

  Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery




Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery







Remote Sensing 2017, 9(8), 790; doi:10.3390/rs9080790




Article



Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery



Fulin Luo 1,2[image: Orcid], Hong Huang 2,*[image: Orcid], Yule Duan 2, Jiamin Liu 2 and Yinghua Liao 3





1



State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China






2



Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China






3



Department of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China









*



Correspondence: Tel.: +86-23-6510-6109







Academic Editors: Yanfei Zhong and Prasad S. Thenkabail



Received: 10 July 2017 / Accepted: 29 July 2017 / Published: 1 August 2017



Abstract:



Marginal Fisher analysis (MFA) exploits the margin criterion to compact the intraclass data and separate the interclass data, and it is very useful to analyze the high-dimensional data. However, MFA just considers the structure relationships of neighbor points, and it cannot effectively represent the intrinsic structure of hyperspectral imagery (HSI) that possesses many homogenous areas. In this paper, we propose a new dimensionality reduction (DR) method, termed local geometric structure Fisher analysis (LGSFA), for HSI classification. Firstly, LGSFA uses the intraclass neighbor points of each point to compute its reconstruction point. Then, an intrinsic graph and a penalty graph are constructed to reveal the intraclass and interclass properties of hyperspectral data. Finally, the neighbor points and corresponding intraclass reconstruction points are used to enhance the intraclass-manifold compactness and the interclass-manifold separability. LGSFA can effectively reveal the intrinsic manifold structure and obtain the discriminating features of HSI data for classification. Experiments on the Salinas, Indian Pines, and Urban data sets show that the proposed LGSFA algorithm achieves the best classification results than other state-of-the-art methods.
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1. Introduction


Hyperspectral imagery (HSI) is captured by remote sensors recording the reflectance values of electromagnetic wave, and each pixel in HSI is a spectral curve containing hundreds of bands from visible to near-infrared spectrum [1,2,3,4]. The HSI can offer much richer information, and it can discriminate the subtle differences in different land cover types [5,6]. HSI plays a significant role in the application of anomaly detection, agricultural production, disaster warning, and land cover classification [7,8,9]. However, the traditional classification methods commonly cause the Hughes phenomena because of the high dimensional characteristics in HSI [10,11,12]. Therefore, a huge challenge for HSI processing is to reduce the dimensionality of high-dimensional data with some valuable intrinsic information preserved.



Dimensionality reduction (DR) is commonly applied to reduce the number of bands in HSI and obtain some desired information [13,14,15]. A large number of methods have been designed for DR of HSI. Principal component analysis (PCA) has been widely used for high-dimensional data, and it applies orthogonal projection to maximize data variance [16]. To improve the noise robustness of PCA, the researchers proposed minimum noise fraction (MNF) with noise variance [17]. MNF maximizes the signal-to-noise ratio to obtain the principal components, and it provides satisfactory results for HSI classification. However, PCA and MNF are unsupervised methods, and they restrain the discriminating power for HSI classification. To enhance the discriminating power, some supervised methods have been proposed. Linear discriminant analysis (LDA) is a traditional supervised method based on the mean vector and covariance matrix of classes, and it is defined by the maximization of between-class scatter and the minimization of within-class scatter [18]. However, LDA only involves [image: there is no content] features (where c is the class number of data), which may not obtain sufficient features for hyperspectral classification. To address this problem, the researchers proposed maximum margin criterion (MMC) [19] and local Fisher discriminant analysis (LFDA) [20,21] for obtaining enough features, while these methods originate from the theory of statistics and neglect the geometry properties of hyperspectral data.



Recently, the intrinsic manifold structure has been discovered in HSI [22]. Many manifold learning methods have been applied to obtain the manifold properties from high-dimensional data [23,24,25,26]. Such methods include isometric mapping (Isomap) [27], Laplacian eigenmaps (LE) [28] and locally linear embedding (LLE) [29]. The Isomap method adopts the geodesic distances between data points to reduce the dimensionality of data. The LLE method preserves the local linear structure of data in a low-dimensional space. The LE method applies the Laplacian matrix to reveal the local neighbor information of data. However, these manifold learning algorithms cannot obtain explicit projection matrix that can map a new sample into the corresponding low-dimensional space. To overcome this problem, locality preserving projections (LPP) [30] and neighborhood preserving embedding (NPE) [31] were proposed to approximately linearize the LE and LLE algorithms, respectively. However, LPP and NPE are unsupervised DR methods that cannot perform good discriminating power in certain scenes.



