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Abstract: The new IMERG and GSMaP-v6 satellite rainfall estimation (SRE) products from the Global
Precipitation Monitoring (GPM) mission have been available since January 2015. With a finer grid box
of 0.1◦, these products should provide more detailed information than their latest widely-adapted
(relatively coarser spatial scale, 0.25◦) counterpart. Integrated Multi-satellitE Retrievals for GPM
(IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) assessment is done
by comparing their rainfall estimations with 247 rainfall gauges from 2014 to 2016 in Bolivia.
The comparisons were done on annual, monthly and daily temporal scales over the three main
national watersheds (Amazon, La Plata and TDPS), for both wet and dry seasons to assess the
seasonal variability and according to different slope classes to assess the topographic influence on
SREs. To observe the potential enhancement in rainfall estimates brought by these two recently
released products, the widely-used TRMM Multi-satellite Precipitation Analysis (TMPA) product is
also considered in the analysis. The performances of all the products increase during the wet season.
Slightly less accurate than TMPA, IMERG can almost achieve its main objective, which is to ensure
TMPA rainfall measurements, while enhancing the discretization of rainy and non-rainy days. It also
provides the most accurate estimates among all products over the Altiplano arid region. GSMaP-v6 is
the least accurate product over the region and tends to underestimate rainfall over the Amazon and
La Plata regions. Over the Amazon and La Plata region, SRE potentiality is related to topographic
features with the highest bias observed over high slope regions. Over the TDPS watershed, the high
rainfall spatial variability with marked wet and arid regions is the main factor influencing SREs.
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1. Introduction

Accurate rainfall estimation is crucial to monitor long- and short-term hydro-climatologic
variations. Drought and flood scenarios can be predicted or understood from the rainfall analysis,
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protecting the local environment and increasing population security. In remote regions, few
meteorological stations are available and are unevenly distributed due to difficulties of access for
installation and maintenance. Over the last few decades, numerous Satellite Rainfall Estimates (SREs)
were made available from different organizations allowing a high quality of rainfall monitoring over
the same periods. Nowadays, a new generation of SREs is being made available to ensure continuity in
rainfall monitoring, addressing previous SREs’ deficiencies related to aging sensors. Two SRE groups,
which are derived from the Global Precipitation Monitoring (GPM) mission launched on 27 February
2014, are now available. They are the Integrated Multi-satellitE Retrievals for GPM (IMERG) and
the GPM Global Satellite Mapping of Precipitation (GSMaP-v6). Available at a 0.1◦ and half-hourly
and hourly temporal scales, respectively, they offer the opportunity of capturing finer local rainfall
variations in space and time. Data is available from March 2014 to present. However, IMERG and
GSMaP-v6 products were released in early January 2015 and, thus, few studies have assessed their
potentiality yet. A study compared IMERG, with TRMM Multisatellite Precipitation Analysis (TMPA)
on a global scale at a monthly temporal step [1]. Differences between IMERG and TMPA estimates
were related to surfaces type and precipitation rates with a tendency for IMERG to better capture
major heavy precipitation regions. Over India, on a daily scale and using rain gauges as a reference,
IMERG is more suitable to represent monsoon rainfall than GSMaP-v6 and TMPA gauges adjusted
versions while GSMaP-v6 slightly outperformed IMERG and TMPA over low rainfall Indian regions [2].
Over Iran, in comparison with gauges measurements, IMERG daily estimates are more accurate than
TMPA considering categorical and quantitative statistical analysis [3]. Over China, in comparison
with rain gauge estimates, IMERG monthly estimates are more accurate than TMPA [4] with the
same observations made at daily and sub-daily scales [5]. Due to the small number of publications
about GPM-derived SREs, there is still a need for more assessment studies in other regions of the
globe. This is even true when considering GSMaP-v6 as there is only one study reported on its
accuracy assessment [2]. In this context, we assessed for the first time IMERG and GSMaP-v6 over
Bolivia, using 247 rain gauges as a reference. Bolivia is a very interesting region for such studies,
as it includes very wet, wet, and semi-arid to arid regions corresponding to the Amazon, La Plata
and Altiplano watersheds, respectively. Therefore, the SREs can be assessed for both heavy and low
rainfall amounts as well as intensity. These regions are separated by the Andean Cordillera resulting
in high elevation variation ranging over the country from few hundred meters to more than 6000 m.
Thus, variable rainfall processes are observable and the SREs ability can be evidenced in relation
to dominant rainfall processes. Here, IMERG and GSMaP-v6 are assessed for the very first time in
Bolivia at annual, monthly and daily scales over the three main hydrological watersheds (Altiplano,
Amazon and La Plata) separately for both wet and dry seasons. Topography is a well-known factor
influencing SREs and, generally, SREs are more biased over mountainous regions than over relative
flat regions [6–8]. Therefore, a complementary analysis regarding the topographic influence is done
by assessing SREs’ potentiality over different slope classes for each national watershed separately.
In previous studies [9,10], TMPA was found to provide the most accurate SREs over the country,
in comparison to Climate prediction center MORPHing (CMORPH), Precipitation Estimation from
remotely Sensed Information using Artificial Neural Networks (PERSIANN), GSMaP-v5, Climate
Forecast System Reanalysis and Reforecast (CFSR) and Modern-Era Retrospective Analysis for Research
and Application (MERRA) products considering annual, monthly and daily rainfall amount. Thus,
TMPA is considered to observe the potential enhancement brought by IMERG and GSMaP-v6 products.

