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Abstract: Estimating daily evapotranspiration is challenging when ground observation data are
not available or scarce. Remote sensing can be used to estimate the meteorological data necessary
for calculating reference evapotranspiration ETo. Here, we assessed the accuracy of daily ETo

estimates derived from remote sensing (ETo-RS) compared with those derived from four ground-based
stations (ETo-G) in Kurdistan (Iraq) over the period 2010–2014. Near surface air temperature, relative
humidity and cloud cover fraction were derived from the Atmospheric Infrared Sounder/Advanced
Microwave Sounding Unit (AIRS/AMSU), and wind speed at 10 m height from MERRA (Modern-Era
Retrospective Analysis for Research and Application). Four methods were used to estimate ETo:
Hargreaves–Samani (HS), Jensen–Haise (JH), McGuinness–Bordne (MB) and the FAO Penman
Monteith equation (PM). ETo-G (PM) was adopted as the main benchmark. HS underestimated
ETo by 2%–3% (R2 = 0.86 to 0.90; RMSE = 0.95 to 1.2 mm day−1 at different stations). JH and MB
overestimated ETo by 8% to 40% (R2 = 0.85 to 0.92; RMSE from 1.18 to 2.18 mm day−1). The annual
average values of ETo estimated using RS data and ground-based data were similar to one another
reflecting low bias in daily estimates. They ranged between 1153 and 1893 mm year−1 for ETo-G
and between 1176 and 1859 mm year−1 for ETo-RS for the different stations. Our results suggest
that ETo-RS (HS) can yield accurate and unbiased ETo estimates for semi-arid regions which can be
usefully employed in water resources management.

Keywords: reference evapotranspiration (ETo); remote sensing; AIRS/AMSU; semi-arid region

1. Introduction

Evapotranspiration (ET) is one of the main components of the hydrological cycle. Its quantification
is essential for water resource management [1]. However, it is arguably the most difficult process
to measure, especially in arid and semi-arid areas where losses of water tend to be spatially and
temporally highly variable [2,3].

Evapotranspiration (ET) consists of two main component processes: evaporation and
transpiration [4,5]. Evaporation (E) is the loss of water from open water surfaces such as oceans,
lakes, reservoirs, and rivers, and from soil pores directly to the atmosphere. In the evaporation process,
energy is required to convert liquid water to the vapour state. Most of this energy comes from absorbed
radiation which depends (inter alia) on latitude, season, cloud cover, air temperature and surface
albedo (the fraction of solar shortwave radiation reflected from the earth back into space, which is
affected by surface conditions and soil moisture [4,6]). Transpiration (T) occurs when water absorbed
by plant roots is transferred to the leaves via the vascular system and returned to the atmosphere
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through their stomata [7]. It is noteworthy to highlight that evaporation and transpiration occur
simultaneously and it is complex to differentiate them. There are three different expressions for ET:
potential evapotranspiration (ETp), reference evapotranspiration (ETo) and actual evapotranspiration
(ETa). ETp is the water loss which would occur from a vegetated surface when sufficient moisture is
available in the soil such that stomata are fully open and resistance to water vapour transport from bare
soil to the atmosphere is minimal [8]. ETo is defined as the evapotranspiration rate from a hypothetical
reference surface with unlimited soil moisture availability [9]. The reference surface is assumed to be
a grass sward with a height of 0.12 m, a fixed surface resistance (representing the ease with which
water vapour is transferred between the surface layer and the atmosphere) of 70 s m−1 and an albedo
of 0.23 [9]. ETa is the loss of water from a vegetated surface under ambient soil moisture conditions
(i.e., soil moisture may be limiting to the evapotranspiration rate). ETo can vary significantly on a daily
time scale (which is the most commonly applied input data time step for hydrological modelling).
In contrast to precipitation (which is notoriously variable), several studies have reported that variation
of ETo is likely to be relatively uniform spatially at the basin scale, except where there are topographic
complexities or strong gradients in relief [10–12].

ET has a crucial role in the long term terrestrial water balance. Its estimation is essential for water
resources management. However, this can be a problem when observed data are sparse or unavailable,
as is often the case in low and middle income countries [13,14]. Fortunately, remote sensing (RS) has
the potential to provide estimates of the meteorological variables required to calculate ET at different
scales. Over the last decade, significant improvements in dynamic atmospheric retrieval techniques
from RS have been made for several relevant variables with different spatial and temporal resolutions.
Examples include the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding (AMSU)
and the MODerate resolution Imaging Spectroradiometer (MODIS) which are mounted on NASA’s
Earth Observing System (EOS) Aqua satellite [15].

AIRS is a passive sensing system which uses infrared hyperspectral sensing to measure
temperature and humidity [16]. The density profile of constituent atmospheric gases responsible
for infrared absorption is used to define a weighting function for each of the 2378 AIRS channels,
with wavelengths between 3.7 and 15.4 µm [16]. By measuring the infrared radiance (IR) in each of
the AIRS channels, atmospheric temperature can be calculated using the Planck equation [17]. When
cloud cover prevents accurate IR temperature retrieval from the lower atmosphere, measurements
can be made by its partner, AMSU. This is a passive multi-channel microwave radiometer measuring
atmospheric temperature with a 15-channel microwave sounder with a frequency range of 15–90 GHz.
AMSU can provide atmospheric temperature measurements from the land surface up to an altitude
of 40 km, as well as cloud filtering for the AIRS infrared channel at altitude to increase the accuracy
of measurements [16]. This allows NASA to provide an integrated dataset (AIRS/AMSU, hereafter
AIRS). AIRS contributes to studies of the atmospheric temperature profile, sea-surface temperature,
relative humidity, land surface temperature and emissivity and fractional cloud cover [16].

