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Abstract: The physically based model has been widely used in rainfall-induced shallow landslide
susceptibility analysis because of its capacity to reproduce the physical processes governing landslide
occurrence and a higher predictive capability. However, one of the difficulties in applying the
physically based model is that uncertainties arising from spatial variability, measurement errors,
and incomplete information apply to the input parameters and analysis procedure. Uncertainties have
been recognized as an important cause of mismatch between predicted and observed distributions of
landslide occurrence. Therefore, probabilistic analysis has been used to quantify the uncertainties.
However, some uncertainties, because of incomplete information, cannot be managed satisfactorily
using a probabilistic approach. Fuzzy set theory is applicable in this case. In this study, in order
to handle uncertainty propagation through a physical model, fuzzy set theory, coupled with the
vertex method and the point estimate method, was adopted for regional landslide susceptibility
assessment. The proposed approach was used to evaluate susceptibility to rainfall-induced shallow
landslides for a regional study area, and the analysis results were compared with landslide inventory
to evaluate the performance of the proposed approach. The AUC values arising from the landslide
susceptibility analyses using the proposed approach and probabilistic analysis were 0.734 and 0.736,
respectively. However, when the COV values of the input parameters were reduced, the AUC values
of the proposed approach and the probabilistic analysis were reduced to 0.722 and 0.688, respectively.
It means that the performance of the fuzzy approach is similar to that of probabilistic analysis but
is more robust against variation of input parameters. Thus, at catchment scale, the fuzzy approach
can respond appropriately to the uncertainties inherent in physically based landslide susceptibility
analysis, and is especially advantageous when the amount of quality data is very limited.
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1. Introduction

Landslides are the movements of earth materials down a slope on one or more failure surfaces [1],
and are very common in mountainous and hilly environments in all parts of the world. Landslides are
complex slope instability phenomena that are influenced by many external factors (e.g., heavy rainfall,
earthquake, and volcanic eruption) and intrinsic factors (geometry of slope, lithology, geological
structure, geotechnical properties). That is, landslides can be triggered by a wide range of geological
and meteorological processes. In natural hillslopes, one of the most frequent triggering factors is
heavy rainfall, which can directly infiltrate the slope surface or can indirectly provide subsurface
water from the bedrock [2]. Rainfall-induced slope failures are normally shallow and of small volume,
with a depth of failure of less than 3 m, and occur on steep soil slopes of 30◦–50◦ [3,4]. Deep-seated
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landslides after rainfall are also occasionally reported but shallow landslides are more typically induced
by intense rainfall [5–10]. Since rainfall-induced landslides repeatedly cause fatalities, damage to
property, and economic losses around the world, various researchers have sought to predict landslide
occurrence and reduce the damage they cause.

In recent years, landslide susceptibility (or hazard) analysis and risk assessment have become
a major subject in landslide studies and significant progress has been made. Rapid advances in Earth
observation techniques supported by the application of geospatial technologies, such as image analysis
and geographic information systems (GIS), have greatly enhanced landslide hazard analysis capabilities
over recent years. Remote sensing data has contributed particularly to advances in two aspects
of landslide research; landslide detection and identification, and landslide monitoring. Landslide
detection and mapping are important in landslide studies because an accurate landslide inventory,
including the spatial distribution and geometry of landslides, is essential information. Remote sensing
imagery provides invaluable information facilitating the geological interpretation of a landslide and
hence better understanding of landslide geometry and kinematics [11]. Most landslide detection
and identification studies have used aerial photographs, associated with optical imagery [12–20].
Optical data generally provide better results because of their high spatial resolution and sensor
look angle [21]. High spatial resolution optical satellite imagery has also been used to identify the
distribution of causative landslide factors such as topography, geology, land use and vegetation
cover [22–28]. In addition, Light Detection and Ranging (LiDAR) has been used in landslide studies
since LiDAR (or laser scanning) can provide high-resolution point clouds of the topography [29–35].
In addition, according to Singhroy and Molch [36], high resolution synthetic aperture radar (SAR)
images can be used to characterize landslides on the basis of an observed close relationship between
SAR measurements and debris distribution. On this basis, SAR techniques have been used in landslide
detection and mapping [37–42].

As well as mapping landslides post-event, remote sensing is a key tool for measurement
of ground movements [11]. Optical remotely sensed imagery has been used in monitoring
landslide movements [43–47]. According to Kääb [47], analytical and digital photogrammetry
techniques are suitable for monitoring geometric changes in high mountain areas. In recent decades,
SAR interferometry, whether satellite or ground based (InSAR and DInSAR), has been a heavily
researched technique for landslide monitoring [48]. SAR interferometry uses the phase measurements
of two or more SAR images, acquired at different times, of the same scene. The interferogram
represents small changes that can be related to topography or surface deformation. Consequently,
there is an extensive scientific literature on the use of SAR interferometric techniques for landslide
monitoring [36,49–55]. Moreover, satellites are able to provide accurate estimates of precipitation as
demonstrated by the Tropical Rainfall Measuring Mission (TRMM) [56]. Remote rainfall measurements
can be used to predict rainfall-induced landslides as part of landslide susceptibility analysis [57–60].