2. Materials and Methods

2.1. Study Area

Bolivia is located in central South America with an extent close to 1,100,000 km2. Elevation ranges
between 75 and 6549 m following an increasing east-west pattern from the Amazon to the Altiplano
region. Bolivia can be divided into three main watersheds: The Titicaca, Poopó, Desaguadero and
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Salar system (TDPS), La Plata and Amazon with a superficial extent of approximately 149,000, 226,000
and 716,000 km2, respectively (Figure 1a). The Altiplano region is trapped between the occidental and
oriental cordillera at a mean elevation of 4000 m with mean slope value of 4.7◦ [11,12]. The climate
throughout the region is semi-arid with mean rainfall of 350 mm (1998–2015). According to SRTM
and TMPA data [9,12], the Amazon region is located at a mean elevation of 680 m with a mean slope
value of 5.3◦ and a mean annual rainfall of 1550 mm (1998–2015). Finally, the La Plata watershed
presents a mean elevation of 1350 m for a mean slope value of 7◦ and a mean annual rainfall of 850 mm
(1998–2015).
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Figure 1. The study area (a) with the number of rain gauges included in studied 0.25◦ SREs pixels
(b) 0.25◦ mean slope pixel derived from SRTM-GL1 (c) and mean monthly rainfall amounts derived
from TMPA for the 1998–2015 period for each considered regions (d–f).

2.2. Datasets

IMERG is a product of the National Aeronautics and Space Administration (NASA). Rainfall
estimate algorithms involve components from the previous algorithms of TMPA, CMORPH and
PERSIANN rainfall estimates. IMERG uses both passive microwave (PMW) and infra-red (IR) sensors
available from Low Earth Orbital (LEO) and geostationary satellites, respectively. Firstly, rainfall
estimates are derived from PMWs using the Goddard profiling algorithm 2014 (GPROF2014) [13] and
IR rainfall estimates provided by the Climate Prediction Center (CPC). Then, the CMORPH–Kalman
filter Lagrangian time interpolation is used to produce half-hourly estimates from PMW and IR
estimates. Finally, an adjustment of rainfall estimates is made by using the Global Precipitation
Climatology Centre’s (GPCC) figures for monthly precipitation. Three stage levels of IMERG rainfall
estimates are available, and are called Early-, Late- and Final Run, respectively. The Early- and Late
Run only use PMW and IR data while the Final Run includes a GPCC adjustment. All the products
are delivered at half-hourly, daily and monthly scales on at 0.1◦ grid box. In this study, we used the
IMERG Final Run (called IMERG hereafter).

GSMaP-v6 is a product of the Japan Science and Technology (JST) agency under the Core Research
for Evolutional Science and Technology (CREST). GSMaP-v6 uses a combination of PMW and IR data
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from CPC. The algorithms used to retrieve the rainfall rate from PMWs utilize brightness temperature.
IR data from CPC merged at 4 km are used to increase the temporal and spatial resolutions. To do so,
a Kalman filter refined PMW rainfall estimation propagation by using the atmospheric moving vector
derived from two successive IR images [14]. In comparison to the previous GSMaP-v5, GSMaP-v6
includes new algorithms to enhance rainfall estimates over land and ocean [15]. GSMaP-v6 is available
in the form of near-to-real-time and post-adjusted versions. In this study, we used the post-adjusted
version of the GSMaP-v6 gauge, which is gauge-adjusted by using daily CPC global rain gauge data set.

TMPA is a product of NASA in collaboration with the Japan Aerospace Exploration Agency
(JAXA). It provides rainfall estimates at a 0.25◦ spatial resolution over 50◦N to 50◦S at a 3-hourly
temporal scale. Passive microwave (PMW) radiometers on board LEO satellites are used to estimate
rainfall rates. IR data from the CPC of the National Weather Service/NOAA (CPC-IR here-after), from
the Meteorological Operational satellite program (MetOp) and from the 0.07◦ Grisat-B1 are used to fill
the gaps between PMW measurements [16]. There is a Real Time version (TMPA-RT v7) based only on
PMW and IR data, and an adjusted version (TMPA-Adj v7) using gauge-based data from GPCC and
Climate Assessment and Monitoring System (CAMS). In this study, we used the TMPA-Adj v7 (called
TMPA hereafter).

The Servicio Nacional de Hidrología y Meteorología (SENAMHI) of Bolivia is in charge of the
national hydro-meteorological network stations. For this study, SENAMHI provided the daily rainfall
data of 247 stations over the regions for the 2014–2016 period. TDPS, La Plata and Amazon regions
count with 37, 111 and 99 rain gauges, respectively (Figure 1a). The stations are distributed on 233 SRE
0.1◦ and 187 SRE 0.25◦ spatial resolution pixels.

2.3. Method Used

2.3.1. Pre-Process

For the inter-comparison with TMPA, GSMaP-v6 and IMERG were resampled to the 0.25◦ grid
box [4]. To do so, GSMaP-v6 and IMERG were first sampled from 0.1◦ to 0.05◦, then the rainfall at
the 0.25◦ was obtained by taking the mean rainfall value of the 5 pixels (0.05◦) included into the 0.25◦

pixel. At each rain gauge location, daily and monthly rainfall series were derived from the gauges
and the corresponding TMPA, IMERG and GSMaP-v6 pixels. GSMaP-v6 and IMERG were cumulated
from hourly and 30 min, respectively, to derive daily and monthly temporal series at 0.25◦ and 0.1◦

resolution. TMPA was cumulated from 3-hourly to derive daily and monthly temporal series at 0.25◦

resolution. When various gauges were available on a single pixel (Figure 1b), the mean rainfall value
of all gauges included in the corresponding pixel was computed.