Zhang et al. [18] used remotely sensed leaf area indices from MODIS with the Penman–Monteith
equation, gridded meteorology and a two -parameter biophysical model for surface conductance (Gs) to
estimate eight-day average evaporation (ERS) at a 1 km spatial resolution. A steady-state water balance
(precipitation–runoff) approach was used to calibrate ERS which was then applied to estimate mean
annual runoff, for 120 gauged sub-catchments in the Murray-Darling Basin of Australia. The results
suggest that the evaporation model can be applied to estimate steady-state evaporation and ERS could
be used with a hydrological model to generate runoff with an RMSE as low as 79 mm year−1.

Mu et al. [19] developed an algorithm to estimate ET using the Penman–Monteith method driven by
MODIS-derived vegetation data and daily surface meteorological inputs. They also applied the model
with different meteorological inputs from ground-based stations and vapour pressure deficit and air
temperature from the Advanced Microwave Scanning Radiometer (AMSR-E) and Global Modelling and
Assimilation Office (GMAO) meteorological reanalysis-based humidity, solar radiation and near-surface
air temperature data. Their results were validated using data from six flux towers across the northern
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USA. Simulated ET_RS derived from MODIS, AMSR-E and GMAO agreed well with tower-observed
fluxes (r > 0.7 and RMSE of latent heat flux <30 Wm−2 (i.e., ETo < 1.05 mm day−1).

Rahimi et al. [20] compared the Surface Energy Balance Algorithm for Land (SEBAL) with the
Penman–Monteith equation to investigate the accuracy of actual evapotranspiration (ETa) estimation
using MODIS data. The results show that there was no significant difference between the SEBAL
and PM methods for estimating hourly and daily ETa (RMSE ranged from 0.091 mm day−1 to
1.49 mm day−1). Peng et al. [21] compared six existing RS-derived ET products at different spatial
and temporal resolutions over the Tibetan Plateau. They used one product (LandFlux-EVAL) as a
benchmark due to the lack of availability of in situ measurements. Their results showed that although
existing ET products capture the seasonal variability well, validation against in situ measurements are
still needed in order to confirm the accuracy of calculated ET, at least in this region and probably in
general. Despite the fact that other studies have used RS data to estimate ET, few previous attempts
have been made, to our knowledge, to use AIRS data to estimate ET in a data-scarce semi-arid area,
such as northern Iraq. Existing ET-RS and reanalysis data products with global spatial coverage
include the MODIS 1km PM data [19,22] and reanalysis data such as MERRA-2 [23]. However, these
data have temporal resolutions of eight days and one month, respectively—which are too course
for many hydrological applications. Whilst attempts have been made elsewhere to obtain accurate
evapotranspiration estimates from RS (ETo-RS) at higher temporal resolutions (e.g., daily), for example
in South Africa [24] and the USA [25], this has not been performed for many areas of the world where
resources are limited and where ground observations are often very scarce. The main objective of this
paper is to evaluate the accuracy of daily ETo estimates derived using remote sensing data against
ETo calculated using ground observations based on the PM method as a benchmark. Our aim was
to focus on the value of RS data while minimising the use of reanalysis data products (i.e., products
derived from the reprocessing of historical observed RS data using a consistent analysis system, often
involving models and incorporating or “assimilating” ground based observations, where available).

2. Materials and Methods

2.1. Study AREA

The study was conducted in the Kurdistan Region of northeastern Iraq (36◦49′14′ ′N, 44◦51′39′ ′E
to 36◦12′03′ ′N, 44◦28′48′ ′E; Figure 1). The altitude in the study area ranges from 399 m to 3061 m
above mean sea level. The land use is mainly extensive grazing of sparsely vegetated areas. There are
also some irrigated and rain-fed arable areas, woodland, open water and urban areas [26].

The climate of the study area can be described as Mediterranean with hot and dry weather in
summer (June to September) and cool and relatively moist conditions in winter (October to May) [27].
The transitions from winter to summer and vice versa are marked and often rapid [8]. The major
moisture sources are the Mediterranean, Black and Caspian Seas [8]. Precipitation is varied and
mostly falls as rain in winter and autumn (Figure 2) with mean annual precipitation ranging from
500 mm to ca. 1000 mm (Table 1). Winter snowfall is common at elevations above 1000 m above mean
sea level [28]. Higher temperatures are usually recorded at lower altitudes (Dukan and Sulaimani)
compared with the high mountains (Penjween and Chwarta), see Table 1.

In addition, the study area experiences extreme seasonal variations in relative humidity (RH) due
to the large variation in climate and altitude. The annual average RH in the study area is about 48%.
It is high in winter and exceeds 70% but is only 22% on average in August. RH tends to be higher in
the high mountains (Penjween and Chwarta) compared with at lower altitudes (Dukan and Sulaimani).
The mean wind speed over the study area during 2010–2014 was 1.8 m s−1. Southerly winds from the
lowlands bring increased temperatures and northerly winds tend to bring cooler air [8].
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Figure 1. (a) Elevation in the study area derived from the Shuttle Radar Topography Mission (SRTM) 
digital elevation model (DEM) (https://earthexplorer.usgs.gov/). (b) Regional location of the study 
area. 

