Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery
Abstract
:1. Introduction
- (1)
- How accurate is USGS’s BAECV across diverse ecoregions of the CONUS?
- (2)
- How does the spatial resolution of imagery influence the spatial characteristics and the within fire heterogeneity of mapped fires?
- (3)
- How does a validation using commercial high-resolution imagery compare with and complement a Landsat-based validation of the BAECV?
2. Methods
2.1. BAECV Product Algorithm
2.2. High-Resolution Imagery Sampling Design
2.3. High-Resolution Reference Dataset
2.4. Pixel-Based Validation of the BAECV
2.5. Patch-Based Evaluation of the BAECV
3. Results
3.1. Pixel-Level Validation of the BAECV
3.2. Landscape Metrics Comparison
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Region | State | Sensor | Images (Burned and Not Burned) | Year | Image DOY (High-Resolution) | Image DOY (Landsat) | Gap (Days) | Landsat Sensor | Landsat Path/Row | Dominant Landcover |
---|---|---|---|---|---|---|---|---|---|---|
Arid West | AZ | Worldview-2 | 2 | 2011 | 164 | 174 | 10 | ETM+ | p35r37 | Evergreen |
Arid West | AZ | QuickBird-2 | 2 | 2011 | 178 | 182 | 4 | TM | p35r37 | Evergreen |
Arid West | AZ | Worldview-2 | 1 | 2013 | 210 | 211 | 1 | ETM+ | p35r37 | Evergreen, shrub/scrub |
Arid West | AZ | Worldview-2 | 5 | 2014 | 152 | 150 | 2 | ETM+ | p35r37 | Evergreen, shrub/scrub |
Arid West | AZ | Worldview-2 | 3 | 2012 | 174 | 175 | 1 | ETM+ | p37r36 | Evergreen |
Arid West | AZ/NM | Worldview-2 | 6 | 2012 | 275 | 273 | 2 | ETM+ | p35r37 | Evergreen, shrub/scrub |
Arid West | CA | GeoEye-1 | 1 | 2009 | 269 | 264 | 5 | TM | p43r35 | Shrub/scrub, grassland |
Arid West | CA | GeoEye-1 | 1 | 2009 | 258 | 264 | 6 | TM | p43r35 | Shrub/scrub, evergreen |
Arid West | CA | WorldView-2 | 3 | 2014 | 199 | 199 | 0 | ETM+ | p42r35 | Agriculture |
Arid West | CA | QuickBird-2 | 3 | 2006 | 351 | 329 | 22 | TM | p42r36 | Shrub/scrub |
Arid West | CA | QuickBird-2 | 4 | 2006 | 333 | 329 | 4 | TM | p42r36 | Shrub/scrub |
Arid West | CA | QuickBird-2 | 3 | 2009 | 230 | 241 | 11 | TM | p42r36 | Shrub/scrub |
Arid West | CA | QuickBird-2 | 3 | 2008 | 318 | 294 | 24 | TM | p43r35 | Shrub/scrub, evergreen |
Arid West | CA | QuickBird-2 | 9 | 2008 | 323 | 309 | 14 | ETM+ | p44r33 | Shrub/scrub |
Arid West | NM | QuickBird-2 | 1 | 2003 | 162 | 169 | 7 | TM | p34r37 | Evergreen forest |
Arid West | NM | QuickBird-2 | 4 | 2010 | 201 | 196 | 5 | ETM+ | p34r37 | Shrub/scrub, evergreen |
Arid West | NM | QuickBird-2 | 1 | 2012 | 221 | 227 | 6 | ETM+ | p33r35 | Shrub/scrub, evergreen |
Arid West | NM | Worldview-2 | 1 | 2011 | 238 | 249 | 11 | ETM+ | p32r35 | Shrub/scrub, evergreen |
Arid West | NV | QuickBird-2 | 10 | 2005 | 243 | 241 | 2 | TM | p39r34 | Shrub/scrub, grassland |
Arid West | NV | QuickBird-2 | 2 | 2005 | 215 | 209 | 6 | TM | p39r34/p39r35 | Shrub/scrub |
Arid West | NV | QuickBird-2 | 1 | 2011 | 325 | 329 | 4 | ETM+ | p43r33 | Developed |
Arid West | OR | QuickBird-2 | 3 | 2011 | 248 | 252 | 4 | TM | p45r29 | Shrub/scrub |
Arid West | WA | QuickBird-2 | 11 | 2003 | 271 | 246 | 25 | TM | p45r28 | Shrub/scrub |
Arid West | WA | QuickBird-2 | 3 | 2003 | 245 | 246 | 1 | TM | p45r28 | Shrub/scrub |
Arid West | WA | GeoEye-1 | 2 | 2009 | 261 | 254 | 7 | ETM+ | p45r28 | Shrub/scrub, grassland |
Arid West | WA | QuickBird-2 | 1 | 2003 | 268 | 246 | 22 | TM | p45r27 | Shrub/scrub |
