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Abstract:



Andrews first proposed an equation to visualize the structures within data in 1972. Since then, this equation has been used for data transformation and visualization in a wide variety of fields. However, it has yet to be applied to satellite image data. The effect of unwanted, or impure, pixels occurring in these data varies with their distribution in the image; the effect is greater if impurity pixels are included in a classifier’s training set. Andrews’ curves enable the interpreter to select outlier or impurity data that can be grouped into a new category for classification. This study overcomes the above-mentioned problem and illustrates the novelty of applying Andrews’ plots to satellite image data, and proposes a robust method for classifying the plots that combines Dempster-Shafer theory with fuzzy set theory. In addition, we present an example, obtained from real satellite images, to demonstrate the application of the proposed classification method. The accuracy and robustness of the proposed method are investigated for different training set sizes and crop types, and are compared with the results of two traditional classification methods. We find that outlier data are easily eliminated by examining Andrews’ curves and that the proposed method significantly outperforms traditional methods when considering the classification accuracy.
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1. Introduction


Scientists currently adopt a wide array of methods to visualize the structures hidden within data. Andrews’ plots [1] constitute one such method that enables scientists to identify structures within data, because they preserve some inherent properties of the data after transformation. In recent decades, Andrews’ plots have been applied via data transformation to fields including ecology [2], social sciences [3], biomedical techniques [4], signal processing [5], Internet user clustering [6], and data mining [7], but not, thus far, to satellite image classification. Of specific interest is a study by Norliza et al. [4], which used Andrews’ plots to study X-ray data from mycobacterium tuberculosis patients, as well as to compare new patient data with existing disease data, showing that diseased and healthy patient curves can be visually separated.



Fuzzy sets [8] and their various extensions can elucidate vagueness in mathematical theory, as well as explain real-life phenomena. Their evident flexibility stems from the adjustability of their inference procedures through IF-THEN rules [9]. Several types of fuzzy sets have been developed to provide an attractive framework for building classifiers that closely mimic human perception [10]. Fuzzification is a process that assigns a degree of fuzziness to a crisp input that belongs to a certain membership function. Fuzzification and fuzzy algorithms have been effectively adopted in a wide range of studies [11,12,13].



The Dempster-Shafer (DS) theory of evidence [14,15] is a generalization of the Bayesian theory of subjective probability, which obtains degrees of belief for different hypotheses from a combination of independent lines of evidence that can be acquired from one or more sources. In contrast to traditional probability theory, multiple events can occur in a piece of evidence. The most attractive feature of this theory is that it can manage different levels of data precision, and the results can be flexibly interpreted for different purposes [16].



DS theory and fuzzy sets or their extensions have been jointly applied to numerous fields. For example, a model for selecting a plant location and its application were proposed in [17]. In the article, linguistic conditions were used to assign uncertainties to the model. Moreover, Dempster’s rule of combination was proved to be efficient in the decision model. Mönks et al. focused on the fuzzified balanced two-layer conflict solving (µBalYLCS) algorithm, which originates from DS theory and operates on fuzzy sets. The algorithm works well in situations with high data conflict [18]. Furthermore, Lu et al. [19] have confirmed the effectiveness and usefulness of fuzzy logic combined with an extension of DS theory in data fusion. In land cover classification, DS theory and fuzzy-contextual information [20] have been used in the classification of multispectral satellite images. This method reduces classification error compared to Markov random field (MRF)-based contextual classification. Recently, Yang et al. [21] proposed a classification approach based on DS theory and fuzzy rough sets. This approach can effectively delineate land cover types in urban fringe areas when uncertainties occur in the processing.



The main problem that might arise when dealing with relatively coarse-resolution satellite image data is the inclusion of small objects inside a pixel [22], e.g., a farmhouse in the middle of a crop area, a small pond, or a road. Unwanted, or impure, pixels have a greater impact when they occur within training data. To visualize multivariate data, such as the different dimensions of satellite image pixels, Andrews’ curves enable the interpreter to select outlier or impurity data that can be grouped into a new category for classification. These tasks can be performed using only a single Andrews’ function combined with a visual interpreter.



For satellite images, assigning a class to an input pixel by human action, involves transforming the input into an Andrews' curve and visually matching it with various prepared training Andrews’ curves. However, this process is time-consuming and its precision is limited by human perception, especially as the number of categories and the curve’s complexity increases, i.e., a full satellite image. To overcome these problems, this paper proposes a method for Andrews’ curve classification based on a combination of fuzzy sets and DS theory. By examining training curves, we found identical patterns in the same crop type. The learning-based classifier builds on several sets of training curves incorporating the curves’ properties. The membership value for each curve is calculated by fuzzification, and the probability of the curve’s characteristic or the type of Andrews’ curve dynamic (TAD) is obtained. DS theory is used to obtain confidence intervals, which are based on maximum belief and plausibility, to determine which curves are assigned to each category. Finally, the results obtained by the proposed method validate our hypothesis that Andrews’ plots can be applied to satellite image data. We compare this method with traditional supervised classification methods, and discuss the accuracy, precision, and robustness of our approach, as well as its additional advantages and disadvantages.




