Assessment of GPM and TRMM Precipitation Products over Singapore
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Satellite Data
2.2.1. GPM IMERG
2.2.2. TMPA Products
2.3. Ground Data
3. Methods
4. Results
4.1. Annual and Monthly Assessment
4.2. Daily Assessment
4.3. Precipitation Intensity Assessment
5. Discussion
6. Conclusions
- (1)
- Most of the SPPs performed well in annual and montly precipitation estimation, except for the 3B42RT. The IMERG slightly overestimated the annual and monthly precipitation, while the TMPA products undrestimated the measured precipitation.
- (2)
- The IMERG performed slightly better than TMPA products in detecting daily precipitation over Singapore. Generally, the 3B42RT performed the worst among the evaluated SPPs, while the IMERG showed the best performance in precipitation detection capability. As far as the performance of SPPs in different seasons is concerned, the SPPs showed better performance in the northeast moonson (1 December to 15 March) than in the inter-monsoon 1 (16 March to 31 May), southwest monsoon (1 June to 30 September) and inter-monsoon 2 (1 October to 30 November).
- (3)
- The correlation between measurements from gauges and IMERG at the daily scale is moderate, which is consistent with the findings reported in the Blue Nile basin [19], Japan and Korea [39]. However, the finding is in contrast with previous studies, which suggested very good correlation of IMERG product in China [16,38,46]. This again highlights varying the performance of SPPs over regions, wich needs more local evaluation studies to achieve a better global view of the accuracy of SPPs.
- (4)
- For the precipitation probability density function analysis, most of the SPPs overestimated moderate precipitation events (1–20 mm/day). All three SPPs tended to underestimate light (0.1–1 mm/day) and heavy (>20 mm/day) precipitation events over Singapore, which is similar to the findings reported in Malaysia [36].
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tan, M.L.; Ibrahim, A.L.; Cracknell, A.P.; Yusop, Z. Changes in precipitation extremes over the Kelantan River Basin, Malaysia. Int. J. Climatol. 2016. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Li, C.; Wang, R. Recent changes of precipitation in Gansu, Northwest China: An index-based analysis. Theor. Appl. Climatol. 2017, 129, 397–412. [Google Scholar] [CrossRef]
- Varikoden, H.; Preethi, B.; Samah, A.A.; Babu, C.A. Seasonal variation of rainfall characteristics in different intensity classes over Peninsular Malaysia. J. Hydrol. 2011, 404, 99–108. [Google Scholar] [CrossRef]
- Tan, M.L.; Tan, K.C.; Chua, V.P.; Chan, N.W. Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia. Water 2017, 9, 57. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Cracknell, A.P. Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water 2017, 9, 229. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.J.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- De Jesus, A.; Brena-Naranjo, J.A.; Pedrozo-Acuna, A.; Yamanaka, V.H.A. The use of TRMM 3B42 product for drought monitoring in Mexico. Water 2016, 8, 325. [Google Scholar] [CrossRef]
- Rapp, A.D.; Peterson, A.G.; Frauenfeld, O.W.; Quiring, S.M.; Roark, E.B. Climatology of storm characteristics in Costa Rica using the TRMM precipitation radar. J. Hydrometeorol. 2014, 15, 2615–2633. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.; Nelkin, E.J. Day 1 IMERG Final Run Release Notes; NASA/GSFC: Greenbelt, MD, USA, 2015.
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Fensterseifer, C.; Allasia, D.G.; Paz, A.R. Assessment of the TRMM 3B42 precipitation product in southern Brazil. J. Am. Water Resour. Assoc. 2016, 52, 367–375. [Google Scholar] [CrossRef]
- Joshi, M.K.; Rai, A.; Pandey, A.C. Validation of TMPA and GPCP 1DD against the ground truth rain-gauge data for Indian region. Int. J. Climatol. 2013, 33, 2633–2648. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and v7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Gaona, M.F.R.; Overeem, A.; Leijnse, H.; Uijlenhoet, R. First-year evaluation of GPM rainfall over the Netherlands: IMERG day 1 final run (VO3D). J. Hydrometeorol. 2016, 17, 2799–2814. [Google Scholar] [CrossRef]
- Wen, Y.X.; Behrangi, A.; Lambrigtsen, B.; Kirstetter, P.E. Evaluation and uncertainty estimation of the latest radar and satellite snowfall products using snotel measurements over mountainous regions in western United States. Remote Sens. 2016, 8, 904. [Google Scholar] [CrossRef]
- Sahlu, D.; Nikolopoulos, E.I.; Moges, S.A.; Anagnostou, E.N.; Hailu, D. First evaluation of the day-1 IMERG over the upper Blue Nile Basin. J. Hydrometeorol. 2016, 17, 2875–2882. [Google Scholar] [CrossRef]
- Hur, J.; Raghavan, S.V.; Nguyen, N.S.; Liong, S.Y. Are satellite products good proxies for gauge precipitation over Singapore? Theor. Appl. Climatol. 2017, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Meshgi, A.; Babovic, V. Spatio-temporal variation of wet and dry spell characteristics of tropical precipitation in Singapore and its association with ENSO. Int. J. Climatol. 2016, 36, 4831–4846. [Google Scholar] [CrossRef]
- McBride, J.L.; Sahany, S.; Hassim, M.E.E.; Nguyen, C.M.; Lim, S.Y.; Rahmat, R.; Cheong, W.K. The 2014 record dry spell at Singapore: An Intertropical Convergence Zone (ITCZ) drought. Bull. Am. Meteorol. Soc. 2015, 96, S126–S130. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-Satellite Retrievals for GPM (IMERG) Technical Documentation; NASA/GSFC: Greenbelt, MD, USA, 2017.