Arid West | WA | QuickBird-2 | 4 | 2009 | 235 | 238 | 3 | ETM+ | p45r28 | Shrub/scrub, agriculture |
Mtn West | CA | WorldView-2 | 3 | 2013 | 236 | 228 | 8 | ETM+ | p42r35 | Mixed forest |
Mtn West | CA | WorldView-2 | 2 | 2012 | 268 | 281 | 13 | ETM+ | p43r33 | Evergreen, shrub/scrub |
Mtn West | CA | QuickBird-2 | 3 | 2010 | 243 | 274 | 31 | TM | p44r33 | Evergreen, grassland |
Mtn West | CA | WorldView-2 | 2 | 2010 | 212 | 211 | 1 | ETM+ | p43r33 | Evergreen, shrub/scrub |
Mtn West | CA | QuickBird-2 | 1 | 2009 | 289 | 271 | 18 | TM | p44r33 | Shrub/scrub |
Mtn West | CA | QuickBird-2 | 1 | 2007 | 184 | 195 | 11 | TM | p43r33 | Shrub/scrub, evergreen |
Mtn West | CA | QuickBird-2 | 3 | 2009 | 258 | 239 | 19 | TM | p44r34 | Evergreen |
Mtn West | CO | Worldview-2 | 1 | 2012 | 186 | 195 | 9 | ETM+ | p33r33 | Evergreen |
Mtn West | CO | WorldView-2 | 2 | 2012 | 169 | 218 | 49 | ETM+ | p34r32 | Evergreen |
Mtn West | CO | QuickBird-2 | 1 | 2012 | 127 | 129 | 2 | ETM+ | p35r32 | Shrub/scrub |
Mtn West | CO | QuickBird-2 | 2 | 2013 | 324 | 293 | 31 | ETM+ | p33r33 | Evergreen |
Mtn West | CO | QuickBird-2 | 2 | 2010 | 142 | 148 | 6 | ETM+ | p34r32 | Evergreen, shrub/scrub |
Mtn West | CO | Worldview-2 | 2 | 2004 | 282 | 183 | 1 | ETM+ | p35r32 | Shrub/scrub |
Mtn West | CO | WorldView-2 | 1 | 2011 | 238 | 248 | 10 | TM | p33r34 | Shrub/scrub |
Mtn West | CO | Worldview-2 | 1 | 2010 | 255 | 260 | 5 | ETM+ | p34r32 | Evergreen |
Mtn West | ID | WorldView-2 | 2 | 2011 | 275 | 272 | 3 | TM | p41r28 | Evergreen |
Mtn West | ID | QuickBird-2 | 3 | 2006 | 256 | 274 | 18 | TM | p41r29 | Evergreen |
Mtn West | ID | QuickBird-2 | 2 | 2007 | 300 | 245 | 55 | TM | p41r29 | Evergreen |
Mtn West | ID | QuickBird-2 | 2 | 2003 | 225 | 218 | 7 | TM | p41r30 | Shrub/scrub, evergreen |
Mtn West | MT | QuickBird-2 | 2 | 2006 | 287 | 274 | 13 | TM | p41r28 | Shrub/scrub, evergreen |
Mtn West | MT | QuickBird-2 | 2 | 2006 | 274 | 274 | 0 | TM | p41r28 | Evergreen, grassland |
Mtn West | MT | QuickBird-2 | 1 | 2006 | 256 | 250 | 6 | ETM+ | p41r28 | Evergreen |
Mtn West | MT | WorldView-2 | 5 | 2011 | 291 | 272 | 19 | TM | p41r28 | Evergreen |
Mtn West | NM | QuickBird-2 | 1 | 2006 | 219 | 242 | 23 | ETM+ | p33r34 | Shrub/scrub, grassland |
Mtn West | NM | WorldView-2 | 2 | 2010 | 304 | 2011 annual | - | TM/ETM+ | p33r35/p34r35 | Evergreen |
Mtn West | NM | QuickBird-2 | 5 | 2010 | 276 | 261 | 15 | TM | p33r34 | Evergreen, grassland |
Mtn West | OR | WorldView-2 | 4 | 2011 | 266 | 252 | 14 | TM | p45r28/p45r29 | Shrub/scrub |
Mtn West | WA | QuickBird-2 | 6 | 2003 | 240 | 246 | 6 | TM | p45r28 | Evergreen |
Mtn West | WY | GeoEye-1 | 1 | 2012 | 185 | 202 | 17 | ETM+ | p34r31 | Shrub/scrub, evergreen |
Mtn West | WY | QuickBird-2 | 1 | 2005 | 257 | 254 | 3 | TM | p34r31 | Shrub/scrub, evergreen |
Great Plains | KS | QuickBird-2 | 2 | 2006 | 91 | 88 | 3 | ETM+ | p27r33 | Agriculture, grassland |
Great Plains | KS | QuickBird-2 | 3 | 2006 | 91 | 88 | 3 | ETM+ | p27r33 | Agriculture, grassland |
Great Plains | KS | QuickBird-2 | 4 | 2004 | 107 | 107 | 0 | TM | p27r33/p27r34 | Agriculture, grassland |
Great Plains | KS | QuickBird-2 | 2 | 2004 | 71 | 67 | 4 | ETM+ | p27r34 | Agriculture |
Great Plains | KS | Worldview-2 | 1 | 2010 | 77 | 82 | 5 | TM | p28r33 | Grassland |
Great Plains | KS | Worldview-2 | 1 | 2010 | 294 | 290 | 4 | TM | p28r33 | Grassland, agriculture |
Great Plains | TX | QuickBird-2 | 4 | 2011 | 76 | 67 | 9 | TM | p30r36 | Shrub/scrub, grassland |