2. Background


2.1. Andrews’ Curve of Satellite Image Pixels


Andrews’ curves [1] were developed for visualizing multi-dimensional data by mapping each observation onto a function. For any [image: there is no content] bands, regardless of their order in a satellite image, an image pixel [image: there is no content] can be expressed by [image: there is no content], [image: there is no content] is the time domain from [image: there is no content], and the Andrews’ function is defined as:


[image: there is no content]



(1)







From Equation (1), we see that each observation is projected onto a set of orthogonal basis functions represented by sines and cosines, and that each data point may be viewed as a curve. Because of the mathematical properties of the trigonometric functions, the Andrews’ functions preserve the means, distances, and variances. On the one hand, a consequence of this equation is that any samples which have data values in every dimension that are close together produce Andrews’ curves that are also close together. On the other hand, if there is a pattern within the data, it may be visible in the Andrews’ curve of the data [23].




2.2. Fuzzification Approach


According to fuzzy set theory, fuzzification is the process that takes the inputs and determines the degree to which they belong to each of the appropriate fuzzy sets via the membership function.



A fuzzy set [image: there is no content] based on a universe of discourse (UOD) [image: there is no content] with elements u is expressed as:


[image: there is no content]



(2)




where [image: there is no content] is a membership function or FMF of the fuzzy variable [image: there is no content] in the set [image: there is no content], and it provides a mapping of [image: there is no content] in the closed interval (0, 1). The term [image: there is no content] is simply a measure of the degree to or by which u belongs to the set [image: there is no content]. Here, it should be noted that the notation [image: there is no content] only represents a fuzzy set and is not related to usual integration or summation. There are several types of FMFs [24]. We employed the basic Gaussian-shaped function in our study, which is given by:


[image: there is no content]



(3)




where [image: there is no content] and [image: there is no content] signify the mean and standard deviation of the membership function, respectively; the function is distributed around parameter [image: there is no content], and parameter [image: there is no content] determines the width of the function.




2.3. Principles of Dempster-Shafer (DS) Theory


As mentioned above, the evidence of the traditional probability theory is associated with only one possible event, whereas the evidence of the DS theory can be associated with multiple possible events, e.g., sets of events. The DS theory is advantageous owing to its ability to capture the natural behavior of reasoning by narrowing the hypothesis set down to a smaller number of possibilities as the evidence increases [15]. It allows for the direct representation of the uncertainty in system responses, where an imprecise input can be characterized by a set or an interval and the resulting output is a set or an interval.



The three important elements of the DS theory are the basic probability assignment (BPA) or [image: there is no content], the belief function or [image: there is no content], and the plausibility function or [image: there is no content]. The BPA is a primitive of evidence theory, describing the degree of an event [image: there is no content] from the frame of discernment Θ (commonly referred to as the power set), where [image: there is no content] of the null set is 0 and the summation of the [image: there is no content] degrees of all the subsets of Θ is 1. The value of the basic probability assignment for a given set [image: there is no content], represented as [image: there is no content], only pertains to the set A and makes no additional claims about any subsets of [image: there is no content]. On the other hand, any further evidence on the subsets of [image: there is no content] would be represented by another value, i.e., [image: there is no content] for [image: there is no content], which satisfies the condition:


[image: there is no content]



(4)






[image: there is no content]



(5)






[image: there is no content]



(6)




where [image: there is no content] represents the power set of [image: there is no content], ø is the null set, and [image: there is no content] is a set in the power set, i.e., [image: there is no content].



From the [image: there is no content] values, the upper and lower bounds of an interval can be defined (7). This interval contains the precise probability of a set of interest, and it is bounded by the belief and plausibility. The belief for a set [image: there is no content] is defined as the sum of all [image: there is no content] values of the proper subsets ([image: there is no content]) of the set of interest ([image: there is no content]) [image: there is no content]. The plausibility is the sum of all the [image: there is no content] values of the sets ([image: there is no content]) that intersect the set of interest (A) [image: there is no content].


[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)







Note that the sum of all the belief measures need not always be 1. Similarly, the sum of all the plausibility measures need not always be 1, because of their nonadditive property [25].



