter. The former takes
the Euclidean distance as the weighting parameter of two subpixels and the latter uses an exponential
model containing the Euclidean distance and a non-linear parameter. These differences make ISAM
computationally more efficient.

As seen for other SPM methods, theoretically, ISAM also has a few limitations, including: (1) the
classification accuracy of ISAM depends on the accuracy of the soft class fraction image, which is the
result of spectral mixture analysis; and (2) ISAM prefers a subpixel mapping H-resolution-case image,
of which the pixels are smaller than the objects of interest or landcover, to the L-resolution-case one, of
which the pixels are much larger than the objects of interest or landcover [38,39].

2.4. The Algorithm of ISAM

The algorithm flowchart of ISAM is shown in Figure 5, and the detailed steps of the algorithm are
given below:
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FOR each pixel//Select a pixel as the central pixel Pcen

FOR each subpixel pij within the central pixel
Initialize the column and row ranks for subpixels within a moving window around subpixel pij
FOR each class

FOR each subpixel pmn within the moving window
Calculate the spatial attraction of subpixel pij exercised by pmn

END FOR each subpixel pmn within the moving window
Summarize Jc,ij, the spatial attractions of subpixel pij exercised by subpixels within the

moving window
END FOR

END FOR
Sort SLSc (spatial location sequence for class c) by Jc,ij descending order
Choose top nc subpixels and assign them to class c, according to SLSc

Reassign the subpixels, which have been assigned to more than one class, to a specific class of
which the spatial attractions reach the maximum. Make sure every subpixel is uniquely assigned to
a specific class.

END FOR
Estimate Acc_c, the accuracies of SPM of current iteration step
IF Acc ≥ Acc_c or H = Hmax

break
ELSE

Acc = Acc_c
ENDIF

END FOR
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3. Experiments and Results

To test and validate the advantages of the proposed ISAM algorithm, this study compared the
SPM accuracies of ISAM with those of other SAMs by using Landsat OLI and MODIS imagery. ISAM,
SPSAM, MSPSAM, and MSAM were implemented with ENVI IDL 8.3, and the following experiments
were all accomplished in ENVI 5.1. A workstation computer with an Intel Quad 2.67 GHz processor
and 4 GB RAM was used for this study. In all experiments, the moving window for ISAM is set to
two original pixels plus one subpixel in size, so that the current subpixel is always at the center of
the window.

3.1. Experiment with Landsat OLI Imagery

3.1.1. Data Sets

A scene of the Landsat-8 Operational Land Imager (OLI) image with its identifier
LC81460322015267LGN00 was downloaded from the U.S. Geological Survey (USGS) official
website [40] and the region of interest (ROI) of 552 × 424 pixels in size was subset from the scene.
By applying a support vector machine (SVM, of which the training samples were selected through
visually interpreting both the high spatial resolution Google earth and the Landsat-8 images) to the
Landsat image of ROI, a hard land cover classification map, which is used as a reference map, was
created for the ROI at 30-m resolution. Then, by using a bi-cubic resampling algorithm, the land cover
map at the original 30-m resolution was aggregated to 60-, 120- and 240-m resolution to form soft land
cover fraction maps which were 276 × 212, 138 × 106, and 69 × 53 pixels in size, respectively.

3.1.2. Experiment Results

The accuracy is measured by comparing the SPM results from ISAM, SPSAM, MSPSAM,
and MSAM with the reference map. The Overall Accuracy (OA) and Kappa Coefficient (κ),
the most commonly used indices for classification accuracy assessment, are applied in this study.
The experimental results are displayed in Figures 6–8 and the accuracy measures are shown in
Tables 1–3. From Figures 6–8, a visual assessment of the image quality reveals that: (1) the SPM of
the four SAM algorithms can reveal more details than hard classification results at scale factors of
S = 2, 4, and 8; (2) the SPM from ISAM can obtain more details than those from other SAMs (see the
details within red rectangles in Figure 8c). From Tables 1–3, a quantitative comparison analysis proves
that: (1) the OA values of ISAM and the other SAMs at different scale factors are all above 95%, while
all κ values are greater than 0.92, which means that all SAMs are effective SPM techniques; (2) both
the OA and κ values of ISAM are the highest among all SAMs; (3) both the OA and κ values of all
SAMs decrease with an increase of the scale factor, since the bigger the scale factor is, the coarser the
aggregated image can be, and the less the detail of an initial image can convey; (4) the OA and κ of
SPSAM are lower than those of MSPSAM and MSAM when the scale factor, S, is 2 or 4, while OA and
κ of SPSAM are higher than those of MSPSAM and MSAM when the scale factor, S, is 8. From both
visual and quantitative assessments, it is concluded that ISAM is a more accurate SPM technique than
the other SAMs. From Tables 1–3, it can be also found that OA and κ of the four SAMs decreases
by about 1.816%~4.035% and 0.029~0.065, respectively, when the scale factor S increases from 2 to 8.
The sensitivity of the scale factor to the accuracy of the four SAMs is not obvious in this experiment
and S can be determined according to the goal of experiment.
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Table 1. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type
Accuracies (Scale Factor S = 2)