Great Plains | SD | QuickBird-2 | 2 | 2011 | 151 | 152 | 1 | TM | p33r30 | Evergreen, grassland |
Great Plains | MN | QuickBird-2 | 6 | 2003 | 101 | 102 | 1 | TM | p29r27 | Agriculture |
Great Plains | MN | Worldview-2 | 1 | 2012 | 107 | 110 | 3 | ETM+ | p30r26 | Agriculture |
Great Plains | MN | Worldview-2 | 6 | 2015 | 146 | 143 | 3 | ETM+ | p29r26/p29r27 | Grassland |
Great Plains | MN | Worldview-2 | 3 | 2015 | 200 | 207 | 7 | ETM+ | p29r27 | Agriculture |
Great Plains | KS | RapidEye-2 | 6 | 2009 | 173 | 174 | 1 | ETM+ | p29r33 | Agriculture |
Great Plains | SD | RapidEye-2 | 2 | 2014 | 155 | 2014 annual | - | ETM+ | p33r30 | Evergreen |
Great Plains | KS | RapidEye-2 | 9 | 2013 | 137 | 137 | 0 | ETM+ | p29r33 | Agriculture, grassland |
Great Plains | KS | RapidEye-2 | 13 | 2014 | 99 | 101 | 2 | ETM+ | p28r33 | Grassland, agriculture |
Great Plains | KS | RapidEye-2 | 3 | 2015 | 122 | 120 | 2 | ETM+ | p28r34 | Grassland, agriculture |
East | FL | Worldview-2 | 1 | 2011 | 258 | 253 | 5 | ETM+ | p15r42 | EH wetlands |
East | FL | QuickBird-2 | 1 | 2011 | 334 | 314 | 20 | TM | p15r41 | W wetland, agriculture |
East | FL | QuickBird-2 | 6 | 2005 | 327 | 329 | 2 | TM | p15r42 | Agriculture, EH wetlands |
East | FL | QuickBird-2 | 3 | 2007 | 338 | 343 | 5 | ETM+ | p15r42 | EH wetlands |
East | FL | QuickBird-2 | 6 | 2012 | 145 | 147 | 2 | ETM+ | p17r39 | W wetland |
East | FL/GA | QuickBird-2 | 1 | 2004 | 322 | 349 | 27 | ETM+ | p17r39 | Evergreen, W wetland |
East | FL/GA | Worldview-2 | 9 | 2014 | 3 | 24 | 19 | ETM+ | p17r39 | W wetland, evergreen |
East | GA | QuickBird-2 | 3 | 2007 | 119 | 141 | 22 | TM | p17r38/p17r39 | Shrub/scrub, W wetland |
East | LA | GeoEye-1 | 1 | 2009 | 175 | 179 | 4 | TM | p24r39 | EH wetlands |
East | LA | GeoEye-1 | 3 | 2011 | 216 | 217 | 1 | TM | p24r39 | EH wetlands |
East | LA | RapidEye-2 | 4 | 2014 | 277 | 281 | 4 | ETM+ | p24r39 | EH wetlands |
East | SC | QuickBird-2 | 13 | 2009 | 111 | 107 | 4 | TM | p16r37 | Agriculture, W wetlands |
East | SC | QuickBird-2 | 3 | 2008 | 112 | 121 | 9 | TM | p16r37 | W wetland |
East | SC | QuickBird-2 | 4 | 2008 | 153 | 153 | 0 | TM | p16r37 | W wetland |
East | WV | QuickBird-2 | 4 | 2007 | 129 | 132 | 3 | TM | p18r33 | Mixed forest |
References
- Global Climate Observing System. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (GCOS-92 (ES), WMO/TD No. 1244). Available online: https://www.wmo.int/pages/prog/gcos/Publications/gcos-92_GIP_ES.pdf (accessed on 3 October 2016).
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [PubMed]
- Conard, S.G.; Sukhinin, A.I.; Stocks, B.J.; Cahoon, D.R.; Davidenko, E.P.; Ivanova, G.A. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim. Chang. 2002, 55, 197–211. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Peckham, S.D.; Ahl, D.E.; Gower, S.T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 2007, 450, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Orueta, A.; Chuvieco, E.; Parra, A.; Carmona-Moreno, C. Biomass burning emissions: A review of models using remote-sensing data. Environ. Monit. Assess. 2005, 104, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Randerson, J.T.; van der Werf, G.R.; Collatz, G.J.; Giglio, L.; Still, C.J.; Kasibhatla, P.; Miller, J.B.; White, J.W.C.; DeFries, R.S.; Kasischke, E.S. Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2. Glob. Biogeochem. Cycles 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Parisien, M.; Peters, V.; Wang, Y.; Little, J.; Bosch, E.; Stocks, B. Spatial patterns of forest fires in Canada, 1980–1999. Int. J. Wildland Fire 2006, 15, 361–374. [Google Scholar] [CrossRef]