In addition to being derived from the basic probability assignment ([image: there is no content]), the belief and plausibility measures can be derived from each other. The plausibility can be alternatively derived from the belief, as follows:


[image: there is no content]



(10)






[image: there is no content]



(11)




where [image: there is no content] is the classical complement of [image: there is no content]. This definition of plausibility in terms of belief is based on the fact that all basic assignments must sum up to 1.



To obtain a combined probability assignment over the frame of discernment, Dempster’s rule of evidence is applied. The combination of evidence defines the intersection of the subsets for the frame of discernment based on conjunctive pooled evidence. Consider an example involving two pieces of evidence, [image: there is no content] and [image: there is no content] ([image: there is no content] and [image: there is no content]); their combination can be expressed as:


[image: there is no content]



(12)




when [image: there is no content]:


[image: there is no content]



(13)




where [image: there is no content] represents the basic probability mass associated with conflict, which is determined by summing the products of the [image: there is no content] values of all sets where the intersection is null.



The final result can be easily determined using the belief interval that has the maximum belief among all the subsets. The DS theory allows for flexibility in the final decision criteria after the extraction of belief intervals for all potential composite events, which is highly dependent on the user preferences and the specific application [26].





3. Materials and Methods


3.1. Data


3.1.1. Rubber and Palm Data (RP)


The satellite image utilized in this study is a Landsat-8 Operational Land Imager (OLI) image produced using the Level 1 Product Generation System (LPGS), version 2.2.3. We conducted atmospheric correction by obtaining the Top-of-Atmosphere (TOA) surface reflectance using the manual recommended by the Yale University Center for Earth Observation [27]. Z-score transformation was applied to every data point to obtain a mean of 0 and a variance of 1 [28]. Further, 4473 labeled pixels were carefully constructed in Google Earth using Thailand’s 2015 land cover ground survey data obtained from the Geo-Informatics and Space Technology Development Agency (GISTDA). The considered area (Figure 1) is located in the Surat Thani province, the largest province in the south of Thailand, where two main crops are grown: rubber (Hevea brasiliensis), a deciduous crop; and oil palm (Elaeis guineensis), a nondeciduous crop. The image’s acquisition took place during the leaf shedding period of deciduous plants in the area, which is the main obstacle for delineating shed, shedding, and nonshedding trees. Urban areas, water bodies, and permanent constructions were excluded from the data for further analyses, leaving 2317 pixels. Further, 793 pixels were selected as the training set using the process described below. The remaining 1524 pixels were used for an assessment of the accuracy.


Figure 1. The location of RP data, Left band 5 (R), 4 (G), 3 (B) composite of the Landsat 8 OLI image.



[image: Remotesensing 09 00427 g001]







3.1.2. Paddy and Sugarcane Data (PS)


To test the performance of the algorithm, we used Landsat-8 OLI data acquired on 14 January 2014 (path = 130, row = 49) from the Kumphang-Phet province, Thailand (Figure 2). Using the same machine type and version, we reran the same workflows as for the RP data. On the image, we manually digitized 300 plantation fields by slightly reducing the margin of the crop field, to avoid mixed pixels at the edges that might affect the classification [29,30], for instance, by reducing the unity of the training sets, leading to a lower classification accuracy. We used Thailand’s 2014 land cover ground survey data obtained from GISTDA. The considered area is four times larger than the area in the RP data and includes many area of paddy fields, as well as a few small isolated sugarcane fields, harvested areas, and bodies of water. The image’s acquisition time was during the sugarcane harvest, which causes anomalies in normal sugarcane fields; this makes classifying the data more challenging.


Figure 2. The location of PS data, Left band 5 (R), 4 (G), 3 (B) composite of the Landsat 8 OLI image.



[image: Remotesensing 09 00427 g002]








3.2. Proposed Method


3.2.1. Training and Testing Data Selection


Selecting a training sample is a key step that can affect the accuracy of the classification results [31]. Here, we propose three steps for selecting an appropriate training sample from the data. For each dataset, we first iteratively calculate the Euclidean distance between each pair of satellite data to be provided as the input in the complete-linkage clustering method explained in [32]. In complete-linkage clustering, the link between two clusters contains all element pairs, and the distance between the clusters equals the distance between those two elements (one in each cluster) that are farthest apart. The shortest link that remains in any step causes the two clusters whose elements are involved to fuse. We arranged the shortest link results in ascending order and then selected a training dataset. For the RP data, we selected 793 samples (34%) for training, and the remaining samples were used as the test data (66%). We adopted a similar approach for the PS data, but with different proportions based on the complexity and characteristics of the data (17% training and 83% test data).



Moreover, to test the robustness of the training sample, we used the same number of samples; however, the sample sizes were reduced proportionally to the training data, to ensure that the curves corresponding to each class were sufficiently large. Table 1 shows the class abbreviations and descriptions with the training and test sizes.



Table 1. Training and testing data.