With the recent advances in remote sensing and GIS, various landslide susceptibility analysis
methods have been proposed in the scientific literature. These can be divided into qualitative
(or knowledge-driven) and quantitative approaches, depending on how they treat landslide-inducing
factors and models. Generally, qualitative approaches are based entirely on the judgment of experts
conducting the susceptibility assessment [61]. Therefore, qualitative approaches are not commonly
used in landslide susceptibility assessments over large areas because of the lack of an established
physical mechanism by which to predict slope failures [62]. Quantitative landslide susceptibility
assessment methods can be divided into two categories: data-driven methods and physically based
modeling approaches [63]. In data-driven landslide susceptibility assessment methods, the statistical
relationships between the locations of landslides occurred in the past and landslide-inducing factors
are evaluated, and then, quantitative predictions are made for landslide free areas with similar
conditions. The most significant challenge in the application of data-driven methods is the collection
of necessary data regarding landslide distribution and factor maps over large areas [64]. In addition,
data-driven methods only consider statistical relationships between landslide occurrences and related
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factors based on past observations: they do not ascribe a failure mechanism. Moreover, the statistical
models generally ignore the temporal aspects of landslides, and are not able to predict the impact
of changes in landslide controlling conditions [64]. The physically based approach, on the other
hand, analyzes the mechanical condition of slopes and evaluates their stability using mathematical
calculations [5,65–76]. This approach couples distributed hydrological and stability models that can
evaluate dynamically the risk of rainfall-induced landslide. The coupled models estimate the spatially
distributed safety factor using a physical slope model, such as the infinite slope model, together with
the crucial mechanical and hydrological parameters of soils. Recently, physically based models have
been widely used because they have a higher predictive capability than other approaches and are the
most suitable for quantitatively assessing the influence of individual parameters that contribute to
landslide initiation [77]. However, a limitation of using a physically based and spatial distributed
model is that it is not always possible to obtain reliable mechanical and hydrological soil parameter
data from a broad natural area. An inability to characterize fully the geotechnical and hydrological
parameters of slope materials causes inevitable uncertainty and may have a significant impact on
model results. Uncertainty in model parameter evaluation has been recognized as an important
cause of mismatches between simulated and observed distributions of landslide occurrence [78]. In
addition, natural materials, comprising most slopes, have innate variability that is difficult to predict;
this variability of geologic material is another major source of uncertainty.

To account for these uncertainties, a probabilistic approach has been investigated and used in slope
stability analysis at both site-specific and regional scales [76,79–87]. Probabilistic analysis has been used
for representing uncertainty in the failure model and in the material properties. However, the dealing
with the uncertainty in the probabilistic analysis procedure is associated with difficulties caused by the
lack of information, which is typical in large-area regional landslide studies. According to Haldar and
Mahadevan [88] and Giasi and Masi [89], an adequate number of reliable observations are important
to implement probabilistic analysis accurately and to estimate uncertainty. However, these data, which
are needed for utilization of moment values (e.g., mean and variance) as input parameters and for
the evaluation of probability distributions in the probabilistic analysis, are frequently not available,
in practice, to a sufficient extent and quality for regional scale analysis. Therefore, probabilistic
analysis, in regional landslide studies, is associated with the difficulties because of the lack of
information. In addition, some uncertainties connected to measured geotechnical parameters may
be nonstochastic [90], being, in conditions of limited knowledge, of cognitive origin [91]. Under
such conditions of limited information, it appears reasonable to base estimation on the concept of
fuzzy sets [92]. Fuzzy set theory has been found to be effective and suitable for modeling uncertainty
in geotechnical parameters when data are insufficient to define a probability distribution fully [93].
Consequently, fuzzy set theory has been used in several site- specific slope stability analyses at hillslope
scale [89,92,94–99].

In this study, we propose a fuzzy-set-based analysis method for rainfall-induced shallow landslide
susceptibility analysis in a regional area to account for the uncertainty in input parameters. In the
landslide susceptibility analysis at catchment scale, the input data used in physically based models
are often limited in extent and have imperfect quality. Therefore, the uncertain parameters, used in
catchment scale analysis, should be considered as fuzzy numbers. Consequently, in this study, fuzzy
set theory was employed to evaluate physically based and spatially distributed landslide susceptibility
over a broad area. For that, we developed an algorithm to model the uncertainties with fuzzy numbers
and to handle the uncertainty propagation through a physically based model. The proposed algorithm
was applied to a practical example to verify its feasibility and validity.
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2. Materials and Methods

2.1. Framework for Fuzzy-Set-Based Analysis

2.1.1. Uncertainty Modeling with Fuzzy Numbers

Probabilistic analysis has been a formidable tool for dealing with uncertainty. However,
the probabilistic characteristics of a random variable can be described completely if the form of
the distribution function and the associated parameters are specified [92]. In addition, probabilistic
analysis is carried out on the premise that for an uncertain parameter, the precise mean, precise
standard deviation, and an appropriate probability density function can be obtained [100]. However,
in many practical cases, the form of the distribution may not be known, and frequently, only the
interval between minimum and maximum values can be obtained. Under this condition, if it is judged
that not all values in the interval have the same degree of support, an uncertain parameter may be
expressed as a fuzzy number [90].