To unify these methods, a graph embedding (GE) framework has been proposed to analyze the DR methods on the basis of statistics or geometry theory [32]. Many algorithms, such as PCA, LDA, LPP, ISOMAP, LLE and LE, can be redefined in this framework. The differences between these algorithms lie in the computation of the similarity matrix and the selection of the constraint matrix. With this framework, marginal Fisher analysis (MFA) is developed for DR. MFA designs an intrinsic graph to characterize the intraclass compactness and a penalty graph to characterize the interclass separability. The intrinsic graph represents the similarity of intraclass points from the same class, while the penalty graph illustrates the connected relationship of interclass points that belongs to different classes. MFA can reveal the intraclass and interclass manifold structures. However, it only considers the structure relationships of pairwise neighbor points, which may not effectively represent the intrinsic structure relationship of HSI with a larger number of homogenous areas [33,34]. Therefore, MFA may not obtain good discriminating power for HSI classification.



To address this problem, we propose a new DR method called local geometric structure Fisher analysis (LGSFA) in this paper. Firstly, it reconstructs each point with intraclass neighbor points. In constructing the intrinsic graph and the penalty graph, it compacts the intraclass neighbor points and corresponding reconstruction points, and it simultaneously separates the interclass neighbor points and corresponding reconstruction points. LGSFA can better represent the intrinsic manifold structures, and it also enhances the intraclass compactness and the interclass separability of HSI data. Experimental results on three real hyperspectral data sets show that the proposed LGSFA algorithm is more effective than other DR methods to extract the discrimination features for HSI classification.



The rest of this paper is organized as follows. Section 2 briefly reviews the theories of GE and MFA. Section 3 details our proposed method. Experimental results are presented in Section 4 to demonstrate the effectiveness of the proposed method. Finally, Section 5 provides some concluding remarks and suggestions for future work.




2. Related Works


Let us suppose a data set [image: there is no content], where n and D are the number of samples and bands in HSI, respectively. The class label of [image: there is no content] is denoted as [image: there is no content], where c is the number of classes. The low-dimensional data is represented as [image: there is no content], where d is the embedding dimensionality. Y is represented by [image: there is no content] with projection matrix [image: there is no content].



2.1. Graph Embedding


The graph embedding (GE) framework is used to unify most popular DR algorithms [32]. In GE, an intrinsic graph is constructed to describe some of the desirable statistical or geometrical properties of data, while a penalty graph is utilized to represent some of the unwanted characteristics of data [35]. The intrinsic graph [image: there is no content] and penalty graph [image: there is no content] are two undirected weighted graphs with the weight matrices [image: there is no content] and [image: there is no content], where X denotes the vertex set. Weight [image: there is no content] reveals the similarity characteristic of the edges between vertices i and j in [image: there is no content], while weight [image: there is no content] refers to the dissimilarity structure between vertices i and j in [image: there is no content].



The purpose of graph embedding is to project each vertex of the graph into a low-dimensional space that preserves the similarity between the vertex pairs. The objective function of the graph embedding framework is formulated as follows:


[image: there is no content]



(1)




where h is a constant, H is a constraint matrix defined to find the non-trivial solution of (1), and L is the Laplacian matrix of graph G. Typically, [image: there is no content] is the Laplacian matrix of graph [image: there is no content], that is, [image: there is no content]. Laplacian matrices L and [image: there is no content] can be reformulated as


L=D−W,D=diag([∑j=1nw1j,∑j=1nw2j,⋯,∑j=1nwnj]),W=[wij]i,j=1n



(2)






[image: there is no content]



(3)




where diag(•) denotes that a vector is transformed as a diagonal matrix.




2.2. Marginal Fisher Analysis


MFA constructs an intrinsic graph and a penalty graph. The intrinsic graph connects each point with its neighbor points from the same class to characterize the intraclass compactness, while the penalty graph connects the marginal points from different classes to characterize the interclass separability.



In intrinsic graph [image: there is no content], each data point [image: there is no content] is connected with the intraclass neighbor points that are from the same class. The similarity weight [image: there is no content] between [image: there is no content] and [image: there is no content] is defined as


wij=1,xi∈N1(xj)orxj∈N1(xi)andli=lj0,otherwise



(4)




where [image: there is no content] denotes the [image: there is no content] intraclass neighbor points of [image: there is no content]. The [image: there is no content] intraclass neighbor points denotes the intraclass similarity relationship of data that should be preserved in low-dimensional embedding space.