	
Classes

	
Descriptions

	
Training (Pixels)

	
Testing (Pixels)






	
RP data

	
34%

	
22%

	
11%

	
66%




	
BLRP

	
Bare land/harvested area in RP data

	
80

	
53

	
27

	
1524




	
RB

	
Rubber field

	
329

	
219

	
109




	
PM

	
Palm field

	
384

	
255

	
127




	
PS data

	
15%

	
10%

	
7%

	
83%




	
BLPS

	
Bare land/harvested area in PS data

	
894

	
616

	
431

	
15,065




	
PD

	
Paddy field

	
1503

	
1035

	
724




	
SC

	
Sugarcane field

	
227

	
156

	
110










In the second step, an Andrews’ Equation (1) was applied to all image pixels. However, Andrews’ curves are strongly dependent on the order of the variables. Lower-frequency terms have a greater impact on the shape of the curve [23]. We plotted the set of curves having identical labels and manually compared them via visual interpretation. As mentioned previously, the shape of an Andrews’ curve is very sensitive to the order of variables, especially in the lower-frequency terms. Therefore, in Equation (1), we plotted them in different arrangements. For example, in the first round, we plotted the order of the bands as 2, 3, 4, 5, 6; however, class A and class B are not distinguishable. When plotting the order of the bands as 3, 4, 2, 5, 6, we also obtained nondistinguishable results. We repeated this process until we had obtained the appropriate order: 6, 5, 4, 3, 2. This order is supported by the spectral reflection of the plants, which lie mainly in the infrared and red bands, represented by bands 6 and 5 of the Landsat-8 data [33]. Note that one must understand the basic properties of any data before using them, which supports the use of an Andrews’ equation.



Finally, we examined the Andrews’ curves of the training sets. The main objective of this step is to manually remove noise from the data, as shown in Figure 3c. Another advantage of this step is that the user can observe the overlapping area of the Andrews’ curves for class pairs by simply plotting each class in a different color (Figure 3a). Moreover, overlapping areas in the classes can be extracted to several subgroups, as shown in Figure 3b, which prevents the misclassification of the curve that lies in the overlapping area by improving the accuracy of membership grade acquisition. Note that extracting the overlapping area is an option and can be avoided if details of the land cover are available in reference data.


Figure 3. (a) Andrews’ curves of a PM’s training set (red) plotted together with an RB’s training set (green); (b) Example of the distribution of the two training sets that seem more separable than (a); (c) Comparison of the PM’s training set before (upper) and after (lower) noise removal; (d) Set of Gaussian membership functions generated from the mean and standard deviation of a set of training values at the same position.



[image: Remotesensing 09 00427 g003]







3.2.2. Membership Grade Acquisition


The Andrews’ curve of the data for each training set is obtained by projecting each data point onto the orthogonal function. For one set of training data, each continuous curve is fragmented into a set of 100 discrete values [image: there is no content], where the position [image: there is no content] of value [image: there is no content] has [image: there is no content] points of training samples. Then, we calculate the mean [image: there is no content] and standard deviation [image: there is no content] as follows:


[image: there is no content]



(14)






[image: there is no content]



(15)







Per the Gaussian-shaped membership Function (3), for any discrete input value at any position, we can calculate the grade membership function in any training set [image: there is no content] as follows:


[image: there is no content]



(16)







According to Equation (16), only the matching position of the discrete value would be the input for each iterative Gaussian membership function. The illustration of Gaussian membership functions in a position of the discrete value is shown in Figure 3d. The results are membership grades with regard to the positions of the discrete values. There were 100 values per pixel per membership function or subgroup. These fuzziness values represent the probability that each discrete input value belongs to each set of discrete values in the training set. Finally, we obtained the arithmetic sum of the values and divided them by [image: there is no content] to obtain only one value for a membership function, which was then compared with other values inside the class. We selected the candidate with the maximum membership value as representative of the class.




3.2.3. Type of Andrews’ Curve Dynamic (TAD)


After calculating the membership grade, we examined the shape of the Andrews’ curves. An Andrews’ curve is generated by continuously combining the sine and cosine curves with different frequencies, increasing by 1 in each sine function. The remote sensing data have five data points for each sample; thus, the highest-frequency term is [image: there is no content], i.e., the sum of the maximum number of positive peaks [image: there is no content] and negative peaks [image: there is no content] must be 6. Possible peak patterns occurring in the data are referred to as the TAD (Table 2).



Table 2. Type of Andrews’ curve dynamic and possibilities 1.