Finally, the digital elevation model SRTM-GL1 [12] was used to derive the mean slope value in
the 0.25◦ grid box (Figure 1c). Slope values were computed at the native 1 arc second SRTM-GL1
mesh-size and resampled to the 0.25◦ grid box by meaning the slope value corresponding to each 0.25◦

grid box.

2.3.2. Comparison Methodology

First, annual rainfall maps were generated from IMERG and GSMaP-v6 at both 0.1◦ and 0.25◦

scales and from TMPA at 0.25◦ resolution to highlight the SREs’ ability to represent regional patterns
(Figure 2). For comparison, a rainfall map was derived from the 247 available gauges at the 0.25◦ using
the Inverse Distance Weight (IDW) interpolation. Additionally, comparisons between gauges and SREs
were done at the national scale and for each watershed separately, considering Coefficient Correlation
(CC), Root Mean Square Error (RMSE) in percent and Bias in percent at both 0.1◦ and 0.25◦ grid box
(Table 1).

Secondly, SREs were assessed at the monthly scale by comparing monthly SREs and gauge
estimates. Comparisons between gauges and SREs were done at the national scale and for each
watershed separately. At each considered spatial scale, CC, RMSE, Bias and Standard Deviation (STD)
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were computed considering all months and for dry and wet seasons, separately, to observe the seasonal
variability in the SREs’ ability. Wet and dry seasons extend from November to March and from April
to October, respectively (Figure 1d–f). For IMERG and GSMaP-v6, statistical scores were computed at
both 0.1◦ and 0.25◦ scales to observe the potential enhancement introduced by the finer 0.1◦ resolution.
To facilitate the interpretation of CC, RMSE and STD, the results are presented in form of Taylor
diagram [17] (Figure 3). The Taylor diagrams allow a direct comparison between SREs by offering
the opportunity to consider STD, CC and RMSE as a whole. RMSE and STD values were normalized
to allow comparison between watersheds as rainfall amounts differ from one to another watershed
(Figure 1d–f). The normalization process was made by dividing the SREs RMSE and STD values by
the STD of the reference. As a result, in the Taylor diagrams, the reference is represented by the dot
black point in which, the STD, RMSE and CC values are equal to 1, 0 and 1, respectively. Therefore, the
lower the distance between the SREs and reference, the closer the SREs and reference rainfall estimates
are. Additionally, Bias values are presented in Table 2 to observe the potential over/under estimation
of each considered SRE. RMSE in percent and CC are also presented in Table 2 to complete the Taylor
diagram analysis. To observe the topographic influence on monthly SREs from TMPA, IMERG and
GSMaP-v6, a supplementary analysis was performed. For each national watershed (Amazon, La Plata
and TDPS) the mean slope value at each 0.25◦ pixel derived from SRTM-GL1 (Figure 1c) was used to
separate the 187 0.25◦ grid box pixels in 5 slope classes. The five considered slope classes are 0◦–2.5◦,
2.5◦–5◦, 5◦–10◦, 10◦–15◦ and >15◦. Each class gathered, respectively, 23, 5, 7, 22 and 26 pixels for
the Amazon region, 8, 1, 12, 32 and 19 pixels for the La Plata region and 8, 10, 11, 2 and 0 pixels for
the TDPS region. For each region and classes, CC, RMSE and Absolute Bias (AB) were computed
considering all months (Figure 4 and Table 3). The seasonal assessment of this study shows high
variation in Bias values oscillating between positive and negative value according to the considered
season. Thus, to avoid seasonal effects on the interpretation of result, we preferred the use of the AB
value instead of bias value. The assessment was not done at the national scale as topographic effects
are expected to vary in function to the regional rainfall pattern. Therefore, topographic effects would
be different from one region to another and difficult to observe at the national scale. The analysis was
only performed at the 0.25◦ grid box size as close to similar accuracy in IMERG and GSMaP-v6 are
observed for 0.1◦ and 0.25◦ grid box size.

Finally, a daily analysis using categorical statistical analysis was done considering both all days
and wet and dry seasons, separately. Rainfall amounts were considered as discrete values with only
two observable cases: rainy day or not. A rainy day is considered when the precipitation amount is
greater than or equal to a prescribed threshold (mm day−1). For pixels including more than one rain
gauge, the mean daily rainfall from all rain gauges was considered. It is noteworthy that some authors
consider a pixel to be rainy when any of the gauges observed a rainfall amount greater or equal to the
prescribed threshold. This consideration allows the consideration of the rainfall variability at the pixel
scale [6]. However, such consideration requires the availability of various gauges into the considered
pixel. In this study, only a few pixels count for more than one rain gauge and are mainly located over
the La Plata region. Therefore, to get a homogeneous assessment over the entire study area, we did not
use such a methodology. Here, we fixed the threshold value to 1 mm day−1, as used by [18]. Four cases
are possible: both SRE and rain gauge report a rain event (a), only SRE reports a rain event (b), only
rain gauge reports a rain event (c) or neither SRE nor rain gauge report a rain event (d).