Table 1. Elevation, mean daily temperature, relative humidity and average annual rainfall for the four 
stations located in the study area from 2010 to 2014 (Sulaimani Meteorological Office, 2015). 

Stations Elevation 
(m) Mean Daily Temperature (°C) Relative Humidity (%) Rainfall (mm 

year−1 ) 
Dukan 650 23.1 44.2 586.3 

Sulaimani 885 20.1 45.2 646.7 
Chwarta 1128 19.6 46.1 693.2 

Penjween 1300 14 57.1 951 

 

Figure 1. Mean monthly rainfall (spatially averaged over Thiessen polygons), temperature and 
relative humidity (RH) in the study area 2010–2014 (Sulaimani Meteorological Office, 2015). 
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Figure 1. (a) Elevation in the study area derived from the Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM) (https://earthexplorer.usgs.gov/). (b) Regional location of the
study area.

Table 1. Elevation, mean daily temperature, relative humidity and average annual rainfall for the four
stations located in the study area from 2010 to 2014 (Sulaimani Meteorological Office, 2015).

Stations Elevation (m) Mean Daily Temperature (◦C) Relative Humidity (%) Rainfall (mm year−1)

Dukan 650 23.1 44.2 586.3
Sulaimani 885 20.1 45.2 646.7
Chwarta 1128 19.6 46.1 693.2

Penjween 1300 14 57.1 951
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Figure 2. Mean monthly rainfall (spatially averaged over Thiessen polygons), temperature and relative
humidity (RH) in the study area 2010–2014 (Sulaimani Meteorological Office, 2015).

2.2. Data Acquisition

Meteorological data were obtained for the four stations from Sulaimani Meteorological Office.
These data all have daily temporal resolution from 2010 to 2014 and include maximum, minimum and
average air temperature (◦C), relative humidity (%), sunshine hours, wind speed (m s−1) and rainfall
(mm day−1).

https://earthexplorer.usgs.gov/
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2.3. Remote Sensing Data

Daily time series of near-surface air temperature (◦C), RH (%) and cloud cover fraction were
obtained from Aqua AIRS/AMSU Level 3 Daily Standard Physical Retrieval (AIRS + AMSU) 1 degree
× 1 degree V006 (short name AIRX3STD) for 2010–2014 at 1◦ spatial resolution. Data gaps were filled
using cubic spline interpolation [29]. Although this can be problematic if temporal gaps in the data
are wide, in our study, AIRS data were available for 99% of the period of interest (2010–2014) and the
maximum data gap was just four days. Cubic splines are considered to be a reasonable interpolation
method at this resolution and have often been reported to be better than simple linear interpolation for
oscillating data, provided the temporal gaps are not too wide [30].

Cloud cover fraction data from AIRS were used to estimate sunshine duration using:

DS = H · C f (1)

where DS is sunshine duration (hours), C f is the cloud cover fraction (established from the AIRS/Aqua
L3 Daily Standard Physical Retrieval (AIRS + AMSU) 1 degree × 1 degree V006 cloud-cover fraction
data (AIRX3STD)) and H is the maximum possible sunshine hours, calculated as [9]:

H =
24
π

ωs (2)

where ωs is the sunset hour angle which is calculated by:

ωs = arccos[− tan(ϕ) tan(δ)] (3)

in which ϕ is the latitude and δ is the solar declination i.e.,:

δ = 0.409 sin
(

2π

365
J − 1.39

)
(4)

in which J is the Julian day of the year (1 to 365, or 366 in a leap year).

2.4. Reanalysis Data

Combination methods such as the Penman–Monteith equation usually require wind speed
measurements at 2 m height above ground [9]. Hourly estimates of wind speed at 10 m height
were obtained from MERRA (Modern-Era Retrospective analysis for Research and Applications) [23] at
0.5◦ × 0.6◦ spatial resolution. These data were aggregated to compute daily values and then adjusted
to the standard 2 m height using [9];

U2 = Uz
4.87

ln(67.8 z− 5.42)
(5)

where U2 is wind speed at 2 m (m s−1) and Uz is wind speed at z m above ground (m s−1).
MERRA) is a NASA project which supplies consistent hydro-meteorological analyses of historical

remote sensing data [31]. It assimilates atmospheric observations into a numerical model called the
Goddard Earth Observation System Data Assimilation System Version 5 (GEOS-5). Data products
(including monthly surface pressure, relative humidity and air temperature and hourly wind speed)
are offered at a broad range of spatiotemporal scales, from 1979 to the present [31]. The output of
interest for this study is wind speed. It should be noted that the spatial resolution of MERRA and
AIRS is different. Therefore, bilinear interpolation was applied to resample the MERRA data to a 1◦

spatial grid using the four orthogonal MERRA cells surrounding a given pixel.
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2.5. Reference Evapotranspiration (ETo) Estimation Methods

ET is commonly estimated indirectly from meteorological data [9,32,33] using a variety of
different methods [34–36]. These methods can be grouped into three categories: (i) those based
on energy balance and mass transfer concepts, often referred to as the combination equation
or Penman–Monteith (PM) method [9]; (ii) those based on empirical relationships between ETo

and temperature- (e.g., Thornthwaite [37] and Hargreaves and Samani (HS) [38]); and (iii) and
radiation-based approach which utilise measured or estimated solar radiation flux density at the
surface (e.g., Jensen and Haise [39]; McGuinness and Bordne [40]; and Priestley and Taylor [41]).
The PM method is widely considered to be the most reliable indirect method [9,42,43]. However,
its main shortcoming is that it requires a complete weather data set (net radiation flux density,
temperature, relative humidity and wind speed) which is not always available for many areas [13,32].
The other methods have fewer meteorological data requirements [32] and are, hence, widely
applied—particularly those based solely on temperature. The performance of temperature- and
radiation-based methods, relative to the PM method, is spatially and temporally variable [44,45].
The HS method is generally agreed to be the best temperature-based approach [46,47] but has been
reported to perform poorly in some semi-arid contexts [45] where radiation-based methods may be
more suitable [43]. Several alternative approaches to the PM method were, therefore considered here.