In landslide susceptibility analysis, based on a physically based modeling approach, the strength
parameters of soil, such as friction angle and cohesion, are considered as the essential input parameters.
However, these parameters cannot be spatially determined over a large area because of limited
input data availability. Therefore, uncertainty in soil parameters is best dealt with using fuzzy set
theory. Fuzzy set theory has been shown to be effective and suitable for modeling uncertainty in soil
parameters when the data are insufficient to define a probability distribution fully [93,97,101–103].
Therefore, a fuzzy number—a subset of a fuzzy set—was used to represent an uncertain soil parameters
using fuzzy set theory.

Fuzzy set theory, introduced by Zadeh [104], facilitates analysis of nondiscrete natural
processes [91]. While classical set theory defines an object as a member of a set if it has a membership
value of 1, or as not a member if it has membership value of 0, the membership of a fuzzy set is
expressed on a continuous scale from 1 (full membership) to 0 (full nonmembership) [105]. That is,
in fuzzy set theory, a more flexible sense of membership is possible. A fuzzy set is mathematically
defined as a set of ordered pairs [x, µA(x)], where an element x belongs to the set A to a degree
defined by its membership function µA(x). The membership function ranges from 0 to 1 and is used to
characterize the degree of belief that a member x belongs to A.

A fuzzy number is special case of a fuzzy set that is normal and convex, which means that the
shape of the membership function is single humped and has at least one value whose membership
grade is 1. If there is no reason to suggest otherwise, the shape of the membership function may
be assumed to be triangular because of its simplicity in formulation and ease of computation [90].
A triangular fuzzy number is characterized by three values: a lower bound, an upper bound, and
a modal (or peak) value. The modal value has a membership function of 1, the highest possible set
membership for uncertain parameters. As the value of the parameter departs from the modal value,
the degree of belief that this value truly represents the soil parameter decreases, and when the value
reaches the lower bound (or upper bound), the degree of belief is reduced to zero [98,103]. A triangular
fuzzy number is expressed as follows:

TFN [a, m, b] (1)

where a is the lower bound, m is the modal value, and b is the upper bound (Figure 1).
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In this study, the geotechnical parameters of soil, such as cohesion and friction angle, were treated
as triangular fuzzy numbers. This required the upper bound, lower bound, and modal value to be
determined. Generally, the most probable value (modal value) can be estimated fairly accurately by
taking the mean of the available data [103]. Therefore, using the data obtained from field surveys
and laboratory tests, the mean values for cohesion and friction angle were evaluated and taken to
be the modal values of their respective fuzzy numbers. To determine the upper and lower bounds,
an estimation approach using the standard deviation of the uncertain parameters has been suggested
and used in many studies [89,92,103,106]. That is, the upper bound (xub) and lower bound (xlb) of the
uncertain parameters are estimated as follows:

xub = µx + kσx

xlb = µx − kσx (2)

where µx is the mean value of the uncertain parameter, and σx is the standard deviation. The sigma
unit, k, ranges from 0.5 to 3, depending on the data availability and the accuracy of the results
desired [92]. However, when data are limited, the standard deviation cannot be exactly determined
and may be estimated by adopting the published coefficient of variation (COV) for a given soil
parameter [83,103,107–110]. The COV values reported in previous studies were 10–20% for friction
angle and 25–30% for cohesion. Because the number of data in this study was small relative to the
size of the study area and it was expected that a higher uncertainty would be involved in the analysis
procedure, higher values of COV (20% for friction angle and 30% for cohesion) were used in setting the
standard deviation values for the uncertain parameters. In addition, the difference between the upper
and lower bounds was considered as 4 σ by taking ±2σ from the mean. That is, the fuzzy numbers for
friction angle and cohesion are:

xφ = TFN
[
µφ − 2σφ, µφ, µφ + 2σφ

]
= TFN

[
µφ − 2

(
µφ ×COVφ

)
, µφ, µφ + 2

(
µφ ×COVφ

)]
xC = TFN[µC − 2σC, µC, µC + 2σC] = TFN[µC − 2(µC ×COVC), µC, µC + 2(µC ×COVC)]

(3)

where µφ, σφ and COVφ are the mean, standard deviation, and COV of the friction angle, and µC, σC
and COVC are the mean, standard deviation, and COV of the cohesion.

2.1.2. Fuzzy Point Estimate Method

After the fuzzy numbers are defined for each uncertain parameter, the vertex method [111] is used
to evaluate the performance function (in this case, the physically based slope model) and to analyze
the propagation of fuzzy numbers through the slope model. According to the extension principle of
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Zadeh [104], algebraic operation on real numbers can be extended to fuzzy numbers for evaluation
of the performance function. However, the implementation of the computation is not trivial, as the
algebraic solution procedure may be complicated and may not guarantee a result. Therefore, the vertex
method, one of the simplest solution procedures, has been used in several studies [89,92,98,99,103].