According to this characterization, several statistical parameters can be computed: the Probability
of Detection (POD), the False Alarm Ratio (FAR), the Critical Success Index (CSI) and the Bias (B)
(Equations (1)–(4)) [9,18–23].

POD =
a

(a + c)
(1)

FAR =
b

(a + b)
(2)
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CSI =
a

(a + b + c)
(3)

B =
(a + b)
(a + c)

(4)

POD is an indicator of the SRE’s ability to correctly forecasts rain events. Values vary from 0 to 1,
with 1 as a perfect score.

FAR is an indicator of how often SREs detect a rain event when, actually, it does not occur.
Values vary from 0 to 1, with 0 as a perfect score. FAR is also represented in form of the Success Ratio
(SR = 1 − FAR).

CSI is the ratio between the number of a rain events correctly detected by the SRE and the number
of all rain events registered by the gauge and the SRE data. Values vary between 0 and 1 with a perfect
score of 1.

B is the ratio of satellite rain estimates to actual precipitation events. A B value above or
below 1.0 implicates that the SRE overestimates or underestimates the number of rain events in
a considered period.
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In the same way as for the monthly analysis, the results are presented in form of a synthesis
diagram to consider POD, FAR, CSI and B as a whole in order to facilitate SREs’ inter-comparison.
The performance diagram [24] is used in this study as it was previously used for daily rainfall analysis
over the Brazilian Amazon region [18]. The geometric relationship between SR, POD, B and the CSI
is used to construct the performance diagram. Thus, the perfect forecast is lying in the upper right
region of the diagram (Figure 5). Additionally, POD, FAR, CSI and B values are presented in Table 4 to
complete the Performance diagram analysis. To complete the assessment, SREs’ potentiality at the
daily scale was also assessed, considering the mean slope classes used at the monthly scale. For each
watershed, POD and FAR were computed for TMPA, IMERG and GSMaP-v6 for all considered classes
(Figure 6). The topographic analysis was only performed at the 0.25◦ grid box size as close to similar
accuracy in IMERG and GSMaP-v6 are observed for 0.1◦ and 0.25◦ grid box size.

3. Results and Discussion

3.1. Annual Scale

Figure 2 represents the annual rainfall maps for IMERG, GSMaP-v6 and TMPA for the 2014–2015
hydrological year. Over the region, with regard to annual maximum a great discrepancy is observed
between SREs. A maximum value close to 3000, 5000 and 6400 mm year−1 is observed for GSMaP-v6,
TMPA and IMERG. These high annual rainfall amount values are related to the especially strong
ENSO anomaly which occurred that year, causing historical flooding in the Amazon watershed [25].
TMPA and IMERG seem more sensitive to extreme rainfall than GSMaP-v6 with higher rainfall amount
observed which are closer to the maximum observed from gauge measurements (Figure 2). Similar CC,
RMSE and Bias value from both IMERG and TMPA were obtained while GSMaP-v6 considerably
underestimated rainfall amount by 30% (Table 1).

In the Amazon region, the two previously-evidenced rainfall hotspots [26] in the north-west
corner and central amazon region are well detected by all SREs. In a general sense, GSMaP-v6 rainfall
pattern is smoother than IMERG and TMPA. For example, over the TDPS, GSMaP-v6 has better
captured the typical north-south decreasing rainfall patterns. However, the rainfall amount was poorly
retrieved from GSMaP-v6 with the lowest CC and highest Bias and RMSE value among considered
SREs and for all considered regions (Table 1).

TMPA and IMERG rainfall patterns are very close as they include very similar sensors and
algorithm to retrieve rainfall. It is noteworthy that TMPA presents some spurious pixels with anomalous
rainfall amounts relative to their neighboring pixels. This is clearly observable over the TDPS southern
western parts. These pixels were well removed from IMERG estimates. This feature was already
observed in China [4]. Here and in China, this occurs over regions with low rainfall amounts, showing
TMPA difficulty over arid regions and the enhancements brought by the new IMERG over TMPA.
In the actual context of climate variability and increased water usage for agriculture purpose over the
TDPS region [27], IMERG offers great potential for regional monitoring and protection.

Indeed, IMERG presents a slightly better statistical score than TMPA over the TDPS region
(Table 1). The finer 0.1◦ grid box size did not provide more accurate SREs, with similar statistical scores
being observed for IMERG and GSMaP-v6 for all considered regions.

Table 1. Annual Bias (%), RMSE (%) and CC for TMPA, IMERG and GSMaP-v6.

TMPA IMERG GSMaP-v6

Bias RMSE CC Bias RMSE CC Bias RMSE CC

0.25◦ 0.25◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦

Bolivia 3.6 55.4 0.8 4.1 3.4 55.6 55.9 0.79 0.79 −25.1 −25.1 81.1 81.2 0.52 0.53
Amazon 1.8 53.4 0.76 3.1 3.5 52.8 52.3 0.78 0.77 −31.5 −30.7 83.5 81.3 0.38 0.38
La Plata 6.2 45.1 0.7 8.3 5.7 51.6 52.8 0.6 0.59 −19.7 −19.4 53.8 54.5 0.6 0.6