- Tan, J.; Petersen, W.A.; Kirstetter, P.E.; Tian, Y.D. Performance of IMERG as a function of spatiotemporal scale. J. Hydrometeorol. 2017, 18, 307–319. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Win, K.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar] [CrossRef]
- Singapore Meteorolgical Services. Annual Climatological Report; Singapore Meteorolgical Services: Singapore, 2016.
- Tan, M.L.; Ficklin, D.L.; Ibrahim, A.L.; Yusop, Z. Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 general circulation model ensemble. J. Water Clim. Chang. 2014, 5, 676–695. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed]
- Pombo, S.; de Oliveira, R.P. Evaluation of extreme precipitation estimates from TRMM in Angola. J. Hydrol. 2015, 523, 663–679. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Z.; Jiang, J.; Zhu, A.X. Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Adv. Meteorol. 2015, 2015, 151239. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Gao, B.; Jiao, Y.; Hong, Y.; Xu, T. Multiscale hydrologic applications of the latest satellite precipitation products in the Yangtze River Basin using a distributed hydrologic model. J. Hydrometeorol. 2015, 16, 407–426. [Google Scholar] [CrossRef]
- Mashingia, F.; Mtalo, F.; Bruen, M. Validation of remotely sensed rainfall over major climatic regions in Northeast Tanzania. Phys. Chem. Earth 2014, 67–69, 55–63. [Google Scholar] [CrossRef]
- Yang, X.Q.; Yong, B.; Hong, Y.; Chen, S.; Zhang, X.H. Error analysis of multi-satellite precipitation estimates with an independent raingauge observation network over a medium-sized humid basin. Hydrol. Sci. J. 2016, 61, 1813–1830. [Google Scholar] [CrossRef]
- Brown, J.E.M. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithnis over India and adjacent regions. Remote Sens. Environ. 2006, 101, 63–81. [Google Scholar] [CrossRef]
- Condom, T.; Rau, P.; Espinoza, J.C. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol. Process. 2011, 25, 1924–1933. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain-gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Baik, J.; Choi, M. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-east Asia. Atmos. Res. 2017, 187, 95–105. [Google Scholar] [CrossRef]
- Li, N.; Tang, G.; Zhao, P.; Hong, Y.; Gou, Y.; Yang, K. Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River Basin. Atmos. Res. 2017, 183, 212–223. [Google Scholar] [CrossRef]
- Singapore Meteorolgical Services. Annual Climate Assessment; Singapore Meteorolgical Services: Singapore, 2015.