The vertex method is based on the α-cut concept of fuzzy numbers and involves an interval
analysis. The α-cut of a fuzzy set A is the crisp set comprised of all the elements x of a universe of
discourse X for which the membership function of A is greater than or equal to α. The basic idea of the
α-cut concept is the discretization of a fuzzy number into a group of α-cut intervals. For each uncertain
parameter, an α-cut of its fuzzy number will give an interval having two points; i.e., the upper and
lower bound values for a particular α-cut. At each α-cut level, the intervals for each input variable
are obtained, and combinations of vertices can be formed. Therefore, if we have a performance
function with N fuzzy input variables whose membership functions are assigned, the number of vertex
combinations will be 2N. Then, at each α-cut level, by replacing fuzzy numbers in the performance
function with the vertex combinations, the results of the performance function are obtained by fuzzy
computation. In this study, the point estimate method (PEM) proposed by Rosenblueth [112] and
Harr [108] was used to compute the performance function using fuzzy input parameters. Conceptually,
the PEM uses two point estimates (x+, x−) of each uncertain parameter and evaluates the performance
function with 2N combinations of point estimates. Therefore, because the vertex method can evaluate
two vertices, which are the upper and lower bounds (xαi

+ , xαi
−) of an α-cut interval (Figure 1), PEM can

use the upper and lower bounds of an α-cut interval as two point estimates and thus evaluate the
performance function. Consequently, the PEM coupled with the vertex method can obtain outputs for
the performance function, which are factors of safety (FS) according to the physically based model.
Because two uncertain parameters, friction angle and cohesion, were considered as fuzzy numbers in
this study, two point estimates for friction angle (φαi

+ , φ
αi
− ) and cohesion (cαi

+ , cαi
−) were evaluated at each

αi cut level, and therefore, four vertex combinations were obtained at each α-cut level. Subsequently,
four outputs of the performance function (FSαi

++, FSαi
+−, FSαi

−+, FSαi
−−) were obtained using four

vertex combinations. That is:

FSαi
++ = FS

(
φ

αi
+ , cαi

+

)
, FSαi

+− = FS
(
φ

αi
+ , cαi

−
)
, FSαi

−+ = FS
(
φ

αi
− , cαi

+

)
, FSαi

−− = FS
(
φ

αi
− , cαi

−
)

(4)

Then, the mean and standard deviation of the safety factor (FS), which is the output of the
performance function, can be obtained as follows:

E [FS] =
∑M

i=1

(
p++× FS

αi
+++ p+−× FS

αi
+−+ p−+× FS

αi
−++p−−× FS

αi
−−

)
M

E
[
FS2] = ∑M

i=1

(
p++×

(
FS

αi
++

)2
+ p+−×

(
FS

αi
+−

)2
+ p−+×

(
FS

αi
−+

)2
+p−−×

(
FS

αi
−−

)2
)

M

σFS =
√

E[FS2]− (E[FS])2

p++ = p−− = 1+ρ
4

p+− = p−+ = 1−ρ
4

(5)

where ρ is the coefficient of correlation between the uncertain parameters, and M is the number of
α-cut levels. In this study, nine different α-cut levels (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) were used.
As explained previously, in this approach, all 2N vertex combinations at each α-cut level are used in
the evaluation of the performance function. However, in previous vertex approaches [89,92,98,99,103],
the outputs of performance functions were determined by taking only the minimum and maximum
values obtained from 2N vertex combinations at each α-cut level. This study therefore differs, in this
way, from previous fuzzy-number-based approaches.

From the two moments (mean and standard deviation) of the performance function,
the probability of failure can be obtained. In order to evaluate the probability of failure from PEM, the
reliability index, β, should be evaluated. The reliability index refers to the distance of the mean factor
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of safety from its critical value (i.e., FS = 1) in units of standard deviation. Therefore, the reliability
index is evaluated with the following equation:

β =
E[FS]− 1

σFS
(6)

In order to obtain the probability of failure from the reliability index, the factor of safety is assumed
to be normally distributed, and the reliability index is, therefore, a standard normal variate [107].
The standardized normal distribution, with zero mean and unit standard deviation, is widely tabulated,
and usually, the tabulation expresses the integral, Φ, of the standardized normal distribution between
–∞ and a positive value. Therefore, the probability of failure (Pf ) is evaluated as follows:

Pf = 1−Φ(β) = Φ(−β) (7)

2.2. Physically Based Slope Model

In physically based analysis, a physical slope model is used to determine the slope stability
by analyzing the force applied to the slope. The infinite slope model, a useful simplification for
rainfall-induced shallow landslide [9,66,83,113], was used in this study. This model is appropriate for
Korean landslides because the sliding surfaces are commonly located at shallow depth [83,114–116].
In addition, this study adopted a transient rainfall infiltration model, which considers spatiotemporal
changes in pore water pressure caused by rainfall infiltration, coupled with the infinite slope model, to
analyze landslide susceptibility. The infiltration model estimates transient pore pressure changes by
considering changes in rain infiltration over time. In this study, we adopted the hydrogeological model
implemented in the transient rainfall infiltration and grid-based regional slope stability (TRIGRS) [117],
which is designed for modeling the potential occurrence of shallow landslides by incorporating
transient pressure responses to rainfall and downward infiltration [118].