Four methods were considered: (1) the Penman–Monteith (PM) equation [9] which was used as a
benchmark for comparison with the other methods; (2) the Hargreaves and Samani equation (HS) [38];
(3) the radiation-based method of Jensen and Haise (JH) [39]; and (4) the radiation-based method of
McGuinness and Bordne (MB) [40]. The JH and MB methods have been successfully applied in humid
and arid environments [32,48] but the main drawback of these equations is underestimation in humid
areas [35] and overestimation in semi-arid areas [32].

All methods require temperature data, the PM also requires RH, wind speed and sunshine hours
data. JH and MB also require sunshine data. The equations are as follows.

PM : ETo =
0.408∆(Rn − G) + γ 900

Ta+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(6)

HS : ETo = 0.0023 (Tmax − Tmin)
0.5(Ta + 17.8)

Ra

λ
(7)

JH : ETo =
0.025(Ta + 3) Rs

λ
(8)

MB : ETo =
Rs

λ

(Ta + 5)
68

(9)

where ETo is the reference evapotranspiration rate (mm day−1), U2 is mean daily wind speed at
2 m height (m s−1) (Equation (5)), ∆ is the slope of the vapour pressure versus temperature curve
(kPa ◦C−1) (Equation (10)), Rn is the net radiation flux density at the vegetation surface (MJ m−2 day−1)
(Equation (11)), G is the soil heat flux density (MJ m−2 day−1)—assumed to be zero because it is very
small at the daily time scale [9], Ta is mean daily air temperature at 2 m height (◦C), Tmin is minimum
air temperature (◦C), Tmax is maximum air temperature (◦C), Rs is the solar radiation flux density
at the surface (MJ m−2 day−1) (Equation (13)), Ra is the extraterrestrial radiation (i.e., the theoretical
radiation flux density at the top of the atmosphere) [MJ m−2 day−1] (Equation (14)), es is the saturation
vapour pressure (kPa) (Equation (18)), ea is the actual vapour pressure (kPa) (Equation (19)), es − ea is
the saturation vapour pressure deficit (kPa), λ is the latent heat of vaporization (i.e., 2.45 (MJ kg−1))
and γ is the psychrometric constant (kPa ◦C−1) (Equation (22)).
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Further definitions of variables used in Equations (6)–(9) are given [9] as follows:

∆ =
4096

[
0.6108exp(

17.27Ta
Ta+273.3 )

]
(Ta + 273.3)2 (10)

Rn = Rns − Rnl (11)

in which Rns is the net shortwave radiation flux density (MJ m−2 day−1) (Equation (12)) and Rnl is the
net longwave radiation flux density (MJ m−2 day−1) (Equation (16)):

Rns = (1− α)Rs (12)

where α is the surface albedo, assumed to be 0.23 for a hypothetical grass sward [9].

Rs = (as + bs
DS
H

)Ra (13)

in which DS is the actual duration of sunshine (hours), H is the maximum possible duration of
sunshine (hours) and as + bs are regression constants set to 0.25 and 0.5, respectively, as recommend
by Allen et al. [9].

Ra =
24(60)

π
Gsc dr[ωs sin(ϕ) sin(δ) + cos(ϕ) cos(δ) sin(ωs)] (14)

in which dr is the inverse of the relative distance between the Earth and the Sun ( Equation (15)), ωs

is defined by Equation (3), ϕ is the latitude, δ is given in Equation (4) and Gsc is the solar constant =
0.0820 MJ m−1 min−1.

dr = 1 + 0.033 cos
2π

365
J (15)

Rnl = σ

[
(Tmax + 273.3)4 + (Tmin+273.3)4

2

]
(0.34− 0.14 ∗

√
ea)(1.35

Rs

Rso
− 0.35) (16)

in which σ is the Stefan–Boltzmann constant (4.903 × 10−9 MJ K−4 m−2 day−1), (0.34− 0.14 ∗ √ea)

expresses the correction for atmospheric humidity, and the cloudiness is expressed by(
1.35 Rs

Rso
− 0.35

)
[9]; Rso is the clear-sky solar radiation flux density (MJ m−2 day−1) which can

be used when calibrated values for as + bs are not available [9] i.e.,

Rso =
(

0.75 + 2 ∗ 10−5 ∗ z
)

Ra (17)

in which z is the station elevation above sea level (m).
The vapour pressure terms are defined as follows:

es = (
e0(Tmax) + e0(Tmin)

2
) (18)

ea = (
e0

min
RHmax

100 + e0
max

RHmin
100

2
) (19)

where RHmin and RHmax are minimum and maximum relative humidity (%) and e0
min and e0

max
are the saturation vapor pressure at the minimum and maximum air temperatures, respectively
(Equations (20) and (21)):

e0
min = 0.6108 exp(

17.27 Tmin
Tmin + 273.3

) (20)

e0
max = 0.6108 exp(

17.27 Tmax

Tmax + 273.3
) (21)
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The psychrometric constant is defined as:

γ =
CpP
ε λ

(22)

in which Cp is the specific heat capacity at constant pressure; 1.013 × 10−3 (MJ kg−1 K−1), ε is the ratio
molecular weight of water vapour:dry air (i.e., 0.622); and P is the atmospheric pressure (kPa).