TDPS 7.9 54 0.63 −6.1 −5.6 49 51.5 0.68 0.67 −4.1 −2.8 55.9 56.8 0.53 0.54



Remote Sens. 2017, 9, 369 9 of 16

3.2. Monthly Scale

Figure 3 presents the Taylor diagram for monthly rainfall for all the considered regions. Generally,
all SREs performed better during the wet season than during the dry season. During dry seasons,
rainfall amounts are lower and shorter in time, making their detection complicated by PMWs
sensors [28,29]. During wet seasons for all considered regions, TMPA presents CC higher than
0.7, RMSE close to 50% and Bias values into the −10%–10% intervals (Table 2; Figure 3). These specific
values were previously defined as objective values to ensure the good performance of SREs at monthly
scale [9,10,19,30]. Results over the TDPS and for TMPA are in line with a previous study of the
2005–2007 period [9] with similar CC, RMSE and Bias values. Thus, the change in calibration procedure
due to the end of TRMM Precipitation Radar estimates in October 2014 did not have a significant
impact on TMPA rainfall estimates over Bolivia.

Regarding IMERG, at the 0.25◦ mesh size and global scale, statistical results are very close to
TMPA and thus IMERG keeps on measuring rainfall at the same accuracy level as TMPA (Figure 3,
Table 2). However, during the wet season, TMPA is slightly more suitable than IMERG due to its closer
relative position to the dot-pointed reference (Figure 3); and IMERG is slightly more accurate than
TMPA during the dry season, with lower Bias and RMSE and higher CC (Figure 3 and Table 2).

Some discrepancies are observed along the considered regions. Over the Amazon region, IMERG
and TMPA performances are very similar (Figure 3), with close Bias, CC and RMSE values (Table 2).
As for the global scale (Bolivia), TMPA slightly outperforms IMERG during the wet season and the
opposite case is observed during the dry season (Figure 3, Table 2). Over the TDPS region, IMERG
outperforms TMPA for all the considered seasons (Figure 3). This confirms the annual observation,
with some pixels anomalously biased in relation to their neighboring pixels in both this study and
that conducted over a similar region in China [4]. However, IMERG still slightly underestimates
monthly rainfall amounts, as a negative bias of −18.2% is observed (Table 2). A higher discrepancy
between IMERG and TMPA is observed over the La Plata river watershed. In this region, TMPA
highly outperforms IMERG during the wet season with lower RMSE and higher CC (Figure 3; Table 2).
Over this region, reference rainfall amounts are lower than in the Amazon (Figure 1d,e), and gauges
are located over high, rough relief regions (Figure 1c). Indeed, the mean regional slope is estimated
at 7◦, according to SRTM-GL1 measurements, which have remained higher than the values of 4.7◦

and 5.3◦ registered for the TDPS and Amazon region, respectively. Thus, IMERG estimates are more
affected by local relief and rainfall intensities than TMPA. These differences are characterized by lower
CC and a RMSE increase of 18%. The future improvements brought to IMERG algorithms should focus
on those specific features (rainfall amount and relief), to at least continue measuring rainfall estimates
with the same accuracy trend as TMPA.

Passing from 0.1◦ to 0.25◦ grid box did not have a significant influence on rainfall estimate
accuracy with quite similar CC, RMSE and Bias values at both 0.1◦ and 0.25◦ grid box for all regions
and seasons (Figure 3; Table 2). For comparison, the spatial aggregation of SREs grid box was already
found to be insignificant over the Altiplano (TDPS) considering TMPA estimates [21].

GSMaP-v6 is the least accurate considered SREs over the whole Bolivia with very high RMSE
value higher to 100%, Bias values lower to −20% and low CC value lower to 0.7 (Table 2; Figure 3).
None of the considered parameters fit the previously defined quality thresholds. The lower annual
rainfall estimates observed for GSMaP-v6 in comparison to TMPA, IMERG and rain gauges (Figure 2)
is confirmed by negative bias value at both 0.1◦ and 0.25◦ scales. GSMaP-v6 underestimates monthly
rainfall at global scale and over the Amazon and La Plata regions at seasonal scale and for both dry
and wet periods. GSMaP-v6 bias is lower over arid TDPS region with positive bias value. This shows
the slight enhancement of GSMaP-v6 estimate over the TDPS arid region, and is in line with results
observed over low-rainfall regions in India [2].

As observed for IMERG, the resampling step from 0.1◦ to 0.25◦ mesh size did not affect GSMaP-v6
estimates with very close relative position of both GSMaP-v6 at 0.25◦ and 0.1◦ in the Taylor diagrams
(Figure 3) and close statistical score (Table 2).