The infiltration models in TRIGRS are based on Iverson’s solution [119] of the Richards’ equation
for an infinitely deep impervious basal boundary and the surface condition of constant flux for
a specified time, and zero flux thereafter [120]. Iverson [119] provides a theoretical framework
for understanding how hydrological processes influence the location, timing, and rate of landslide
occurrence, based on a solution to the boundary problem posed by Richards’ equation. This solution
evaluates the effects of transient rainfall by modeling the pore water pressure as both a steady
component and a transient component. Baum [117] generalized Iverson’s original infiltration model
for cases of variable rainfall intensity and duration to develop the TRIGRS software package.

2.3. Study Area and Database Construction

The Inje area, which is located in the middle of Gangwon Province, Republic of Korea,
was selected as the study area to assess landslide susceptibility using the proposed analysis method.
On 15–16 July 2006, as a result of Typhoon Ewiniar and heavy rainstorm, this area experienced heavy
rainfall, 332.5 mm, and approximately 800 landslides were reported. The event caused the death
of 17 people, with 12 unaccounted for [121], and most residential settlements were swept away
by landslides.

The study area has an approximate area of 31.6 km2 and is located between longitudes
128◦11′44.81′ ′ and 128◦18′8.99′ ′ and latitudes 38◦3′3.93′ ′ and 38◦15′58.55′ ′. The altitude ranges from
215 m to 1220 m, with an average altitude of 660 m. Within mountainous terrain, the Deoksancheon
stream valley runs from southeast to northwest through the center of the area. The many mountainous
parts of the study area have steep slopes (>30◦) and are susceptible to slope failure [122]. Geologically,
the area is composed mainly of Mesozoic Inje granite and partly Precambrian biotite gneiss with
limited deposits of alluvium at the lower end of the stream (Figure 2). The soils in this area are
weathered granite soils, exhibiting a wide range of conditions depending on the degree of weathering.
When rainfall infiltrates the ground, the granite soils become partially or fully saturated. This increases
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the fragility of the soil, resulting in a significant loss of shear strength. Rainfall-induced landslides
in this area of Korea are usually shallow failures in such weathered granite slopes. They are mainly
triggered by rainfall infiltration, which induces decreased matric suction and shear strength [116].
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Figure 2. Geological map and the locations of the landslides.

In order to make a reliable map that predicts landslide occurrence in a certain area, it is crucial to
have insight into the spatial distribution or frequency of landslides. Therefore, a landslide inventory is
one of the most important factors in landslide susceptibility analysis. This is also because the accuracy
of the landslide prediction models can be evaluated using a landslide inventory map. A landslide
inventory map can be constructed by collecting historical information of landslide events or by
consulting satellite imagery and aerial photographs coupled with field surveys. In this study, landslide
locations were mapped using visual interpretation of aerial photographs and then confirmed by field
surveys. Visual interpretation is a widely used method and results in landslide inventories of high
resolution [77,123]. After the landslide event in 2006, digital aerial imagery from the UltraCam-X
sensor, with a ground resolution of 0.5 m, was obtained from Samah Aerial Survey Co. Ltd., Goyang,
Korea, in October 2010. These were compared with analog aerial photos taken, using the RC-20 camera,
prior to the event in August 2005. Aerial photographs were projected into the International Terrestrial
Reference Frame (ITRF) 2000 datum and Transverse Mercator (TM) coordinate system to match the
other thematic maps. Based on the comparison of aerial imagery, landslide occurrence locations were
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digitized and constructed as an initial point layer inventory map. The reliability of the landslide
inventory map was then enhanced by a field survey of some of the landslide locations. Through this
process, a total of 877 landslides were located, and a final GIS-based landslide inventory map was
constructed for further study (Figure 2).

Geomorphological characteristics, such as slope angles and elevation, were extracted from 1:5000
digital topographic maps, provided by the National Geographic Information Institute of Korea.
Contour vectors, which included altitude information, were extracted, and a triangulated irregular
network (TIN) was generated from this layer and converted into a grid raster layer as a digital
elevation model (DEM) with a 10 m resolution. The DEM was processed to create thematic maps
of geomorphological characteristics, such as slope angle and elevation (Figure 3a,b). Furthermore,
the soil thickness in the study area was acquired from 1:25,000 scale digital soil maps produced by the
National Institute of Agricultural Science.
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In order to evaluate the landslide susceptibility using a physically based model, the geotechnical
input parameters such as cohesion and friction angle for the soils should be obtained. In this study,
the requisite input parameters were obtained from laboratory tests of soil samples collected from
the study area. The soil samples were collected from the landslide occurrence locations in each
geological unit. For each sampling location, six to nine soil samples were obtained for the laboratory
tests, and direct shear tests were performed to obtain shear strength parameters for each soil type.
The test results were connected to the sample locations in the point map layer and used to construct
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thematic maps of the input parameters (Figure 4a,b). The mean values of cohesion and friction
angle were 7.6 kN/m2 and 31.5◦. However, as mentioned in previous works [62,124–127], cohesion
and friction angle of slope materials are considered to be the major sources of uncertainty because
of spatial variability and limited sampling. Thus, cohesion and friction angle were considered as
uncertain variables. That is, the cohesion and friction angle were treated as fuzzy numbers in the
proposed analysis model. In addition, as in many analyses, the uncertain variables were assumed to
be independent [72,76,87,109,126,128,129].