Three statistical metrics were used to evaluate model performance in validation: the Pearson Product
Moment Correlation Coefficient (r; Equation (23)), the root-mean-square error (RMSE; Equation (24))
and the bias (Equation (25)).

r =
∑n

i=1 (XG
i − XG

)(XRS
i − XRS

)√
∑n

i=1 (XG
i − XG

)
2
√

∑n
i=1 (XRS

i − XRS
)

2
(23)

RMSE =

√
∑n

i=1 (XRS
i − XG

i )
2

N
(24)

Percent bias =
∑N

i=1
(
XRS

i − XG
i
)

∑N
i=1 XG

i
∗ 100 (25)

where XG
i and XRS

i are the ground and RS values, respectively; XG is the average ground value; XRS is
the average of RS value; and N is the number of values recorded in the sample.

3. Results

3.1. Comparison between Meteorological Variables Estimated from Remote Sensing with Station Data

Satellite-derived and ground-measured values of mean daily air temperature (Ta), RH, sunshine
hours (DS) and U2 are compared in Figure 3 for the four stations in the study area. A statistical
summary of this comparison is shown in Table 2. The R2 values between the ground-measured and
AIRS-derived values of Ta were high (R2 > 0.88) and highly significant for all stations. The RMSE
for Ta ranged from 3.2 to 5.1 ◦C with a tendency of RS to underestimate the ground observations
of Ta. For RH, the relationship between satellite-derived and ground-based measurements was also
significant for all four stations (R2 > 0.3; p < 0.05). For RH the RMSE ranged from 12.5% to 24%
with negative bias for all stations. However, there was a weak but significant relationship for DS
(0.15 < R2 < 0.2; p < 0.05) and the relationship between measured U2 and MERRA-derived wind speed
is even weaker for all stations (Table 2). Remotely sensed DS and U2 both had positive bias in all cases,
except for wind speed at Dukan (Table 2).

Since ET is widely known to be driven by turbulent eddies, and is thus sensitive to wind speed,
we conducted an extra analysis to evaluate the model sensitivity to the MERRA-wind speed data.
We compared ETo estimates derived using the PM equation for all four stations using U2 derived
from MERRA with PM estimates assuming a constant U2 value (the mean measured daily value for
each station during 2010–2014). The ETo predictions produced with the constant wind velocity were
actually better overall (closer match with PM estimates obtained using ground-measured data in
terms of regression equation slope, R2 and RMSE: see Supplementary Materials, Figures S1 and S2,
Tables S1 and S3), although (as expected) high ET values (>ca 8 mm day−1) which often arise on windy
days are not well predicted. This implies that that the PM equation can still be used with RS data
provided a reasonable estimate can be made for the mean wind speed for the locations of interest.
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sensed values of ܶ, RH %, ܵܦ and		ܷଶ for four different stations during the study period (2010–
2014). 

Station Variable RMSE BIAS (%) R 

Sulaimani 

ܶ 3.5 −14.2 0.97 
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black line indicates the 1:1 relationship. The grey line shows the best-fit regression with 95%
confidence interval.

Table 2. Statistical summary of the relationship between daily ground-measured and remotely-sensed
values of Ta, RH %, DS and U2 for four different stations during the study period (2010–2014).

Station Variable RMSE BIAS (%) R

Sulaimani

Ta 3.5 −14.2 0.97
RH % 12.7 −0.6 0.76

DS 4.5 16.1 0.38
U2 1.4 27.8 0.03

Penjween

Ta 5.1 28.4 0.94
RH % 13.8 −13.4 0.72

DS 4.3 10.2 0.45
U2 1.7 34.8 0.02
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Table 2. Cont.

Station Variable RMSE BIAS (%) R

Chwarta

Ta 3.3 −0.1 0.94
RH % 24 −26 0.55

DS 4.2 9.1 0.44
U2 1.5 24.5 0.03

Dukan

Ta 3.2 −2.8 0.95
RH % 12.5 −7.3 0.80

DS 5.1 21.8 0.40
U2 1.4 −47.7 0.03

3.2. Comparison between Daily ETo-RS and ETo-G

The calculated daily ETo-G and ETo-RS estimates are shown in Figure 4. In all cases, the black
line shows ETo–G. For all stations, there is seasonal agreement between ETo-G and ETo-RS for all
evapotranspiration methods. Estimated ETo-G is plotted against ETo-RS in Figure 5, along with the
best-fit linear regression and the 1:1 line. Most of the points are scattered around the 1:1 line for the
JH and MB methods which always have high R2 and regression gradients close to unity. However,
there is considerable variability in the slope of the ground-derived versus RS-derived regression lines
(0.7 to 0.89) and in R2 (0.64 to 0.9) when using the HS and PM methods—particularly for the Dukan and
Sulaimani stations. These stations have relatively low elevations compared with the other two stations,
with higher average temperatures (Table 1). Average annual ET0 values estimated using the ground and
RS data for all methods from 2010 to 2014 are presented in Figure 6. The MB method yielded highest
average annual values for both ETo-G and ETo-RS (1670 mm year−1 and 1677 mm year−1, respectively),
while the HS method yielded the lowest annual value of ETo-RS (1198 mm year−1) and the PM method
yielded lowest annual values of ETo-G (1337 mm year−1). The average annual values of ETo-RS were
relatively similar to those of ETo-G, which reflects low bias and hence small cumulative errors.