Overall Accuracy (OA, %) Kappa Coefficient (κ)

ISAM 99.806 0.996
SPSAM 97.970 0.967

MSPSAM 99.629 0.994
MSAM 99.781 0.996

Table 2. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type
Accuracies (Scale Factor S = 4)

Overall Accuracy (OA, %) Kappa Coefficient (κ)

ISAM 98.776 0.980
SPSAM 95.852 0.933

MSPSAM 98.116 0.969
MSAM 98.734 0.979

Table 3. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type
Accuracies (Scale Factor S = 8)

Overall Accuracy (OA, %) Kappa Coefficient (κ)

ISAM 96.671 0.947
SPSAM 96.154 0.938

MSPSAM 95.594 0.929
MSAM 96.001 0.936
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The comparison results of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM
are shown in Table 4 when the scale factor S is set to 8 and the image size is 424 × 552 subpixels.
Among the four SAMs, SPSAM needs the fewest number of iterations and the least time to achieve the
optimal results, while ISAM needs three more iterations than SPAM, but one and five iterations fewer
than MSPSAM and MSPSAM, respectively. Furthermore, ISAM reduces to almost 900 s per iteration
or 2.2 h and 7.8 h less per entire computation than MSPSAM and MSPSAM. In other words, ISAM is
more efficient than MSPSAM and MSPSAM, but less efficient than SPSAM. The reason for this is that
SPSAM only considers the attraction from eight neighboring pixels at the original resolution to the
subpixels of the central pixels, resulting in a significant reduction in the computational requirement,
while the others all consider the attraction from the subpixels of the neighboring pixels. Although
the computing power is not a significant limit factor nowadays for processing remote sensing images,
timesaving is significant if applying the ISAM algorithm to large-scale subpixel hard classification,
which may need to classify hundreds of remote sensing images, instead of MSPSAM and MSAM.
Nevertheless, if the computational efficiency is the main concern, SPSAM is the better choice since it is
67 times faster than ISAM.

Table 4. The comparison of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM
(scale factor S = 8).

Iterations ISAM SPSAM MSPSAM MSAM

Steps 4 1 5 9
Optimization time per step (s) ≈4000 240 ≈4890 ≈4890

3.2. Experiment with MODIS Imagery

3.2.1. Data Sets

The experiment in this section, taking the land cover classification results from the Landsat OLI
image with the support vector machine (SVM) as the reference map, focuses on extracting the subpixel
land cover from MODIS imagery.

The MODIS image, which covered the area of the Landsat OLI image and was acquired on
16 May 2014, was downloaded from the U.S. NASA official website [41]. The MODIS image was
re-projected from Sinusoidal to Universal Transverse Mercator (UTM) projection with the MODIS
Re-projection Tool (MRT), so that it could be co-registered with the Landsat image. Smoothing
filter-based intensity modulation (SFIM) [42] was utilized to sharpen the MOD09GA bands 3–7 data to
a 250-m pixel resolution of the MOD09GQ bands 1–2. After using the pixel purity index (PPI) method
to select the end member of the land cover classes, the linear spectral mixing model (LSMM) was
applied to extract the soft classification fraction from MODIS bands 1-2 and sharpened bands 3–7 data.