For penalty graph [image: there is no content], [image: there is no content] is connected with the interclass neighbor points that are from different classes. The penalty weight [image: there is no content] between [image: there is no content] and [image: there is no content] is set as


wijp=1,xi∈N2(xj)orxj∈N2(xi)andli≠lj0,otherwise



(5)




where [image: there is no content] denotes the [image: there is no content] interclass neighbor points of [image: there is no content]. The [image: there is no content] interclass neighbor points represents the interclass similarity relationship of data that should be avoided in low-dimensional embedding space.



To enhance intraclass compactness and interclass separability, the optimal projection matrix V can be obtained with the following optimization problem:


[image: there is no content]



(6)









3. Local Geometric Structure Fisher Analysis


To effectively reveal the intrinsic manifold structure of hyperspectral data, a local geometric structure Fisher analysis (LGSFA) method was proposed based on MFA. This method computes the reconstruction point of each point with its intraclass neighbor points. Then, it uses the intraclass and interclass neighbor points to construct an intrinsic graph and a penalty graph, respectively. With the intrinsic graph, it utilizes the intraclass neighbor points and corresponding reconstruction points to compact the data points from the same class. With the penalty graph, it adopts the interclass neighbor points and corresponding reconstruction points to separate the data points from different classes. LGSFA further improves both the intraclass compactness and the interclass separability of  hysperspectral data, and it can obtain better discriminating features to enhance the classification effect. The process of the LGSFA method is shown in Figure 1.


Figure 1. Process of the proposed LGSFA method.
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Each point [image: there is no content] can be reconstructed with its neighbor points from the same class. The reconstruction weight is computed by minimizing the sum of reconstruction errors


[image: there is no content]



(7)




where [image: there is no content] is the reconstruction weight between [image: there is no content] and [image: there is no content]. If [image: there is no content] is the [image: there is no content] intraclass neighbor points of [image: there is no content], [image: there is no content] or [image: there is no content], and [image: there is no content].



With some mathematical operations, (7) can be reduced as


[image: there is no content]



(8)




where [image: there is no content], [image: there is no content] is the ith intraclass neighbor point of [image: there is no content].



Thus, (7) can be denoted as


J(sij)=min∑i=1nsiTzisi,s.t.∑j=1nsij=1



(9)







According to the method of Lagrangian multipliers, the optimization solution is


sij=∑m=1k1(zjmi)−1∑p=1k1∑q=1k1(zpqi)−1,ifxj∈N1(xi)andli=lj0,otherwise



(10)




where [image: there is no content]. After obtaining [image: there is no content], the reconstruction point of [image: there is no content] can be represented as [image: there is no content].



To reveal the manifold structure of hyperspectral data, we construct an intrinsic graph to characterize the similarity properties of data from the same class and a penalty graph to stress the dissimilarity of data from different classes. The similarity weight between [image: there is no content] and [image: there is no content] of the intrinsic graph are defined as


wijw=exp(−xi−xj22ti2),ifxi∈N1(xj)orxj∈N1(xi)andli=lj0,otherwise



(11)




where [image: there is no content].



For the penalty graph, the weights are represented as


wijb=exp(−xi−xj22ti2),ifxi∈N2(xj)orxj∈N2(xi)andli≠lj0,otherwise



(12)







To illustrate the graph construction of the LGSFA method, an example is shown in Figure 2. In the intrinsic graph, point [image: there is no content] is the intraclass neighbor point of [image: there is no content], and point [image: there is no content] is the reconstruction point of [image: there is no content] obtained by its intraclass neighbor points that are in the curve of dot dash line. In the penalty graph, point [image: there is no content] is the interclass neighbor point of [image: there is no content], and point [image: there is no content] is the reconstruction point of [image: there is no content]. The intrinsic graph and the penalty graph are constructed on the basis of intraclass neighbor points, interclass neighbor points and corresponding reconstruction points. In these graphs, we consider the structure relationships not only between each point and its neighbor points but also between that point and the reconstruction points of its neighbor points. This process can effectively represent the intrinsic structure of HSI, and it can improve the compactness of data from the same class and the separability of data from different classes.