	
Classes

	
T1 (1010)

	
T2 (0101)

	
T3 (10)

	
T4 (01)

	
T5 (101)

	
T6 (010)






	
PM

	
0.5

	
0.1

	
0.3

	
0.2

	
0.3

	
0.33




	
RB

	
0.5

	
0.3

	
0.6

	
0.4

	
0.6

	
0.33




	
BLRP

	
0

	
0.6

	
0.1

	
0.4

	
0.1

	
0.34




	
PD

	
0.6

	
0.1

	
0.45

	
0.4

	
0.45

	
0.33




	
SC

	
0.4

	
0.4

	
0.45

	
0.2

	
0.45

	
0.33




	
BLPS

	
0

	
0.5

	
0.1

	
0.4

	
0.1

	
0.34








1 of types occurring in the data.








Note that not all possible patterns occurred in this study; occurrence depends on the value of the input data point. To find the TAD of each curve, we performed a simple brute-force search by iteratively examining every three discrete data values against the following conditions.



Let [image: there is no content] be an array of 100 discrete Andrews’ curve values and [image: there is no content] be indices from 2 to 99 (since [image: there is no content] and [image: there is no content] cannot be the candidates). [image: there is no content] can be defined as a [image: there is no content] if it satisfies Equation (17); otherwise, it can be defined as an [image: there is no content] by Equation (18).


[image: there is no content]



(17)






[image: there is no content]



(18)







Note that the terms “positive” and “negative” only refer to the vertical direction of the peak and not its value. Figure 4 illustrates the occurrence of [image: there is no content] and [image: there is no content] in an Andrews’ curve.


Figure 4. Examples of (a) positive and (b) negative peaks from Andrews’ curves.



[image: Remotesensing 09 00427 g004]







3.2.4. Calculation of Belief and Plausibility


The final goal of the study is to determine the class assignments from belief and plausibility (belief interval). Our DS-theory-based workflow for obtaining the belief and plausibility is shown in Figure 5. The results of fuzzification and the TAD were set as the inputs for obtaining belief and plausibility. All input elements are normalized, resulting in a basic probability assignment of each class. The belief (8) and plausibility (9) equations are employed based on their relationship with basic probability assignment. DS theory allows users to determine the final crisp classification [26]. We simply assign the class with the maximum belief value to the output of the input curve pattern.


Figure 5. Overall analysis process. First, an Andrews’ function is applied to pixels from the satellite image data to obtain the curves and TAD. Second, the training curves are selected and used in fuzzification to obtain the membership values of each class. Finally, the membership values and TAD are used as parameters in DS theory. The final class decisions are determined by the obtained belief interval.



[image: Remotesensing 09 00427 g005]






In conclusion, Figure 5 shows the overall procedure from the satellite image input through the proposed process until the output data is obtained. First, the satellite image data are loaded into the workspace. Then, the pixel data are iteratively transformed into a continuous Andrews’ curve by applying an Andrews’ Function (1). The data points are arranged in descending order from bands 6 to 2 (lower to higher frequencies). Each Andrews’ curve is divided into 100 discrete values and its TAD is obtained by the iterative procedure in Equations (17) and (18).



For the discrete values, fuzzification is applied, i.e., the degree assignment of discrete values belonging to each class. The results of 100 membership values are converted into a value ranging from 0 to 1 for each subgroup. Because all subgroup membership functions are considered, the subgroup with the most membership values is selected as a candidate of the class. Once we obtain the candidate from every class, the values are normalized into basic probability assignments. For example, let a set of fuzzification results of an input be 0.70, 0.40, and 0.20 for classes PD, SC, and BLPS, respectively. The results are normalized to 0.70/1.30 = 0.54 for class PD, 0.40/1.30 = 0.31 for class SC, and 0.20/1.30 = 0.15 for class BLPS. However, uncertainty that affects these values may arise in the dataset. In this study, the reference providers observed that a slight change might misclassify PD to SC or SC to PD. If the data included in the training set and in fuzzification cannot be visually removed in training data selection, unreliable membership function results will be obtained. To deal with this uncertainty, we initially reduced the obtained membership values of PD and SC by 15% (see Section 4.2), namely, the bias of PD and SC.



For the TAD, all inputs are observed from the beginning, and we examine the probability that each randomly drawn out training sample belongs to a TAD. Then, the final decision is made by experts, who directly assign that value to basic probability assignment.



The basic probability assignment derived from the fuzzification and TAD result are used as parameters for the belief and plausibility calculation (Figure 5), using the method and equations described in our methodology. Finally, the class with the maximum belief value is assigned as the output.






4. Results


4.1. Andrews’ Curve of Training Sets


The training classes were divided into categories based on their TAD. To avoid confusion within the overlapping area, as shown in Figure 3a, we simply subdivided the types by visual interpretation, which is the main advantage of using Andrews’ curves (see, e.g., the separation illustrated in Figure 3b). Furthermore, Figure 3c shows a training set of the PM class before (top) and after (bottom) manual noise removal and subgroup extraction with visual interpretation.