The Landsat OLI image (data identifier: LC81460322014136LGN00), which was acquired on the
same day as the MODIS image, was downloaded from the U.S. Geological Survey (USGS) official
website [40]. The Landsat image then was strip-repaired, atmospherically corrected, ROI clipped, and
resampled into a pixel resolution of 31.25 m, to meet the requirement of SPM from the 250-m resolution
MODIS image with an integral number of scale factors. The preprocessed image was used to extract
the land cover classification map, which was used as the ground truth in this MODIS experiment, by
utilizing the support vector machine (SVM).

3.2.2. Experiment Results

Setting scale factor S to 8, the subpixel resolution of the MODIS image will be 31.25 m, the same
as the reference map. The soft classification fraction image is used as the input to the SPM algorithms
of ISAM, SPSAM, MSPSAM, and MSAM. Similar to the experiment with the Landsat OLI image, the
accuracy is measured by comparing the SPM results of ISAM and the other SAMs with the reference
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map. The SPMs from different SAM algorithms are displayed in Figure 9 and the accuracy measures
are shown in Table 5.Remote Sens. 2017, 9, 360  12 of 15 
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Figure 9. The comparison of subpixel mapping results among ISAM, SPSAM, MSPSAM, and MSAM
(Scale factor S = 8; Mask represents the class of nonagricultural land; PML represents the class of plastic
mulched landcover which is a type of farmland covered by plastic mulch film): (a) The classification
results from Landsat data; (b) The hard classification results at scale factor S; (c–f) the results from
ISAM, SPSAM, MSPSAM, and MSAM, respectively.

Table 5. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM (Scale factor
S = 8).

Accuracies ISAM SPSAM MSPSAM MSAM

Overall accuracy (OA, %) 82.44 70.22 82.13 82.25
Kappa coefficient (κ) 0.66 0.46 0.66 0.66

By making a visual assessment of SPM maps in Figure 9, it can be found that the SPM map from
ISAM contains more details than those from other SAMs. For instance, the details within the red
rectangular areas in the SPM Map from ISAM match the same areas in the reference map much better
than those from other SAMs. Table 5 shows that the OA of the SPM results from ISAM is 82.44%, which
is higher than those of other SAMs; and κ is 0.66, which is higher than that of SPSAM and is equal
to those of MSPSAM and MSAM. From both a visual assessment and quantitative analysis, it can be
concluded that ISAM is more effective than other SAMs in SPM.

The comparison results of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM
are shown in Table 6. Among the four SAMs, SPSAM is the most efficient SPM technique, while ISAM
is the second most efficient one.

Comparing ISAM with SPAM, OA and κ increase by 12.22% and 0.2, respectively, in the
experiment with MOIDS (though the accuracies of ISAM increase slightly, compared with SPSAM, and
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MSPSAM and MSAM in the experiment with Landsat). Therefore, ISAM can improve SPM accuracies
more than SPSAM and is a more efficient SPM technique than MSPSAM and MSAM.

Table 6. The comparison of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type
Scale Factor S = 2 Scale Factor S = 4 Scale Factor S = 8

Optimization
Time per Step (s) Steps Optimization

Time per Step (s) Steps Optimization
Time per Step (s) Steps

ISAM 1.18 3 5.20 4 35.30 5
SPSAM 0.90 1 1.10 1 2.6 1

MSPSAM 1.20 3 5.60 4 40.25 6
MSAM 1.25 3 6.80 7 47.10 11

4. Conclusions

In order to overcome the defects in the existing SAM techniques, this study has proposed an
improved SAM (ISAM) for SPM, through extending the existing SAM techniques. Instead of computing
the spatial attraction by the surrounding pixels in SPSAM, or by the subpixels within the surrounding
pixels and the touching subpixels within the central pixel in MSAM, ISAM estimates the attraction of
the current subpixel at the center of a moving window by using all of the subpixels within the window
and moves the window one subpixel at a time. The design of the algorithm is more straightforward
and logically consistent than existing SAM algorithms, resulting in the simplification of the algorithm
implementation and efficiency in the algorithm execution. Experimental results from both Landsat
and MODIS imagery show that ISAM improves the SMP accuracy over the existing SAMs and is
computationally more efficient than SPSAM and MSAM. Overall, ISAM is an effective and efficient
technique for SPM.
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