Table 3. Statistical summary of comparisons between estimated daily reference evapotranspiration
using ground-based measurements (ETo-G) and remote sensing data (ETo-RS) for four different methods
at four different stations (Sulaimani, Penjween, Chwarta, and Dukan) over the study period 2010–2014.

Station Methods RMSE (mm day−1) BIAS (%) R

Sulaimani

PM 0.99 2.5 0.80
HS 1.26 −17 0.95
JH 0.82 −3.2 0.93
MB 0.65 −10.5 0.99

Penjween

PM 1.59 17.7 0.81
HS 1 −13 0.94
JH 1.46 23.2 0.93
MB 0.92 18.2 0.97

Chwarta

PM 1.26 12.8 0.86
HS 0.95 −10 0.92
JH 1.19 3.7 0.93
MB 0.57 0.3 0.97

Dukan

PM 1.7 −13 0.81
HS 1.1 −19.9 0.94
JH 1.56 5.1 0.91
MB 0.52 −1.8 0.98



Remote Sens. 2017, 9, 779 11 of 20

Goodness-of-fit statistics are presented in Table 3. The MB method consistently performed better
than other methods (in terms of the similarity of the ETo-G and ETo-RS data) for all stations and for all
goodness-of-fit criteria, except for the bias at Sulaimani. The greatest differences were observed when
the PM and HS methods are compared. The HS method consistently underestimated ground-based
ET estimates when RS data were used as inputs (i.e., bias was always negative). Pearson correlation
coefficients (r) between ETo-G and ETo-RS were generally high and always highly significant (p < 0.05)
for all stations.
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Figure 5. Scatterplots of estimated daily reference evapotranspiration using ground-based measurements 
(ETₒ-G) versus estimated reference evapotranspiration using remote sensing data (ETₒ-RS) applying 
four different methods at four different stations (Sulaimani, Penjween, Chwarta, and Dukan). The 
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Figure 5. Scatterplots of estimated daily reference evapotranspiration using ground-based
measurements (ETo-G) versus estimated reference evapotranspiration using remote sensing data
(ETo-RS) applying four different methods at four different stations (Sulaimani, Penjween, Chwarta, and
Dukan). The solid black line indicates the 1:1 relationship. The grey line shows the best-fit regression
with 95% confidence interval (equations and R2 also shown).
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Figure 6. Average annual ETo estimates derived from ground-based measurements (ETo-G) and remote
sensing data (ETo-RS) using four methods from 2010–2014 for Sulaimani, Penjween, Chwarta and
Dukan stations.

3.3. Cross-Comparison of the ETo Methods

In Figure 7, different ETo-RS values calculated using the HS, JH, and MB methods are plotted
against benchmark data (i.e., ETo-G PM) for all stations. This comparison is based on the assumption
that the PM method is most reliable [49], and that the ground-based measurements at each station best
represent the atmospheric drivers for evapotranspiration (i.e., the ground-based data will best-predict
ETo using the PM method). There was considerable variation in model performance against the
benchmark data for different stations. The JH and MB methods had regression slopes in the range
between 0.95 and 1.4, with most slopes >1, indicating a slight tendency of these methods to overestimate
the benchmark values. However, the slopes for the HS method ranged between 0.63 and 0.82,
suggesting a tendency for the HS equation to under-predict ET when driven by RS data, particularly
at the Dukan station Although the MB method yielded the best coefficient of determination for each
station (0.74 < R2 < 0.86), this was not always the best method in terms of proximity to the 1:1 line. At the
two stations with higher elevation (Penjween and Chwarta) the HS method was the best predictor.
Table 4 summarises the results statistically. This confirms that the HS method tends to underestimate
benchmark ET (−9 < bias% < −0.6) and that the other methods tend to overestimate it (bias ranged
between 8.6 and 40%). At all stations the HS method had the lowest RMSE (1–1.3 mm day−1). Despite
the fact that the JH and MB methods had correlation coefficients which were often better than for the
HS method, they had much higher RMSE values (1.8–2.1 mm day−1).
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Table 4. Statistical bias, RMSE and Pearson Product Moment Correlation coefficient (r) for ETₒ-RS 
values against the benchmark data set ETₒ-G (PM) for the different stations over the study period 2010–
2014. 

Station Methods RMSE (mm day−1) BIAS (%) R 

Sulaimani 
HS 1.3 −9 0.83 
JH 2.1 21.4 0.83 
MB 1.6 24.5 0.85 

Figure 7. Scatterplots of estimated daily reference evapotranspiration using remote sensing data
(ETo-RS) for the HS, JH and MB methods against estimated reference evapotranspiration generated
using ground-based measurements (ETo-G) with the PM method (the benchmark model) for four
different stations (Sulaimani, Penjween, Chwarta and Dukan). The solid black line indicates the 1:1
relationship. The grey line shows the best-fit regression with 95% confidence interval (equations and
R2 also shown).
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Table 4. Statistical bias, RMSE and Pearson Product Moment Correlation coefficient (r) for ETo-RS values
against the benchmark data set ETo-G (PM) for the different stations over the study period 2010–2014.