- Ma, Y.Z.; Tang, G.Q.; Long, D.; Yong, B.; Zhong, L.Z.; Wan, W.; Hong, Y. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Zhao, T.; Jiang, L.; Shi, J. Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin. IEEE J. STARS 2017, 99, 1–10. [Google Scholar] [CrossRef]
- Tang, G.Q.; Zeng, Z.Y.; Long, D.; Guo, X.L.; Yong, B.; Zhang, W.H.; Hong, Y. Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeorol. 2016, 17, 121–137. [Google Scholar] [CrossRef]
- Kummerow, C.D.; David, L.R.; Kulie, M.; Wang, N.Y.; Ferraro, R.; Munchak, S.J.; Petkovic, V. The evolution of the goddard profiling algorithm to a fully parametric scheme. J. Atmos. Ocean. Technol. 2015, 32, 2265–2280. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Meyer-Christoffer, A.; Fuchs, T.; Rudolf, B. Global Precipitation Analysis Products of the GPCC; Global Precipitation Climatology Centre: Offenbach am Main, Germany, 2011. [Google Scholar]
- Ning, S.W.; Wang, J.; Jin, J.L.; Ishidaira, H. Assessment of the latest GPM-era high-resolution satellite precipitation products by comparison with observation gauge data over the Chinese Mainland. Water 2016, 8, 481. [Google Scholar] [CrossRef]
IMERG | 3B42 | 3B42RT | |
---|---|---|---|
CC | 0.82 | 0.79 | 0.79 |
RMSE (mm/month) | 54.75 | 51.52 | 68.02 |
RB (%) | 5.24 | −10.25 | −21.77 |
Bias | 6.70 | −18.89 | −39.06 |
IMERG | 3B42 | 3B42RT | |
---|---|---|---|
Entire Period (1 April 2014 to 31 June 2016) | |||
CC | 0.53 | 0.56 | 0.53 |
RMSE (mm/day) | 11.83 | 9.20 | 9.10 |
RB (%) | 5.24 | −10.25 | −21.77 |
Bias | 0.22 | −0.62 | −1.28 |
POD | 0.78 | 0.66 | 0.65 |
FAR | 0.28 | 0.15 | 0.16 |
CSI | 0.60 | 0.65 | 0.58 |
NEM (1 December 2014 to 15 March 2015) | |||
CC | 0.63 | 0.67 | 0.67 |
RMSE (mm/day) | 10.24 | 7.96 | 7.95 |
RB (%) | −0.86 | −26.94 | −29.07 |
Bias | −0.25 | −1.48 | −1.59 |
POD | 0.81 | 0.59 | 0.60 |
FAR | 0.30 | 0.18 | 0.22 |
CSI | 0.60 | 0.52 | 0.52 |
IM1 (16 March 2015 to 31 May 2015) | |||
CC | 0.54 | 0.57 | 0.30 |
RMSE (mm/day) | 10.47 | 8.91 | 11.47 |
RB (%) | −8.58 | −14.07 | −19.82 |
Bias | −0.86 | −0.92 | −1.28 |
POD | 0.75 | 0.71 | 0.74 |
FAR | 0.31 | 0.19 | 0.20 |
CSI | 0.64 | 0.61 | 0.62 |
SWM (1 June 2015 to 31 September 2015) | |||
CC | 0.58 | 0.70 | 0.63 |
RMSE (mm/day) | 9.86 | 7.26 | 6.99 |
RB (%) | 21.19 | 9.24 | −8.08 |
Bias | 0.75 | 0.31 | −0.33 |
POD | 0.74 | 0.57 | 0.55 |
FAR | 0.34 | 0.24 | 0.24 |
CSI | 0.54 | 0.49 | 0.47 |
IM2 (1 October 2015 to 31 November 2015) | |||
CC | 0.44 | 0.44 | 0.47 |
RMSE (mm/day) | 16.14 | 11.01 | 8.10 |
RB (%) | 33.47 | 9.03 | −34.78 |
Bias | 1.33 | 0.48 | −2.07 |
POD | 0.73 | 0.64 | 0.61 |
FAR | 0.28 | 0.08 | 0.09 |
CSI | 0.58 | 0.61 | 0.58 |
Study Area | Period | CC | RMSE (mm/day) | POD | |
---|---|---|---|---|---|
This study | Singapore | April 2014 to January 2016 | 0.53 | 11.83 | 0.78 |
Xu et al. [37] | Southern Tibetan Plateau | May to October 2014 | 0.46 | 7.16 | 0.69 |
Kim et al. [39] | Korea, Japan | March to August 2014 | 0.53–0.68 | 6.68–23.41 | 0.6–0.76 |
Tang et al. [46] | Ganjiang River Basin, China | May to September 2014 | 0.62–0.9 | 4.44–13.09 | - |
Tang et al. [38] | China | April to December 2014 | 0.96 | 0.5 | 0.91 |
Sharifi et al. [43] | Iran | March 2014 to February 2015 | 0.4–0.52 | 6.38–19.41 | 0.46–0.7 |
Sahlu et al. [19] | Blue Nile Basin | May to October 2014 | 0.55 | - | 0.87 |
Ning et al. [49] | China | April 2014 to November 2015 | 0.68 | 6.43 | 0.79 |
Guo et al. [16] | China | 12 March 2014 to 31 March 2015 | 0.93 | 0.56 | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. https://doi.org/10.3390/rs9070720
Tan ML, Duan Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sensing. 2017; 9(7):720. https://doi.org/10.3390/rs9070720
Chicago/Turabian StyleTan, Mou Leong, and Zheng Duan. 2017. "Assessment of GPM and TRMM Precipitation Products over Singapore" Remote Sensing 9, no. 7: 720. https://doi.org/10.3390/rs9070720
APA StyleTan, M. L., & Duan, Z. (2017). Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sensing, 9(7), 720. https://doi.org/10.3390/rs9070720