The unit weights (Figure 4c) of soil were also obtained from laboratory tests, and the mean value
in this area was 15.4 kN/m3. In addition, 20 constant-head permeability tests were carried out in
the laboratory to obtain the hydraulic conductivity (Figure 4d). The mean value in this area was
0.0046 m/h. The soil thickness was evaluated from the depth to bedrock and used as soil depth in
the infinite slope model. Applying the Z-model [130], soil thickness (h) was estimated, according to
altitude, by Equation (8).

hi = hmax −
(

zi − zmin
zmax − zmin

)
(hmax − hmin) (8)

Here, hmax and hmin refer to the maximum and minimum soil thickness values, respectively,
whereas zmax and zmin are the maximum and minimum ground elevations, respectively. In this
way, using the thematic map of elevation, soil thickness in the area was also thematically mapped
(Figure 4e).
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Precipitation input, such as rainfall intensity, for the physically based model is one of the most
important parameters to be obtained. Rainfall intensity values were obtained from the Inje automatic
weather system (AWS), which is the closest and most representative rain gauge in the study area.
The rainfall intensity for the study area was obtained from the hourly rainfall records during the
rainstorm on 15–16 July 2006. On July 15, the total rainfall from the time when the rain started
(3:00 a.m.) to the time when the landslides occurred (11:00 a.m.) was 153.5 mm, and the average
rainfall intensity was 19.19 mm/h [131].

2.3.1. The Analysis Procedure

In this study, the regional slope stability analysis, based on PEM coupled with the fuzzy input
parameters, was conducted using the following procedure. First, uncertainties of the geomechanical
parameters, such as cohesion and friction angle, were quantified as triangular fuzzy numbers.
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Then, each of the input fuzzy numbers was discretized into a set of α-cut intervals. In this study,
nine α-cut levels were considered—i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9—in order to represent
the possible variability in the input parameters. At each selected αi-cut level, the upper bound (xαi

+)
and lower bound (xαi

−) of the intervals for each input fuzzy number were obtained, and these were
considered as point estimates in the PEM procedure. The combinations of point estimates (i.e., (φαi

+ , cαi
+),

(φαi
+ , cαi

−), (φαi
− , cαi

+), (φαi
− , cαi

−)) were formed at each αi-cut level, and the combinations were used as input
values to solve the physical slope model and to obtain FS values at each αi-cut level. Because there were
2N combinations, there would be 2N FS values for each αi-cut level. Then using PEM in Equation (5),
the expected value and standard deviation of FS were obtained, and subsequently, the reliability index,
β, and the probability of failure were evaluated. Using a GIS platform, this procedure was applied for
spatially distributed slope stability analysis across the regional area. In order to apply the landslide
susceptibility analysis in the GIS environment, all input data were first distributed in a grid-based
framework with information for each cell assigned (see Figures 3 and 4). For each layer used in the
model, a thematic map was generated using a 10 m × 10 m pixel/cell size and raster format. The raster
format is widely used in spatial analysis and modeling because of its simple data structure and easy
integration with other data.

In addition, because the study area was composed of 316,479 pixels and the fuzzy PEM had
to be implemented in all the pixels, the calculation of FS and probability of failure required much
time and effort. Therefore, to carry out the analysis procedure efficiently, we developed a fuzzy PEM
module using Mathworks’ MATLAB platform. In order to evaluate FS and probability of failure,
using a grid-based module developed in the MATLAB environment, the grid-format input data were
converted to ASCII-format data files. Subsequently, the fuzzy PEM analysis for each pixel was carried
out using the developed modules. The results of the analysis of the modules were then reconstructed
into ASCII format and transferred to grid-format files using GIS software. The analysis results were
presented as maps using the GIS software.

2.3.2. Evaluation of Model Performance

In landslide susceptibility analysis, model validation is essential for understanding model
performance. Validation refers to comparison of the model predictions with real-world data to
assess the model’s accuracy and predictive power [132]. A receiver operating characteristics (ROC)
graph is a commonly used technique for visualizing agreement between the susceptibility analysis
and the inventoried spatial distribution of landslides. ROC graphs are developed from a confusion
matrix that distinguishes between two classes of events (true and modeled) [133,134] (Figure 5). Two
metrics obtained from confusion matrix are used to plot the ROC graph, which is a two-dimensional
graph in which the true-positive rate (TPR) is plotted on the y-axis, and the false-positive rate (FPR)
is plotted on the x-axis. The TPR is the ratio of the number of true positives to the total number of
positives, and it quantifies the accuracy of the predicted results. The FPR is the ratio of the number of
false positives to the total number of negatives, and it quantifies the error rate. Model results that plot
toward the upper left of the ROC graph are generally considered to be superior [66]. The origin of the
graph (0, 0) represents a model result with maximum underestimate. In contrast, the upper right of
the graph (1, 1) represents the maximum overestimate, which means that the entire area is predicted
to be unstable. A perfect prediction would be located at the upper left (0, 1). The closer the results
of the analysis are to the upper left corner of the ROC graph (0, 1), the better the performance of the
model is. Because an ROC curve is a two-dimensional depiction of individual model performance, a
single derived scalar value is needed to compare performance between models. A common method is
to calculate the area under the curve (AUC). The larger the AUC value, the better the performance of
the model [66,133].
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3. Results and Discussion