- Hayes, J.J.; Robeson, S.M. Relationships between fire severity and post-fire landscape pattern following a large mixed-severity fire in the Valle Vidal, New Mexico, USA. For. Ecol. Manag. 2011, 261, 1392–1400. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y-J.; Takacs, J.D.; Schmidt, G.; Falgout, J.; Brunner, N.; Caldwell, M.; Dwyer, J. An automated approach to identify burned areas in Landsat images. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Giglio, L.; Lobada, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef]
- Podur, J.; Martell, D.L.; Csillag, F. Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecol. Modell. 2002, 164, 1–20. [Google Scholar] [CrossRef]
- Miller, J.D.; Safford, H.D.; Crimmins, M.; Thode, A.E. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar] [CrossRef]
- Whitman, E.; Battlori, E.; Parisien, M.A.; Miller, C.; Coop, J.D.; Krawchuk, M.A.; Chong, G.W.; Haire, S.L. The climate space of fire regimes in north-western North America. J. Biogeogr. 2015, 42, 1736–1749. [Google Scholar] [CrossRef]
- Stroppiana, D.; Bordogna, G.; Carrara, P.; Boschetti, M.; Boschetti, L.; Brivio, P.A. A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS J. Photogramm. Remote Sens. 2012, 69, 88–102. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Brunner, N.; Beal, Y.J.G.; Hawbaker, T.J. Validation of the USGS Landsat burned area essential climate variable (BAECV) across the conterminous United States. Remote Sens. Environ. 2017, 198, 393–406. [Google Scholar] [CrossRef]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; European Commission Joint Research Centre EUR: Ispra, Italy, 2006; p. 22156. [Google Scholar]
- Roy, D.P.; Frost, P.G.H.; Justice, C.O.; Landmann, T.; Le Roux, J.L.; Gumbo, K.; Makungwa, S.; Dunham, K.; Du Toit, R.; Mhwandagara, K.; et al. The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol. Int. J. Remote Sens. 2005, 26, 4265–4292. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Liang, S. Special issue on global land product validation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1695–1697. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Chuvieco, E. Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sens. Environ. 2014, 144, 187–196. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.; Tansey, K.; Mota, B.; Pereira, J.M.; Chuvieco, E. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L. Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Masek, J.G.; Huang, C.; Wolfe, R.E.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar] [CrossRef]
- Thomas, N.E.; Huang, C.; Goward, S.N.; Powell, S.; Rishmawi, K.; Schleeweis, K.; Hinds, A. Validation of North American forest disturbance dynamics derived from Landsat time series stacks. Remote Sens. Environ. 2011, 115, 19–32. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M.L. MODIS-Landsat fusion for large area 30 m burned area mapping. Remote Sens. Environ. 2015, 161, 27–42. [Google Scholar] [CrossRef]
- Mitri, G.H.; Gitas, I.Z. A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery. Int. J. Wildland Fire 2004, 13, 367–376. [Google Scholar] [CrossRef]