Figure 2. Graph construction of the LGSFA method.
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To enhance the intraclass compactness, we apply the intraclass neighbor points and corresponding reconstruction points to construct an objective function in a low-dimensional embedding space


[image: there is no content]



(13)







With some mathematical operations, (13) can be reduced as


[image: there is no content]



(14)






[image: there is no content]



(15)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



According to (14) and (15), (13) can be represented as


J1(V)=min∑i=1n∑j=1n(VTxi−VTxj2+VTxi−VTXsj2)wijw=VTX(B1w+B2w)XTV=VTXMwXTV



(16)




where [image: there is no content].



In addition, we also construct an objective function with interclass neighbor points and corresponding reconstruction points to improve the interclass separability as follows:


J2(V)=max∑i=1n∑j=1n(VTxi−VTxj2+VTxi−VTXsj2)wijb=VTXMbXTV



(17)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



To obtain a projection matrix, the optimization problems of (16) and (17) can be changed into another form as follows:


[image: there is no content]



(18)







According to the method of Lagrangian multipliers, the optimization problem is transformed to solve a generalized eigenvalue problem, i.e.,


[image: there is no content]



(19)







The optimization projection matrix [image: there is no content] can be obtained by the d minimum eigenvalues of (19) corresponding eigenvectors. Then, the low-dimensional features can be formulated by


[image: there is no content]



(20)







In summary, the proposed LGSFA method considers the neighbor points and corresponding reconstruction points to improve the intraclass compactness and the interclass separability of  hyperspectral data. Therefore, it can effectively extract the discriminating feature for HSI classification. An example for the processing of LGSFA is shown in Figure 3.


Figure 3. An example for the processing of LGSFA.
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According to Figure 3, the proposed LGSFA method applies the intraclass, interclass, and intraclass neighbor reconstruction relationships to enhance the compactness of data from the same class and the separability of data from different classes. The detailed steps of the proposed LGSFA method are shown in Algorithm 1.



According to the process in Algorithm 1, we adopt big O notation to analyze the computational complexity of LGSFA. The number of intraclass neighbors and interclass neighbors is denoted as [image: there is no content] and [image: there is no content], respectively. The reconstruction weight matrix S is computed with the cost of [image: there is no content]. The intraclass weight matrix [image: there is no content] and the interclass weight matrix [image: there is no content] take [image: there is no content] and [image: there is no content], respectively. The diagonal matrices [image: there is no content] and [image: there is no content] both cost [image: there is no content]. The intraclass manifold matrix [image: there is no content] and the interclass manifold matrix [image: there is no content] are both calculated with [image: there is no content]. The costs of [image: there is no content] and [image: there is no content] are both [image: there is no content]. It takes [image: there is no content] to solve the generalized eigenvalue problem of (19). For [image: there is no content] and [image: there is no content], the total computational complexity of LGSFA is [image: there is no content] that mainly depends on the number of bands, training samples, and neighbor points.








	Algorithm 1 LGSFA



	
	Input:  

	
data set [image: there is no content] and corresponding class labels [image: there is no content], embedding dimension d (d<D), the number of intraclass neighbors [image: there is no content], the number of interclass neighbors [image: there is no content].




	1:

	
Find [image: there is no content] intraclass neighborhood [image: there is no content] and [image: there is no content] interclass neighborhood [image: there is no content] of [image: there is no content].




	2:

	
Compute the intraclass reconstruction weight of [image: there is no content] by




	3:

	
    [image: there is no content]




	4:

	
where [image: there is no content] if [image: there is no content] and [image: there is no content].




	5:

	
Calculate intraclass weight and interclass weight by   




	6:

	
    wijw=exp(−xi−xj22ti2),ifxi∈N1(xj)orxj∈N1(xi)andli=lj0,otherwise   




	7:

	
    wijb=exp(−xi−xj22ti2),ifxi∈N2(xj)orxj∈N2(xi)andli≠lj0,otherwise  




	8:

	
where [image: there is no content].




	9:

	
Compute intraclass manifold matrix and interclass manifold matrix




	10:

	
    [image: there is no content], [image: there is no content]




	11:

	
where [image: there is no content],   [image: there is no content],    [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].




	12:

	
Solve the generalized eigenvalue problem:




	13:

	
    [image: there is no content]




	14:

	
Obtain the projection matrix with the d smallest eigenvalues corresponding eigenvectors:




	15:

	
    [image: there is no content]




	Output:  

	
[image: there is no content]













4. Experimental Results and Discussion


We employed the Salinas, Indian Pines, and Urban HSI data sets to evaluate the proposed LGSFA method, and it was compared with some state-of-art DR algorithms.