Remote Sens. 2017, 9, 369 10 of 16

Regarding the topographic assessment, very different patterns are observed from one region to
another. Over the Amazon region, and for all SREs, the AB and RMSE values tend to increase with slope
value while the opposite is observed over the TDPS region with a decrease of AB and RMSE values
when mean slope value increase. Topography is known to affect SREs, and so do the rainfall amounts.
Indeed, higher biases are generally observed over mountainous regions, and SREs are less accurate
over arid regions in comparison to wet regions [6,8,9]. As a humid region, the Amazon region is well
suited to observing topographic effects, because SREs’ accuracy is not affected by low rainfall amounts
(arid regions). Thus, the only factor altering SREs’ accuracy in space is the topography. Actually,
from lowlands to mountainous regions, AB and RMSE increased by approximately 20% for both
IMERG and TMPA, and by approximately 30% for GSMaP-v6 (Figure 4 and Table 3). Over the TDPS
region, the rainfall pattern follows a marked north-south gradient with rainfall amount decreasing
from north to south. This typical rainfall pattern controls SREs’ potentiality with SREs being more
accurate in the northern, humid part than over the southern, more arid, part [9]. In this study, pixels
with higher slope values are located in the northern part (high rainfall amount) while pixels with low
slope value are located in the southern part (low rainfall amount) (Figure 1c). As a result, AB and
RMSE values decreased by close to 10%, 20% and 50% for IMERG, TMPA and GSMaP-v6 from low to
high slope region (Figure 4 and Table 3). Therefore, over the TDPS region the climatological context
is the predominant factor influencing SREs’ accuracy in space, rather than topographic effects. It is
noteworthy that for all considered slope classes, IMERG presents close to the lowest AB and RMSE
values, and higher CC values, confirming the higher performance previously observed over the same
region for the annual and monthly seasonal comparisons (Figure 3, Tables 1 and 2). Over the La
Plata region, no ‘linear’ relation is observed between topographic effect (slope value) and the SREs’
accuracy. However, topographic influence is still observed with lower AB and RMSE values over the
flat regions (slope <2.5◦). Between the first class (<2.5◦) and second class (2.5◦–5◦), all SREs present
a positive gap in AB and RMSE values remaining high and relatively constant for all next classes
(Figure 4 and Table 3). The observed AB increase between flat region class (slope <2.5◦) and the rest
of the considered classes is of approximately 10% for both IMERG and TMPA and close to 20% for
GSMaP-v6. This non-linear trend between SRE accuracy and slope value should be related to the
rain gauges’ distribution. Indeed, most of the gauges with slope values higher than 2.5◦ are located
and trapped in high-slope regions (Figure 1c). As a result, for those pixels there is a high discrepancy
between neighboring slope values, which is not observed for the pixels with slope value lower than
2.5◦ (Figure 1c). Therefore, pixels with slope values above 2.5◦ are under a homogeneous topographic
effect, expected to be similar among all classes that could explain the tendency observed in Figure 4.

In a general sense, IMERG keeps providing rainfall estimates as accurate as TMPA over the
Amazon region, while offering the possibility to observe more local scale variation thanks to its lower
grid box size. The main enhancement is observed over the TDPS arid region, where a slight increase
in rainfall estimates is obtained from IMERG. However, over the mountain-dominated region of the
La Plata head watershed, TMPA provides more accurate rainfall estimates than the new IMERG.
The results evidence a relation between SRE accuracy and both seasonal and topographic contexts.
SREs are generally more accurate during the wet season as rainfall amounts are higher than during
the dry season. In the same way, SREs are more accurate over the low slope region as topographic
effects are less important. In this context, it is noteworthy that the gauges’ distribution influenced
the observed results and conclusion. SREs’ lower suitability observed over the La Plata region is
partially explained by the distribution of the gauges. Actually, most of the gauges are located over the
mountainous region where high slope values influence SREs (Figure 4). Different conclusions would
have been dressed if the gauges were located over the low lands where slopes are lower and SREs
would appear more efficient. In a similar way, over the TDPS region, most of the gauges are located
on the northern wet part where SREs are known to be more accurate than over the southern arid
region [9]. Different conclusions would have been achieved if the gauges were located on the southern
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arid region. The potential intercomparison of SREs between the Amazon, La Plata and TDPS should
be made with caution as different conclusions should be make from different rain gauge distribution.

Table 2. Monthly Bias (%), RMSE (%), and CC for TMPA, IMERG and GSMaP-v6 for both wet and
dry seasons.

TMPA 3B43 IMERG-FR (0.1◦–0.25◦) GSMaP-v6 (0.1◦–0.25◦)

Bias CC RMSE Bias (%) CC RMSE Bias CC RMSE

0.25◦ 0.25◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦

Bolivia
All 1.2 0.78 90.7 −2.3 −1.4 0.77 0.78 95.2 92.7 −22.6 −22.4 0.63 0.63 116.8 115.1
Wet 5.7 0.76 64.2 −0.1 0.7 0.72 0.74 70.4 68.2 −20.9 −20.7 0.51 0.54 87 85.7
Dry −7.2 0.71 135.9 −6.5 −5.3 0.73 0.73 134.6 131.5 −25.9 −25.6 0.57 0.57 162.9 160.1

Amazon
All 0.5 0.75 82.7 −1.2 0.8 0.76 0.76 84.6 82 −30.1 −29.1 0.54 0.56 112 108.7
Wet 6.2 0.74 59.7 1.9 3.3 0.72 0.73 63.5 60.7 −28.9 −28 0.42 0.44 87.9 84.5
Dry −8.5 0.67 117 −6.2 −3.2 0.69 0.7 114.7 112.8 −32 −30.7 0.49 0.49 142.4 140.1

La Plata
All 1.4 0.82 86.1 −10 −1.4 0.76 0.76 102.1 100.8 −17 −16.5 0.76 0.77 98.8 96.1
Wet 4.9 0.73 63.3 −17 0.7 0.64 0.65 76 76.5 −16.4 −15.4 0.6 0.63 72.3 71.4
Dry −8.5 0.8 120.5 10.2 −7.2 0.76 0.79 132.8 122.6 −18.8 −19.7 0.75 0.78 135.6 129.2

TDPS
All 6.1 0.68 105.4 −17.4 −18.2 0.72 0.73 74.1 80.6 9.4 10.2 0.64 0.64 142.8 145.4
Wet 4.9 0.64 58.6 −16.2 −16.8 0.67 0.7 41.6 44.8 11.2 11.6 0.53 0.56 80.2 80.8
Dry 8.9 0.41 207.3 −20 −21.2 0.54 0.52 143.2 158.6 5.4 7.3 0.46 0.45 275.8 286.1

Table 3. Monthly AB (%), RMSE (%) and CC for TMPA, IMERG and GSMaP-v6 for different
slope classes.