- Henry, M.C. Comparison of single- and multi-date Landsat data for mapping wildfire scares in Ocala National Forest, Florida. Photogramm. Eng. Remote Sens. 2008, 74, 881–891. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martin, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Drake, N.A.; Wooster, M.J.; Hudak, A.T.; Holden, Z.A.; Gibbons, C.J. Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: Comparison of methods and application to MODIS. Int. J. Remote Sens. 2007, 12, 2753–2775. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N. Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data. Int. J. Remote Sens. 2012, 33, 4408–4433. [Google Scholar] [CrossRef]
- Mitri, G.H.; Gitas, I.Z. Fire type mapping using object-based classification of Ikonos imagery. Int. J. Wildland Fire 2006, 15, 457–462. [Google Scholar] [CrossRef]
- Mitri, G.H.; Gitas, I.Z. Mapping the severity of fire using object-based classification of IKONOS imagery. Int. J. Wildland Fire 2008, 17, 431–442. [Google Scholar] [CrossRef]
- Holden, Z.A.; Morgan, P.; Smith, A.M.S.; Vierling, L. Beyond Landsat: A comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA. Int. J. Wildland Fire 2010, 19, 449–458. [Google Scholar] [CrossRef]
- Dragozi, E.; Gitas, I.Z.; Stavrakoudis, D.G.; Theocharis, J.B. Burned area mapping using support vector machines and the FuzCoC feature selection method on VHR IKONOS imagery. Remote Sens. 2014, 6, 12005–12036. [Google Scholar] [CrossRef]
- Dragozi, E.; Gitas, I.Z.; Bajocco, S.; Stavrakoudis, D.G. Exploring the relationship between burn severity field data and very high resolution GeoEye images: The case of the 2011 Evros wildfire in Greece. Remote Sens. 2016, 8, 566. [Google Scholar] [CrossRef]
- Chen, G.; Metz, M.R.; Rizzo, D.M.; Meentemeyer, R.K. Mapping burn severity in a disease-impacted forest landscape using Landsat and MASTER imagery. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 91–99. [Google Scholar] [CrossRef]
- Wu, Z.; Middleton, B.; Hetler, R.; Vogel, J.; Dye, D. Vegetation burn severity mapping using Landsat-8 and Worldview-2. Photogramm. Eng. Remote Sens. 2015, 2, 143–154. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R.; Roy, D.; Roberts, G.; Boschetti, L. Southern African fire regimes as revealed by remote sensing. Int. J. Wildland Fire 2010, 19, 861–878. [Google Scholar] [CrossRef]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015, 24, 77–86. [Google Scholar] [CrossRef]
- Cansler, C.A.; McKenzie, D. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol. Appl. 2014, 24, 1037–1056. [Google Scholar] [CrossRef] [PubMed]
- Mansuy, N.; Boulanger, Y.; Terrier, A.; Gauthier, S.; Robitaille, A.; Bergeron, Y. Spatial attributes of fire regime in eastern Canada: Influences of regional landscape physiography and climate. Landsc. Ecol. 2014, 29, 1157–1170. [Google Scholar] [CrossRef]
- Lertzman, K.; Fall, J.; Dorner, B. Three kinds of heterogeneity in fire regimes: At the crossroads of fire history and landscape ecology. Northwest Sci. 1998, 72, 4–23. [Google Scholar]
- Turner, M.G.; Baker, W.L.; Peterson, C.J.; Peet, R.K. Factors influencing succession: Lessons from large, infrequent natural disturbances. Ecosystems 1998, 1, 511–523. [Google Scholar] [CrossRef]
- Madoui, A.; Leduc, A.; Gauthier, S.; Bergeron, Y. Spatial pattern analyses of post-fire residual stands in the black spruce boreal forest of western Quebec. Int. J. Wildland Fire 2010, 19, 1110–1126. [Google Scholar] [CrossRef]
- Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329–342. [Google Scholar] [CrossRef]