In this study, a physically based model was used to evaluate rainfall-induced shallow landslide
susceptibility across a region. A fuzzy PEM was adopted for this landslide susceptibility analysis to
accommodate uncertainties in the input parameters of the physical model. A transient infiltration
model can estimate transient pore pressure changes and evaluate slope stability arising from changes
in rain infiltration over time. The physically based model was therefore combined with a transient
infiltration hydrogeological model to produce landslide susceptibility maps. In the study area,
landslide susceptibility was determined 8 h after the beginning of the rain to match the time interval
between the time when the rain started (3:00 a.m.) and the time when the landslides occurred
(11:00 a.m.). The results of this landslide analysis were compared with the inventoried locations of
actual landslides to verify the accuracy of the proposed approach. In slope stability analysis based
on a physically based model, correct determination of the level of safety for a slope is the objective.
In deterministic analysis, a value of FS = 1.0 is considered to be the criterion that the safety of the slope
can be evaluated. Therefore, FS ≥ 1.0 indicates that the slope is safe, and a value of FS < 1.0 implies
an unstable slope. However, there is no single criterion for stability in probabilistic analysis. Because
many uncertainties influence the outcomes of the analysis, we need to estimate the probability that
the slope will be unstable in order to determine the level of slope safety [135]. Although the criteria
used differ among researchers, many studies have chosen a failure probability of 10% as a threshold to
indicate the stability of natural slopes [72,83,135–138]. Thus, areas with a probability of failure greater
than 10% were considered to be susceptible to landslides in this study, and this figure was used to
evaluate the confusion matrix and determine the AUC.

Figure 6 shows the spatial distribution map for the probability of failure calculated using the fuzzy
PEM and the physically based model. In all, 747 out of total 877 locations at which actual landslides
occurred were predicted to be unstable. That is, 85.2% of actual landslides (or the mapped landslides in
the inventory map) were evaluated as unstable, meaning that the TPR, which is the ratio of the number
of correctly predicted landslide grids (true positives) to the total number of landslide occurrence grids
(positives), was 0.852. In addition, 38.3% of nonlandslide grids were predicted as unstable, which
means that the FPR was 0.383 (Table 1). Thus, the evaluated AUC from the ROC graph in Figure 7 was
0.734. Because an AUC greater than 0.7 suggests considerable accuracy [77], the proposed approach
had a good predictive performance.