Station Methods RMSE (mm day−1) BIAS (%) R

Sulaimani
HS 1.3 −9 0.83
JH 2.1 21.4 0.83
MB 1.6 24.5 0.85

Penjween
HS 1 −1.9 0.88
JH 2.1 37 0.88
MB 1.7 40 0.91

Chwarta
HS 0.98 −0.6 0.89
JH 2 33.3 0.90
MB 1.6 37 0.92

Dukan
HS 1.2 −2.6 0.89
JH 1.8 11.2 0.89
MB 1.81 8.6 0.92

4. Discussion

In this paper, reference evapotranspiration (ETo) was estimated based on four methods using
ground-observed and RS-derived meteorological data (i.e., AIRS and reanalysis wind speed data
from MERRA) at four stations in northeastern Iraq. For mean daily air temperature, AIRS and
ground-based measurements were very similar for all sampled stations. The positive bias for Ta

increased with increasing station altitude. Similarly, for RH the relationship between AIRS and
ground-based measurements was strong, albeit with a negative bias, for all stations. Despite the better
spatial resolution of the MERRA data compared to AIRS data, we decided not to use the MERRA
products because we wanted, explicitly, to focus on the value of the RS data and avoid reanalysis
products as much as possible. Reanalysis data (which often integrate data from different sources)
can be sensitive to observing system changes and there is often some uncertainty due to variations
in both the models used and in the analysis techniques employed [31]. Unfortunately, we were not
able to avoid using reanalysis products completely and MERRA wind speed data (U2) was required
because to date no RS wind speed data are available. The relationships for DS and U2 were weak for
all stations. The effect of differences between RS and ground-based meteorological variables on ETo

rate will depend on the model sensitivity to the variable in question (i.e., if the model is sensitive to
an input variable then predictions of ET will differ significantly if the RS estimate for that variable
differs from the ground-based measurement; conversely, if the model is insensitive to the variable
in question then ET will be relatively unaffected by errors in the RS estimates). Differences could
be due to the different spatial reference frames employed, with meteorological stations recording
point measurements and RS platforms observing spatially aggregated variables over large grid cells or
pixels. As well as altering ET using empirical methods, differences in Ta estimates will also affect other
temperature-dependent values such as vapour pressure deficit and ∆.

There was generally reasonable agreement between ETo-RS and ETo-G for all the ETo methods
evaluated, based on high R2 values and regression line slopes close to unity compared with the
predictions driven by ground-based measurements. However, there was some variation in model
performance for individual stations. Regressions between the bias in input variables (RS versus
ground) and the bias in ETo estimates (calculated using RS versus the benchmark) for all methods are
shown in Table S2. Strong and significant relationships were observed between the bias in sunshine
duration and the bias in ETo in the case of the JH and MB methods (R2 > 0.95, p < 0.05) for all stations.
This is not unexpected, given the dependence of these methods on solar radiation (and indirectly DS)
suggesting high sensitivity. Other relationships were insignificant – even for the bias in ET from the
HS method versus the bias in Ta, possibly because the HS method also depends on the theoretical
radiation flux density at the top of the atmosphere. The bias in ETo-RS for the PM equation was most
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sensitive to DS and wind speed, reflecting the high importance of both radiative and aerodynamic
terms in this method (by definition).

The PM model tended to predict lower ETo than when using ground-based data for the Dukan
station, but higher ETo for the Sulaimani, Penjween and Charta stations. This is mainly due to the
sensitivity of the PM method to meteorological input data (i.e., radiation, air temperature, humidity
and wind speed [9]). Thus, the effects of disparities between ground-level measurements and RS
estimates can be significant on ETo calculations especially in windy, warm and or dry conditions [9].
For instance, Ta derived from RS overestimated ground-based measurements for the Penjween and
Charta stations in the mountains (1284 and 1128 m ASL, respectively) but underestimated Ta at Dukan,
which is located at lower altitude (690 m ASL). These results agree with the results reported by
Ferguson and Wood [50] which showed that the positive bias of near-surface air temperature from
AIRS increased with increasing elevation. Similar to Ta, DS and U2 also contributed significantly to
the deviation of RS and ground-driven ET using the PM method due to high bias and RMSE for the
RS-estimates of these variables compared to ground-based measurements.

In the cross-comparison of the ETo methods (i.e., when the RS-driven models were compared
with the benchmark data set), ETo-RS (HS) slightly underestimated ETo-G (PM: Table 4). This could
be due to: (i) The absence of humidity terms in the HS method [32,51] in contrast to the PM method
in which ETo is positively correlated with vapour pressure deficit. This is especially important in
semi-arid environments were humidity deficits can be high (i.e., when low relative humidity results
in a steep gradient in vapour pressure between the surface and the bulk atmosphere). (ii) The fact
that temperature-based methods (HS) tend to underestimate ETo at high wind speeds of >3 m s−1 [49].
In the original PM method, wind speed is included via the aerodynamic resistance term (which is
combined with the surface resistance, specific heat capacity and air density in the FAO version shown
in Equation (6) via the constants 900 and 0.34). (iii) The fact that atmospheric transmissivity (the ratio
of the global solar radiation at ground level to that received at the top of the atmosphere, [52,53])
in semi-arid area tends to differ from other areas due to lower atmospheric moisture content [52].
A number of other studies [54–59] have reported that the HS method can overestimate ETo in humid
environments and under estimate it in semi-arid regions [47]. Although a slight negative bias was also
observed here, the HS model yielded lower RMSE values overall compared with the other methods
suggesting that it is a reasonable method for estimating ETo in semi-arid regions similar to our study
area (even when driven by RS data). This result is in agreement with Lopez et al. [7], Tabari [47] and
Tabari and Talaee [59] who concluded that the HS method can be successfully used in semi-arid areas.