- Whitlock, C.; Moreno, P.; Bartlein, P. Climatic controls of Holocene fire patterns in southern South America. Quat. Res. 2007, 68, 28–36. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Heyerdahl, E.K.; Brubaker, L.B.; Agee, J.K. Spatial controls of historical fire regimes: A multiscale example for the Interior West, USA. Ecology 2001, 82, 660–678. [Google Scholar] [CrossRef]
- Collins, B.M.; Kelly, N.M.; Wagtendonk, J.W.; Stephens, S.L. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landsc. Ecol. 2007, 22, 545–557. [Google Scholar] [CrossRef]
- Bergeron, Y.; Gauthier, S.; Flannigan, M.; Kafka, V. Fire regimes at the transition between mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology 2004, 85, 1916–1932. [Google Scholar] [CrossRef]
- Barros, A.; Pereira, J.; Lund, U. Identifying geographical patterns of wildfire orientation: A watershed-based analysis. For. Ecol. Manag. 2012, 264, 98–107. [Google Scholar] [CrossRef]
- Falk, D.A.; Heyerdahl, E.K.; Brown, P.M.; Farris, C.; Fulé, P.Z.; McKenzie, D.; Swetnam, T.W.; Taylor, A.H.; Van Horne, M.L. Multi-scale controls of historical forest-fire regimes: New insights from fire-scar networks. Front. Ecol. Environ. 2011, 9, 446–454. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Breiman, L.; Freiedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Chapman and Hall: New York, NY, USA, 1984. [Google Scholar]
- Biging, G.S.; Colby, D.R.; Congalton, R.G. Sampling systems for change detection accuracy assessment, remote sensing change detection. In Environmental Monitoring Methods and Applications; Lunetta, R.S., Elvidge, C.D., Eds.; Ann Arbor Press: Chelsea, MI, USA, 1998; pp. 281–308. [Google Scholar]
- Khorram, S. (Ed.) Accuracy Assessment of Remote Sensing-Derived Change Detection; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1999. [Google Scholar]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery; ATCOR-2/3 User Guide, Version 9.0.2; ReSe Applications: Langeggweg, Switzerland, 2016; Available online: http://www.rese.ch/pdf/atcor3_manual.pdf (accessed on 8 February 2017).
- Adler-Golden, S.M.; Berk, A.; Bernstein, L.S.; Richtsmeier, S.; Acharyal, P.K.; Matthew, M.W.; Anderson, G.P.; Allred, C.L.; Jeong, L.S.; Chetwynd, J.H. FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations. In Proceedings of the Summaries of the Seventh JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998; pp. 1–6. [Google Scholar]
- Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, J.W.; Gardner, J.A.; et al. Atmospheric correction for shortwave spectral imagery based on MODTRAN4. SPIE Proc. Imaging Spectrom. V 1999, 3753, 61–69. [Google Scholar]
- Chuvieco, E. (Ed.) Remote Sensing of Large Wildfires in the European Mediterranean Basin; Springer: Berlin, Germany, 1997. [Google Scholar]
- Fleiss, J.L. Statistical Methods for Rates and Proportions, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Forbes, A.D. Classification-algorithm evaluation: Five performance measures based on confusion matrices. J. Clin. Monit. 1995, 11, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Stehman, S.V. Estimating standard errors of accuracy assessment statistics under cluster sampling. Remote Sens. Environ. 1997, 60, 258–269. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps; University of Massachusetts: Amherst, MA, USA, 2012; Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 22 September 2016).