Classes
TMPA IMERG GSMaP-v6

AB RMSE CC AB RMSE CC AB RMSE CC

Amazon

0◦–2.5◦ 35.9 71.4 0.71 36.7 70.7 0.71 35.8 77.5 0.66
2.5◦–5◦ 40.8 76.8 0.80 39.9 74.1 0.81 67.3 136.3 0.16
5◦–10◦ 45.8 80.0 0.87 38.7 70.8 0.90 42.3 83.5 0.86
10◦–15◦ 49.8 82.2 0.85 52.8 89.5 0.82 58.7 137.7 0.41

>15◦ 56.6 93.6 0.64 55.6 92.2 0.66 61.5 113.1 0.47

La Plata

0◦–2.5◦ 40.8 65.3 0.87 49.6 84.6 0.75 34.4 57.9 0.86
2.5◦–5◦ 53.0 91.9 0.89 57.2 111.0 0.89 55.6 97.9 0.86
5◦–10◦ 50.5 94.0 0.81 61.3 111.8 0.79 42.3 81.5 0.83
10◦–15◦ 47.2 84.3 0.85 52.8 102.8 0.79 52.9 101.0 0.77

>15◦ 48.0 90.6 0.79 52.3 97.8 0.75 54.2 108.8 0.71

TDPS

0◦–2.5◦ 92.6 131.8 0.71 58.8 93.2 0.83 100.0 153.9 0.69
2.5◦–5◦ 59.8 99.8 0.56 53.8 99.0 0.61 60.4 101.9 0.56
5◦–10◦ 52.0 83.1 0.81 50.2 87.8 0.77 63.0 100.8 0.72
10◦–15◦ 57.1 94.5 0.84 49.0 79.5 0.90 53.9 91.2 0.79

3.3. Daily Scale

Figure 5 presents the POD, SR, CSI and B values for all SREs and all the considered regions in the
form of a performance diagram. At the national scale and for all regions, all SREs better detect rainfall
events during the wet season than during the dry season. As observed at the monthly scale, in the
Amazon region, the ability of IMERG and TMPA to forecast daily rainfall are very similar (Figure 5).
In the TDPS region, IMERG outperforms TMPA at both wet and dry season as its relative position to
zero in Figure 5 is further than the relative TMPA position. This confirms the slightly better estimation
observed at the monthly scale for IMERG in comparison to TMPA over the same region. With regard to
the La Plata region, the ability of IMERG to detect daily rainfall is better than that of TMPA. However,
TMPA remains more accurate at the monthly scale. Therefore, the relatively poor accuracy for monthly
estimates observed for IMERG in comparison to TMPA over the same region seems to be linked to
inaccuracy in daily rainfall amount estimates, rather than to their detection. Indeed, IMERG seems to
underestimate daily rainfall amount as a negative monthly bias is observed (Table 2).

As noted for the monthly scale, the aggregation process from 0.1◦ to 0.25◦ does not change the
ability of IMERG, according to the daily analysis. Indeed, both the 0.1◦ and 0.25◦ versions are very
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close into the performance diagram for the Amazon and TDPS regions (Figure 5). Interestingly, over
the La Plata region, the 0.1◦ grid box version of IMERG is slightly less suitable for discretizing rainy
and non-rainy days. This confirms the general deficiency of IMERG at capturing the spatial variability
of local rainfall induced by topographic features in this specific region. Passing from a 0.1◦ to a 0.25◦

grid box smoothed the rainfall spatial variability and should explain the slightly better ability of the
0.25◦ grid box version at the daily scale.

Regarding the topographic assessment, over the Amazon and La Plata regions, SREs’ ability in
differentiating rainy from non-rainy days decreases with the increase of slope value. For the Amazon
region, POD and FAR respectively decrease and increase from flat- to high-slope regions. For the La
Plata region POD decreases while the FAR remains relatively constant along the considered classes.
Therefore, those observations agreed with monthly topographic assessment (Figure 6). Over the TDPS
region, FAR decreased from flat- to high-slope regions, while no clear tendency is observed for the
POD value along the considered classes. These results agreed with the monthly analyses, with the
rainfall pattern as the main factor controlling SRE potential.
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Table 4. POD, FAR, BIAS and CSI for TMPA, IMERG and GSMaP-v6 for both wet and dry season.