The possible TAD of all remote sensing datasets and the basic probability assignments are presented in Table 2, where 1 and 0 denote the positive and negative peaks of the Andrews’ curves, respectively. The number patterns directly refer to the order of peak arrangement in the curve.



The result from the examined TAD of each training set shows that different classes may have different TADs, but if they have the same TAD, their Andrews’ value pattern must differ. However, this conclusion is limited by the precision of the data and the maximum ability for classifying the data type.




4.2. Example Fuzzification, Belief and Plausibility Calculation Results


To easily understand how the process works, we selected an input (labeled as PD) as a sample for illustrating the calculation. The two pieces of evidence are fuzziness [image: there is no content] and dynamic [image: there is no content]. The fuzzification believes that the input curve pattern is in BLPS with a probability of 0.1924, PD with a probability of 0.6235, or SC with a probability of 0.1841. However, we added a bias (directly multiply by 0.85) to the PD and SC fuzzification results of 15% of the original results. This caused the results of PD and SC to be reduced to 0.5300 and 0.1565, respectively, based on the assumption that the summation of the mass values in a set must be equal to 1 in Equation (6). The dynamic believes that the input is BLPS with a probability of 0.1000, PD with a probability of 0.6000, or SC with a probability of 0.3000.



Dempster’s rule of combination in Equations (12) and (13) was adopted for the distribution of the basic probability assignments, as shown in Table 3.



Table 3. Calculation of mass value combination.







	
Input 1

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
0.1924

	
0.5300

	
0.1565

	
0.1211






	
[image: there is no content]

	
[image: there is no content]

	
0.1000

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
0.0192

	
0.0530

	
0.0157

	
0.0121




	
[image: there is no content]

	
0.6000

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
0.1155

	
0.3180

	
0.0939

	
0.0727




	
{[image: there is no content]}

	
0.3000

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
0.0577

	
0.1590

	
0.0469

	
0.0363








1 Input number 8708 from PS data.








There are seven null entries in Table 3. Thus, we computed [image: there is no content] in Equation (13) and the mass combinations in Equation (12), which gave the belief in Equation (8), and we computed the plausibility by its relationship with the belief in Equations (10) and (11) or directly from the mass combinations in Equation (9), as follows:


[image: there is no content]



(19)






[image: there is no content]



(20)






[image: there is no content]



(21)






[image: there is no content]



(22)






[image: there is no content]



(23)




for the maximum belief of 0.7923 in the PD set,


[image: there is no content]



(24)







The belief interval ranges from 0.7923 to 0.8121, i.e., the two classifiers coincidentally believe that the input curve is in PD with a minimum probability of 0.7923 and a maximum probability of 0.8121. Therefore, the crisp output is from the PD class for the example input that matches with its true class from the reference.





5. Discussion


5.1. Accuracy and Data Uncertainties


Per the fixed validation dataset (Table 1), the overall accuracy of the RP data was 92.06%, compared to 91.80% and 90.16% for the 24% and 11% training sets, respectively. This behavior is similar to that of the PS data, with a slight decrease from 98.35% for the 15% training set to 98.20% and 97.92% for the 10% and 7% training sets, respectively. The PS satellite data, collected in the sugarcane harvest season, may introduce a certain discrepancy, as the non-cut sugarcane area, already cut sugarcane area with bare land, medium-growth sugarcane, and paddy field have similar reflectance data. A similar ambiguity arises in the RP data, wherein the satellite acquisition occurs during the shedding season of rubber, when palm is non-shed. Herein, there is ambiguity between young palm with shedding rubber, young palm or young rubber with bare land, and shed rubber with bare land, which have similar reflectance data. The confusion matrix between the reference and classified data is shown in Table 4 and Table 5.



Table 4. Error matrix table of RP data.







	
Training Size

	
Reference Data (Pixels)




	

	
BLRP

	
RB

	
PM

	
Total

	
UA (%)






	
35%

	
BLRP

	
148

	
4

	
0

	
152

	
97.37




	
RB

	
14

	
566

	
32

	
612

	
92.48




	
PM

	
1

	
70

	
689

	
760

	
90.66




	
Total

	
163

	
640

	
721

	
1524

	




	
PA (%)

	
90.80

	
88.44

	
95.56

	
OA (%) = 92.06




	
24%

	
BLRP

	
148

	
4

	
0

	
152

	
97.37




	
RB

	
15

	
562

	
35

	
612

	
91.83




	
PM

	
1

	
70

	
689

	
760

	
90.66




	
Total

	
164

	
636

	
724

	
1524

	




	
PA (%)

	
90.24

	
88.36

	
95.17

	
OA (%) = 91.80




	
11%

	
BLRP

	
146

	
5

	
1

	
152

	
96.05




	
RB

	
12

	
564

	
36

	
612

	
92.16




	
PM

	
1

	
95

	
664

	
760

	
87.37




	
Total

	
159

	
664

	
701

	
1524

	




	
PA (%)

	
91.82

	
84.94

	
94.72

	
OA (%) = 90.16










Table 5. Error matrix table of PS data.