- Keane, R.E.; Agee, J.K.; Fulé, P.; Keeley, J.E.; Key, C.; Kitchen, S.G.; Miller, R.; Schulte, L.A. Ecological effects of large fires on US landscapes: Benefit or catastrophe? Int. J. Wildland Fire 2009, 17, 696–712. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kontoes, C.; Keramitsoglou, I. Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using Support Vector Machines. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 70–80. [Google Scholar] [CrossRef]
- Bastarrika, A.; Alvarado, M.; Artano, K.; Martinez, M.P.; Mesanza, A.; Torre, L.; Ramo, R.; Chuvieco, E. BAMS: A tool for supervised burned area mapping using Landsat data. Remote Sens. 2014, 6, 12360–12380. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Collett, L.J. Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia. Remote Sens. Environ. 2014, 148, 206–221. [Google Scholar] [CrossRef]
- Scheller, R.M.; Domingo, J.B.; Sturtevant, B.R.; Williams, J.S.; Rudy, A.; Gustafson, E.J.; Mladenoff, D.J. Design, development and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol. Modell. 2007, 201, 409–419. [Google Scholar] [CrossRef]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index. ISPRS J. Photogramm. Remote Sens. 2011, 66, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Chambers, M.E.; Fornwalt, P.J.; Malone, S.L.; Battaglia, M. Patterns of conifer regeneration following high severity wildfire in ponderosa pine—Dominated forests of the Colorado Front Range. For. Ecol. Manag. 2016, 378, 57–67. [Google Scholar] [CrossRef]
Year | Arid West | Mountain West | Great Plains | East | Total Number of Images |
---|---|---|---|---|---|
2003 | 16 | 8 | 6 | 0 | 30 |
2004 | 0 | 2 | 6 | 1 | 9 |
2005 | 12 | 1 | 0 | 6 | 19 |
2006 | 7 | 9 | 5 | 0 | 21 |
2007 | 0 | 3 | 0 | 10 | 13 |
2008 | 12 | 0 | 0 | 7 | 19 |
2009 | 11 | 4 | 6 | 14 | 35 |
2010 | 4 | 15 | 2 | 0 | 21 |
2011 | 9 | 12 | 6 | 5 | 32 |
2012 | 10 | 7 | 1 | 6 | 24 |
2013 | 1 | 5 | 9 | 0 | 15 |
2014 | 8 | 0 | 15 | 13 | 36 |
2015 | 0 | 0 | 12 | 0 | 12 |
Total | 90 | 66 | 68 | 62 | 286 |
Accuracy Statistic | Arid West | Mountain West | Great Plains | East | CONUS |
---|---|---|---|---|---|
Omission Error (%) | 14 (4) | 22 (3) | 13 (13) | 46 (3) | 22 (4) |
Commission Error (%) | 36 (6) | 39 (5) | 70 (5) | 48 (5) | 48 (3) |
Overall Accuracy (%) | 97 (1) | 98 (1) | 99 (2) | 97 (2) | 97 (1) |
Dice Coefficient (%) | 73 (6) | 69 (3) | 44 (6) | 53 (4) | 61 (3) |
Relative Bias (%) | 34 (19) | 27 (13) | 194 (27) | 3 (13) | 66 (10) |
Landsat-Based Omission Error (%) | 31 (6) | 41 (7) | 62 (9) | 67 (8) | 42 (6) |
Landsat-Based Commission Error (%) | 24 (3) | 32 (5) | 57 (9) | 47 (5) | 33 (3) |
Number of High Res Images | 90 | 66 | 68 | 62 | 286 |
Mean Image Date Gap (days) | 8.8 ± 0.9 | 14.9 ± 1.5 | 2.4 ± 0.9 | 7.1 ± 0.9 | 8.4 ± 0.6 |
Platform | Data Availability (years) | Spatial Resolution (m) | Data Collection Type | Image Extent | Spectral Range (μm) | Spectral Resolution (# of Bands) | Sponsor, Country |
---|---|---|---|---|---|---|---|