The positive bias obtained from comparisons between ETo-RS calculated using the JH and MB
methods and ETo-G PM is in accordance with both Jensen et al. [36] and Tabari et al. [32] who found
that these models tend to overestimate ETo compared with the PM method, by as much as 30% and
60%, respectively. In our study the JH and MB methods overestimated the benchmark average annual
ETo at all stations (Figure 6) by between 9% and 40%. Instead, the average annual ETo predicted by the
HS method was similar to that estimated by the PM method for all stations (e.g., bias ranged between
−0.6% and −9%).

This study did not take into account the effects of vegetation factors on the ET rate and, instead,
focussed on climatic factors. ETo expresses the evaporation power of the atmosphere at a specific
location and time of the year and does not consider land cover characteristics and soil factors [9].
If required, crop-specific ETp can be calculated from ETo using crop-specific resistance terms in the
PM equation or, more generally, using crop coefficients [9] which account for differences in vegetation
canopy characteristics such as leaf area index, canopy height and stomatal resistance. ETa can be
calculated from ETp (or ETo) if soil moisture content can be estimated, often via a linear reduction in
ETa:ETp between a threshold moisture content and the permanent wilting point [13].
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5. Conclusions

Obtaining accurate estimates of ETo is essential for well-informed water management. However,
in many parts of the world, the meteorological data required to estimate it are not available or are
very scarce. Satellite remote sensing offers an alternative data source to ground stations, provided
it can be shown to provide robust and reliable estimates of water fluxes. In this study, we assessed
the validity of using daily RS-derived meteorological variables for estimating daily ETo compared
with ETo from the same models driven by ground-based meteorological variables, for four stations
in northeastern Iraq. The results were also compared with a benchmark model (PM) driven by
ground-based meteorological observations. The good agreement (i.e., low RMSE and bias and high r)
between AIRS and ground-based data, particularly near-surface air temperature, and the generally
good performance of the ET models compared to the benchmark data set, suggest that AIRS data can be
used as alternatives to conventional meteorological data to estimate daily ETo with reasonable accuracy.
Considering the low density of ground-based stations and the paucity of climatological records in
regions such as Iraq, this is encouraging for future hydrological studies and for better-informed water
management. The application of the PM method is limited in many semi-arid regions of the world
by lack of required weather observations. In such circumstances, simpler models are often used to
estimate ETo. In this case, the RS-driven HS method produced better ETo estimates (compared to the
PM equation as a benchmark) than the other models. It is recommended that the HS model is used
where complete weather observation data are lacking. This method can be successfully employed
using RS data to yield accurate and useful daily ETo estimates. This, in turn, is valuable for better
policy making and planning in order to ensure efficient use of water resources, to improve irrigation
management and for hydrological modelling. Some reanalysis data products already exist which
attempt to estimate ETo using a combination of RS and ground-based data and numerical models
(e.g., MERRA-2). Future work could usefully compare ETo estimates generated here with those
predicted by MERRA-2.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/8/779/s1.
Figure S1: Plot of daily ETo estimates derived from ground-based measurements (ETo-G) and remote sensing data
(ETo-RS) using PM method from 2010–2014 for Sulaimani, Penjween, Chwarta and Dukan stations. The black
line presents the ETo-G. The blue line presents the ETo-RS when the PM model driven by constant-wind speed.
The green line presents the ETo-RS when the PM model driven by MERRA-wind speed, Figure S2: Scatterplots of
estimated daily reference evapotranspiration using ground-based measurements using PM method (ETo-G) versus
estimated reference evapotranspiration using remote sensing data (ETo-RS) using PM method when the PM was
driven by with MERAA-wind speed and constant-wind speed at four different stations (Sulaimani, Penjween,
Chwarta, and Dukan). The solid black line indicates the 1:1 relationship. The grey line shows the best-fit regression
with 95% confidence interval (equations and R2 also shown), Table S1: Statistical summary of comparisons between
estimated daily reference evapotranspiration using ground-based measurements (ETo-G) and remote sensing
data (ETo-RS) with MERRA-wind speed and constant-wind speed data for PM methods at four different stations
(Sulaimani, Penjween, Chwarta, and Dukan) over the study period 2010-2014. * means significant at p < 0.05, Table
S2: Statistical summary of (BIAS%) between daily ground-measured and remotely-sensed values of Ta, RH%, DS
and U2 and BIAS% summary of estimated daily reference evapotranspiration using remote sensing data (ETo-RS)
for four different methods against the benchmark data set (PM method using ground-based measurements: ETo-G:
PM) for four different stations (Sulaimani, Penjween, Chwarta, and Dukan) over the study period 2010–2014. *
means significant at p < 0.05, Table S3: Summary of annual ETo-G and ETo-RS (with MERRA-wind speed and
constant-wind speed data) for PM method at four different stations (Sulaimani, Penjween, Chwarta, and Dukan)
over the study period 2010–2014.
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