	
Training Size

	
Reference Data (Curves)




	

	
BLPS

	
PD

	
SC

	
Total

	
UA (%)






	
15%

	
BLPS

	
4809

	
12

	
1

	
4822

	
99.73




	
PD

	
52

	
8612

	
72

	
8736

	
98.58




	
SC

	
51

	
60

	
1396

	
1507

	
92.63




	
Total

	
4912

	
8684

	
1469

	
15065

	




	
PA (%)

	
97.90

	
99.17

	
95.03

	
OA (%) = 98.35




	
10%

	
BLPS

	
4791

	
27

	
4

	
4822

	
99.36




	
PD

	
57

	
8608

	
71

	
8736

	
98.53




	
SC

	
48

	
63

	
1395

	
1507

	
92.63




	
Total

	
4895

	
8698

	
1471

	
15065

	




	
PA (%)

	
97.86

	
98.97

	
94.90

	
OA (%) = 98.21




	
7%

	
BLPS

	
4798

	
19

	
5

	
4822

	
99.50




	
PD

	
100

	
8571

	
65

	
8736

	
98.11




	
SC

	
43

	
63

	
1383

	
1507

	
91.77




	
Total

	
4941

	
8671

	
1453

	
15065

	




	
PA (%)

	
97.11

	
98.85

	
95.18

	
OA(%) = 97.92











5.2. Representative of Training Data


We inspected the significance of the difference in accuracy between the RP and PS data. As per Table 1, the number of training samples directly influences the accuracy if it cannot represent most of the characteristics of the class. For the same training size proportion (around 10%), the number of paddy field reference curves (the majority class of the PS dataset) is 1035, which may be sufficient to represent all possible paddy fields occurring in the area, while oil palm (the majority class of RP dataset) has only 109 curves. However, we can assume that the training sets of RP data may be less representative than the training sets of PS data at the same training ratio. The training sample cannot completely represent all input data, which is the main drawback of the sampling design [31].




5.3. Robustness


To test the performance of our method, we randomly reduced the number of training samples to different proportions. Although the training data were reduced, the test data remained at the same proportion of the population. The accuracy of the result shows that the reduction in training data leads to a slight decrease in the overall accuracy of the remote sensing data. This phenomenon is referred to as an increase in commission and emission errors (those that can be interpreted from the reduction of the user’s and producer’s accuracy, respectively). The main reason for such errors is that the random procedure of our method generates an extremely small training size in some subgroups. After examining the result of misclassified curves, e.g., we scanned the 11% training set of the RP data and found that some subgroups show a substantial change in width compared to the original training set of 35% (some subgroups left only four training curves). However, the overall accuracy is greater than 90% for all datasets.



Moreover, we compared the proposed method with two traditional classification methods, the maximum likelihood and minimum distance, for the RP data. We used the minimum training size of 11% and the same 1524 validating points. The experiment was completed using supervised classification functions in the ENVI 5.0 software and its results showed that the proposed method has a commission error rate for the PM class greater than that of the minimum distance method—about 8%—while the minimum distance method provided a poor user accuracy for the RB class. In contrast, the maximum likelihood yielded the highest user accuracy for the PM class, but seemed to include the RB and PM classes in the results of the BLRP class, more so than the other two methods. In conclusion, the proposed method has the highest overall accuracy among the methods.



The benefit of using Andrews’ plots in preparing training data is to screen outliers that may be included, as well as to subdivide the training sets to improve the accuracy. The next step is to reject low membership grade inputs by DS theory. These are the differences of the proposed method from traditional methods. Table 6 illustrates the accuracies from the comparison experiment.



Table 6. The error matrix of three classification methods.