QuickBird-2 | 2001–2014 | 2 | On-Demand | 18 km | 0.43–0.92 | 4 | DigitalGlobe, U.S. |
GeoEye-1 | 2008–Present | 2 | On-Demand | 15 km | 0.45–0.92 | 4 | DigitalGlobe, U.S. |
Worldview-2 | 2009–Present | 2 | On-Demand | 16 km | 0.4–1.04 | 8 | DigitalGlobe, U.S. |
RapidEye-1–5 | 2008–Present | 5 | On-Demand (2008–2013), Continuous 1 (2014–present) (1 to 24 day revisit) | 25 km | 0.44–0.85 | 5 | Planet, U.S. |
Landsat TM | 1984–2011 | 30 | Continuous (16 day revisit) | 185 km | 0.45–2.35; 10.4–12.5 | 7 | NASA, U.S. |
Landsat ETM+ | 1999–2003, 2003–Present (scan-line corrector off) | 30 | Continuous (16 day revisit) | 185 km | 0.45–2.35; 10.4–12.5 | 8 | NASA, U.S. |
NLCD Land Cover Types (2006) | CONUS (km2) | CONUS (%) | Arid West (%) | Mountain West (%) | Great Plains (%) | East (%) |
---|---|---|---|---|---|---|
Deciduous Forest | 876,257 | 12.1 | 0.4 | 3.9 | 3.0 | 26.7 |
Evergreen Forest | 934,123 | 12.9 | 9.6 | 50.8 | 1.7 | 9.9 |
Mixed Forest | 161,861 | 2.2 | 0.4 | 1.9 | 0.1 | 4.8 |
Shrub/Scrub | 1,746,336 | 24.2 | 64.8 | 23.2 | 12.4 | 4.0 |
Grasslands/Herbaceous | 1,176,276 | 16.3 | 9.3 | 10.7 | 36.9 | 2.7 |
Pasture/Hay | 537,512 | 7.4 | 1.6 | 1.8 | 6.7 | 11.9 |
Cultivated Crops | 1,252,998 | 17.3 | 5.4 | 1.3 | 30.4 | 16.0 |
Woody Wetlands | 312,431 | 4.3 | 0.4 | 0.8 | 1.0 | 9.5 |
Emergent Herbaceous Wetlands | 105,014 | 1.5 | 0.4 | 0.5 | 1.3 | 2.0 |
Other (developed, barren, open water) | 121,105 | 1.7 | 7.7 | 5.1 | 6.5 | 12.5 |
Source | Arid West (%) | Mtn West (%) | Great Plains (%) | East (%) |
---|---|---|---|---|
MODIS (MCD45) (2000–2015) | 30 | 9 | 44 | 17 |
MTBS (1984–2014) | 15 | 22 | 20 | 43 |
GeoMAC (2000–2015) | 50 | 34.5 | 10.5 | 5 |
Average | 31.5 | 22 | 25 | 21.5 |
Imagery Source | Patch Density | Edge Density | Landscape Shape Index | Area-Weighted Mean Patch Size | Area-Weighted Perimeter-Area Ratio |
---|---|---|---|---|---|
High-resolution | 30.1 ± 3.2 1 | 204.0 ± 21.4 1 | 70.8 ± 7.4 1 | 1293.3 ± 136.5 1 | 843.4 ± 88.5 1 |
BAECV (Landsat) | 0.25 ± 0.03 2 | 37.5 ± 3.9 2 | 11.1 ± 1.2 2 | 3463.1 ± 365.4 2 | 134.1 ± 14.1 2 |
MCD45 (MODIS) | 0.02 ± 0.007 3 | 2.7 ± 0.3 3 | 1.9 ± 0.2 3 | 6913.4 ± 854.1 3 | 20.1 ± 2.5 3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanderhoof, M.K.; Brunner, N.; Beal, Y.-J.G.; Hawbaker, T.J. Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery. Remote Sens. 2017, 9, 743. https://doi.org/10.3390/rs9070743
Vanderhoof MK, Brunner N, Beal Y-JG, Hawbaker TJ. Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery. Remote Sensing. 2017; 9(7):743. https://doi.org/10.3390/rs9070743
Chicago/Turabian StyleVanderhoof, Melanie K., Nicole Brunner, Yen-Ju G. Beal, and Todd J. Hawbaker. 2017. "Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery" Remote Sensing 9, no. 7: 743. https://doi.org/10.3390/rs9070743
APA StyleVanderhoof, M. K., Brunner, N., Beal, Y. -J. G., & Hawbaker, T. J. (2017). Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery. Remote Sensing, 9(7), 743. https://doi.org/10.3390/rs9070743