To compare the results of fuzzy PEM with the results of a probabilistic approach, a Monte Carlo
simulation was performed as the probabilistic analysis (Figure 8). Monte Carlo simulation is considered
to be the most complete probabilistic analysis method because all random variables and the probability
of failure that results from the reliability analysis are represented by their probability density functions
through repeated calculations [83]. Therefore, this study utilized Monte Carlo simulations to obtain
the probability of failure by considering the strength parameters (cohesion and effective friction angle)
as random variables. The random input parameters used in Monte Carlo simulation were considered
as normally distributed variable, as in much previous research [72,83,97,127,129,139]. The same
values of mean and standard deviation as used in the fuzzy analysis were applied to the random
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input parameters. TPR and FPR values were evaluated as 0.885 and 0.413, respectively (Table 1).
Then the AUC was evaluated as 0.736, which is similar to the performance of the fuzzy PEM (0.734).
This means that both the fuzzy PEM and the probabilistic analysis show good predictive performance.
In addition, fuzzy PEM demonstrates accuracy similar to Monte Carlo simulation, when using only
limited information on the input parameters, without the tedious repeated calculations required in
Monte Carlo simulation.
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Furthermore, a deterministic analysis of the factor of safety was conducted for comparison with
the fuzzy approach and the probabilistic analysis. In the deterministic analysis, the same infinite-slope
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model with transient infiltration model was used, and the mean values of the random variables
(cohesion and friction angle) were used as uniform values across the study area. Figure 9 shows the
spatial distribution of the calculated factor of safety. Of the inventoried landslides, 47.1% (413 landslides
out of total 877) were evaluated as unstable, and 16.3% of nonlandslide grids were predicted to be
unstable. Therefore, TPR and FPR values were 0.471 and 0.163, respectively, and the AUC was 0.654
(Figure 7). This value is below 0.7 and considerably smaller than the AUCs of the fuzzy PEM (0.734)
and the probabilistic analysis (0.736). Therefore, the fuzzy PEM and Monte Carlo simulation showed
superior performance than the deterministic analysis. This result shows that uncertainties in the input
parameters affect the analysis results, and therefore, appropriate consideration of uncertainties in input
parameters is import in application of a physically based modeling approach.
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However, one of the limitations of the probabilistic analysis is that the results of the analysis
are often affected by the statistical characterization of the input parameters. In order to check the
effect of varying input parameter statistics, in the fuzzy approach and the probabilistic approach,
the COV values for input parameters were changed. The landslide susceptibility analyses were then
carried out using the changed COV values. Specifically, the COVs of the internal friction angle and
cohesion were reduced to 10% and 20% (from 20% to 30%), respectively. Consequently, the standard
deviations of friction angle and cohesion were reduced from 6.3 to 3.15 and from 2.3 to 1.5, respectively.
The landslide susceptibility analyses using the proposed approach and Monte Carlo simulation were
carried out with reduced COV values as input parameters (Figure 10). As listed in Table 1, the TPR and
FPR values for the proposed fuzzy PEM approach using 10% COV of friction angle and 20% COV of
cohesion were 0.772 and 0.328, respectively. Then AUC was evaluated as 0.722, which is somewhat less
than the AUC (0.734) evaluated using 20% COV of friction angle and 30% COV of cohesion. However,
the TPR and FPR values for Monte Carlo simulation using 10% COV of friction angle and 20% COV of
cohesion were 0.594 and 0.219, respectively, and AUC was evaluated as 0.688. The AUC value was
reduced from 0.736 (the AUC evaluated using 20% COV of friction angle and 30% COV of cohesion)
to 0.688 as the COVs of uncertain variables were reduced. Therefore, the variation of AUC in the
fuzzy PEM is smaller than the variation of Monte Carlo simulation. Consequently, the fuzzy PEM
seems to be more robust against the variation of input parameters. The term ‘robustness’ characterizes
the change in the accuracy of the model performance because of errors in the input parameters [140].
In addition, the fuzzy numbers were changed from mean ±2 σ to mean ±1 σ and mean ±3 σ with
20% COV of friction angle and 30% COV of cohesion to check the robustness of the fuzzy PEM model
performance (Figure 11). The results showed that TPR and FPR values using the fuzzy numbers of
mean ±1 σ were evaluated as 0.708 and 0.281, respectively, and the evaluated AUC was 0.714. If the
fuzzy numbers are changed to mean ±3 σ, the TPR and FPR values were evaluated as 0.930 and 0.509,
respectively and the AUC was 0.711. Therefore, fuzzy PEM model performance was more robust than
probabilistic analysis.
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Table 1. Comparison of the model performance.

Model True Positive
Rate (TPR)

False Positive
Rate (FPR)

Area Under the
Curve (AUC)

Fuzzy PEM 0.852 0.383 0.734
Probabilistic analysis 0.885 0.413 0.736

Deterministic analysis with the transient model 0.471 0.163 0.654
Fuzzy PEM with reduced COV 0.772 0.328 0.722

Probabilistic analysis with reduced COV 0.594 0.219 0.688
Fuzzy PEM with ±1 σ 0.708 0.281 0.714
Fuzzy PEM with ±3 σ 0.930 0.509 0.711

4. Conclusions

The occurrence of landslide is governed by complex interrelationships between factors, of which
some cannot be determined in detail and others can be determined only with a large degree of
uncertainty. Therefore, recognition and assessment of uncertainties is of paramount importance
in landslide susceptibility analysis based on a physical model. Probabilistic analysis has provided
a quantitative way to account for the uncertainties in input parameters. However, the number of
reliable observations needed to estimate parameter uncertainty for probabilistic analysis is more than
can be reasonably assessed in many practical conditions, in which the amount of data is frequently
limited, and the distribution type of the uncertain variable may not be known. This situation
makes the application of the probabilistic approach difficult. Furthermore, some uncertainties
relating to measured geotechnical parameters may, in fact, be nonstochastic but rather cognitive,
arising from incomplete knowledge. Under such conditions of limited information, it appears to be
reasonable to adopt fuzzy set theory because a fuzzy-set-based approach only requires mean, minimum,
and maximum values of the uncertain parameters. Therefore, in this study, fuzzy set theory was
adopted for a regional landslide susceptibility analysis based on a physically based model. The input
parameters were considered as fuzzy numbers, and the vertex method and point estimate method
were used to handle uncertainty propagation through the physical model. The AUC values arising
from the landslide susceptibility analyses using the proposed approach and probabilistic analysis were
0.734 and 0.736, respectively. However, when the COV values of the input parameters were reduced,
the AUC values of the proposed approach and the probabilistic analysis were reduced to 0.722 and
0.688, respectively. In other words, the fuzzy approach performed similarly to the probabilistic analysis
on the same data but was more robust against variations of input parameters. Moreover, when the
fuzzy numbers were changed from mean ±2 σ to mean ±1 σ and mean ±3 σ, the proposed approach
showed more robust performance than the probabilistic analysis. Therefore, the fuzzy approach can
be an alternative to probabilistic analysis, especially when the amount of quality data is very limited.
In addition, previous fuzzy approach studies have been used only for site-specific slope stability
analysis, not for regional slope stability analysis as demonstrated here. Therefore, this study is an
important step forward, showing that a fuzzy approach can successfully be applied to physically
based landslide susceptibility analysis at catchment scale, even if the available information about input
parameters is very limited.
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