	
Methods

	
Reference Data (Pixels)




	

	
BLRP

	
RB

	
PM

	
Total

	
UA (%)






	
Minimum Distance

	
BLRP

	
129

	
12

	
11

	
152

	
84.87




	
RB

	
1

	
411

	
200

	
612

	
67.16




	
PM

	
0

	
37

	
723

	
760

	
95.13




	
Total

	
130

	
460

	
934

	
1524

	




	
PA (%)

	
99.23

	
89.35

	
77.41

	
OA (%) = 82.48




	
Maximum Likelihood

	
BLRP

	
148

	
3

	
1

	
152

	
97.37




	
RB

	
42

	
555

	
15

	
612

	
90.67




	
PM

	
10

	
86

	
664

	
760

	
87.37




	
Total

	
200

	
644

	
680

	
1524

	




	
PA (%)

	
74.00

	
86.18

	
97.65

	
OA (%) = 89.70




	
The proposed method

	
BLRP

	
146

	
5

	
1

	
152

	
96.05




	
RB

	
12

	
564

	
36

	
612

	
92.16




	
PM

	
1

	
95

	
664

	
760

	
87.37




	
Total

	
159

	
664

	
701

	
1524

	




	
PA (%)

	
91.82

	
84.94

	
94.72

	
OA (%) = 90.16











5.4. Limitations and Suggestions


Andrews’ plots can precisely visualize high-dimensional data. However, they also have a shortcoming, i.e., their shapes become completely different when the order of the variables is changed. This phenomenon was described by Andrews himself in his original paper [1]. Note that it is expedient to subordinate the most important variables with low frequencies, as we did with the near-infrared band, whose values were mainly affected by the plants. Conversely, this shortcoming may be advantageous in other contexts. The differing shapes of Andrews’ curves illustrate different characteristics of the data source. For example, in a complicated work, one may use at least two orders to ensure that a pixel is categorized precisely into a class based on the distinguishability of the orders. If an order is insufficient to represent the pixel, it may be advantageous to draw another order based on the band characteristics.



As we noted in Section 3.2.1, extracting the overlapping area in the training data is an optional task to optimize the training selection procedure. The main objective of this method is to reduce the overlapping area of the curves, resulting in less overlap in the shape of the membership function of each class. However, it can be avoided in many cases if details of the reference used are available.



Owing to the high flexibility provided by the core concepts of fuzzification and DS theory, users can develop their own rules and make individual decisions. The two theories are representative of vagueness and uncertainty. The major problem of any classification task is achieving maximal accuracy. These theories are usually used to handle vagueness in data that normal crisp methods cannot. However, when the data have no uncertainty, to use such theories may be inappropriate. Note that very good data may produce relatively good results, while fairly good training data may also produce equally good results from a well-prepared method that reduces time and cost requirements. Theoretically, the power of such a supervised method depends on understanding the data and the experience of the user in designing a workflow.




5.5. Future Work


We hypothesized that different subgroups may be due to stages of cultivation or the specific characteristics of the crop species, depending on the date of data acquisition. However, this assumption cannot be proven in the current paper because the ground survey reference used does not show stages of crop cultivation or areas containing a large amount of private crop land, where planting is based on individual decisions. Moreover, the proof must be pursued carefully using time series and available ground survey data.



The data used in this study were acquired using the same sensor, Landsat-8 OLI. However, the acquisition date, area elevation, weather, and so on, varied. Moreover, the crop land occurring in the areas had varied properties. For example, rubber is a deciduous crop, but oil palm is not, whereas paddy and sugarcane fields share the same reflectance at some stages of cultivation. The classifier worked well under these ambiguous conditions. Furthermore, the Andrews’ curve of the bare land class seemed to have the same shape across the two datasets and was distinct from that of pure vegetation areas. In addition, the data points that included a combination of bare land, construction areas, bodies of water, and vegetation seemed to have specific curves. Further investigation is required to ensure that different objects have at least one specific Andrews’ curve that can be used to distinguish them under the controlled conditions of Andrews’ curve plotting. Moreover, comparisons with other classification techniques must be observed.





6. Conclusions


In this study, the satellite image pixels were accurately classified using a technique based on data visualization (Andrews’ plots) and the combination of DS and fuzzy set theory (accuracy more than 97% and 90% for PS and RP data, respectively). The main advantage of using Andrews’ plots is that they make impure data more easily detectable by human interpretation. Moreover, they envision not only the structures within data, but also seem to yield signature curves for a class. Two widely used machine learning algorithms were used to handle the many transformed curves. Fuzzification was used to obtain the membership grades, which assign each curve to a given training-curve class, while the real decisions were made by DS theory with the obtained grades and a few given conditions (curve’s characteristic possibilities and assigned uncertainties). The study provided not only a crop type classification framework, but also incidentally gave a practical method for finding curve similarities. The proposed method still worked well when we changed the training sizes. At the same training size, it also produced a better result when compared to the maximum likelihood and minimum distance algorithm. However, the proposed framework also has its shortcomings, e.g., the Andrews’ function is very sensitive to the data arrangement applied. Furthermore, the process requires a relatively fast computer that supports curve visualization. Future work will focus on investigating the signature curves for commercial crops and a comparison of the proposed method with other advanced methods such as the support vector machine, neural network, pure fuzzy classification, decision tree, etc.
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