TMPA IMERG GSMaP-v6

POD FAR BIAS CSI POD FAR BIAS CSI POD FAR BIAS CSI

0.25◦ 0.25◦ 0.25◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦ 0.1◦ 0.25◦

Bolivia
All 0.51 0.55 1.13 0.32 0.51 0.56 0.56 0.54 1.16 1.2 0.31 0.34 0.58 0.6 0.59 0.57 1.42 1.38 0.32 0.34
Wet 0.55 0.51 1.12 0.35 0.55 0.6 0.53 0.5 1.17 1.2 0.34 0.37 0.62 0.63 0.57 0.54 1.42 1.37 0.34 0.36
Dry 0.41 0.65 1.16 0.23 0.4 0.45 0.65 0.63 1.14 1.2 0.23 0.26 0.49 0.5 0.66 0.64 1.43 1.4 0.25 0.27

Amazon
All 0.59 0.51 1.2 0.37 0.57 0.61 0.53 0.55 1.21 1.27 0.35 0.37 0.59 0.61 0.56 0.52 1.35 1.35 0.33 0.35
Wet 0.65 0.47 1.22 0.41 0.62 0.66 0.5 0.52 1.24 1.29 0.39 0.4 0.63 0.65 0.53 0.49 1.34 1.33 0.37 0.38
Dry 0.49 0.59 1.18 0.29 0.46 0.51 0.6 0.62 1.13 1.23 0.27 0.3 0.51 0.53 0.63 0.59 1.38 1.39 0.27 0.28

La Plata
All 0.4 0.59 0.99 0.26 0.43 0.47 0.62 0.57 1.13 1.09 0.25 0.33 0.57 0.58 0.61 0.56 1.45 1.33 0.3 0.29
Wet 0.45 0.56 1.02 0.29 0.47 0.51 0.58 0.53 1.13 1.09 0.28 0.36 0.6 0.62 0.59 0.54 1.45 1.34 0.32 0.32
Dry 0.24 0.73 0.87 0.14 0.28 0.3 0.75 0.72 1.12 1.07 0.15 0.25 0.46 0.46 0.68 0.64 1.43 1.29 0.23 0.17

TDPS
All 0.46 0.62 1.21 0.26 0.49 0.54 0.55 0.55 1.1 1.61 0.3 0.33 0.59 0.6 0.64 0.63 1.62 1.2 0.29 0.3
Wet 0.48 0.54 1.05 0.3 0.52 0.58 0.51 0.5 1.07 1.6 0.34 0.36 0.62 0.64 0.61 0.6 1.6 1.16 0.32 0.32
Dry 0.39 0.78 1.72 0.17 0.38 0.44 0.68 0.67 1.2 1.66 0.21 0.23 0.48 0.47 0.72 0.72 1.68 1.31 0.22 0.22
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4. Conclusions

The new GPM rainfall products were assessed for the first time in Bolivia at the annual, monthly
and daily scales. The analysis was done at the national scale and for the three main watersheds
(Amazon, La Plata and TDPS), separately, at both wet and dry seasons and for different slope classes.
Generally, IMERG achieved its main objective of continuing to measure rainfall with the same accuracy
as its predecessor, TMPA. However, some discrepancies are observed when considering different
rainfall features over the regions. Over the wet Amazon region, at the annual and monthly scale, in
comparison to gauge estimates, IMERG performs similarly to TMPA while TMPA is slightly more
accurate than IMERG over the La Plata watersheds. This should be linked to the mountainous context
that interferes on IMERG measurements quantification as IMERG was found to better discretize rainfall
events occurrence. Over the TDPS arid region, IMERG better quantifies monthly rainfall in both wet
and dry seasons. The enhancement of rainfall estimates over arid regions is very valuable for future
hydro-climatic studies, as little changes in rainfall patterns have a strong impact on local water budgets.
An interesting observed enhancement brought by IMERG in comparison to TMPA is its better ability
to discretize rainy and non-rainy days for all considered regions and seasons. Therefore, it brings
good perspective for future studies using the ratio of rainy to non-rainy days as a constraining factor
in agriculture and drought monitoring. GSMaP-v6 is the least accurate SRE in Bolivia and for all
considered regions and seasons. It underestimates monthly rainfall amounts over the Amazon and La
Plata regions and overestimates rainfall over the arid TDPS region.

The study also showed a clear topography influence on the SREs’ potentiality. SREs are most
biased over mountainous region in relation to high slope values. This is clearly evidenced over the
Amazon and La Plata region. However, such observation is not possible over the TDPS watershed,
due to the rain gauges’ distribution in relation to slope variability and the typical regional rainfall
pattern. Over the TDPS, the rainfall pattern represents the main factor controlling SREs’ potentiality.
Along these lines, the study shows the importance of gauges’ distribution in the assessment and the
conclusions made, especially regarding the SREs’ potential to compare different geomorphological
climatic regions (Amazon, La Plata and TDPS). Indeed, different results and conclusions should be
obtained from a different rain gauges’ distribution giving more or less weight to slope and rainfall
effects on SREs. Therefore, future study should base on a gauge network distribution, defined to
represent topographic and rainfall patterns as well as possible.

In a general sense, the main advantage of IMERG and GSMaP-v6 is the higher spatial resolution
of 0.1◦ that offers the opportunity to observe small local rainfall pattern variations. Therefore, GPM
rainfall estimates open the opportunity to transfer SRE-based study from hydrological, drought,
agriculture monitoring, initially used on a regional scale, to more local, unmonitored scales. Even if
these two new SREs took advantage of a larger PMWs and IR sensors for their respective rainfall
estimates, they do not always provide the most accurate estimates. Thus, we hope this timely study
will be proven helpful in the near future for the enhancement of current algorithms used in IMERG
and GSMaP-v6. Finally, the SREs’ dependency on topographic effects should be used as guidelines for
future SRE-related study over the region, in order to try and minimize topographic effects on SREs.
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