4.1. Data Sets


Salinas data set: The HSI data set was collected by an airborne visible/infrared imaging spectrometer (AVIRIS) sensor over Salinas Valley, Southern California, in 1998. This data set has a geometric resolution of 3.7 m. The area possesses a spatial size of 512–217 pixels and 224 spectral bands from 400 nm to 2500 nm. Exactly 204 bands remained after the removal of bands 108–122, 154–167 and 224 as a result of dense water vapor and atmospheric effects. The data set contains sixteen land cover types. The scene in false color and its corresponding ground truth are shown in Figure 4.


Figure 4. Salinas hyperspectral image. (a) HSI in false color; (b) Ground truth.



[image: Remotesensing 09 00790 g004]






Indian Pines data set: This data set is a scene of the Northwest Indiana collected by the AVIRIS sensor in 1992. It consists of [image: there is no content] pixels and 220 spectral bands within the range of 375–2500 nm. Several spectral bands, including bands 104–108, 150–163 and 220, with noise and water absorption phenomena were removed from the data set, leaving a total of 200 radiance channels to be used in the experiments. Sixteen ground truth classes of interest are considered in the data set. The scene in false color and its corresponding ground truth are shown in Figure 5.


Figure 5. Indian Pines hyperspectral image. (a) HSI in false color; (b) Ground truth.



[image: Remotesensing 09 00790 g005]






Urban data set: This data set was captured by the hyperspectral digital imagery collection experiment (HYDICE) sensor at the location of Copperas Cove, near Fort Hood, Texas, USA in October 1995. This data set is of size 307 × 307 pixels, and it is composed of 210 spectral channels with spectral resolution of 10 nm in the range from 400 to 2500 nm. After removing water absorption and low SNR bands, 162 bands were used for experiment. Six land cover types are considered in this data set. The scene in false color and its corresponding ground truth are shown in Figure 6.


Figure 6. Urban hyperspectral image. (a) HSI in false color; (b) Ground truth.



[image: Remotesensing 09 00790 g006]







4.2. Experimental Setup


In each experiment, the data set was randomly divided into training and test samples. A dimensionality reduction method was applied to learn a low-dimensional space with the training samples. Then, all test samples were mapped into a low-dimensional space. After that, we employed the nearest neighbor (NN) classifier, the spectral angle mapper (SAM) and the support vector machine based on composite kernels (SVMCK) [36] to classify test samples. For NN, it depends on the nearest Euclidean distance to discriminate the class of test samples. For SAM, the class of test samples is obtained by the smallest spectral angle. For SVMCK, it is an extensional SVM and simultaneously applies the spatial and spectral information of HSI to discriminate the class of test samples. Finally, the average classification accuracy (AA), the overall classification accuracy (OA), and the Kappa coefficient (KC) were adopted to evaluate the performance of each method. To robustly evaluate the results, the experiments were repeated 10 times in each condition, and we displayed the average classification accuracy with standard deviation (STD).



In the experiment, we compared the proposed LGSFA algorithm with the Baseline, PCA, NPE, LPP, sparse discriminant embedding(SDE) [13], LFDA, MMC and MFA methods, where the Baseline method represents that a classifier was directly used to classify the test samples without DR. To achieve optimal results for each method, we adopted cross-validation to obtain the optimal parameters of each method. For LPP, NPE and LFDA, the number of neighbor points was optimistically set to 9. For SDE, we set the error tolerances to 5. For MFA and LGSFA, we set the intraclass neighbor [image: there is no content] and interclass neighbor [image: there is no content], where [image: there is no content] is a positive integer. The values of k and [image: there is no content] were set to 9 and 20, respectively. For SVMCK, we used a weighted summation kernel, which generated the best classification performance compared with other composite kernels [36]. The spatial information was represented by the mean of pixels in a small neighborhood, and the RBF kernel was used with the LibSVM Toolbox [37]. The penalty term C and the RBF kernel width [image: there is no content] were selected by a grid search with a given set [image: there is no content]. The spatial window of size in the SVMCK classifier was set to [image: there is no content] for Indian Pines and Salinas data sets, and [image: there is no content] for Urban data set. The embedding dimension was 30 for all the DR methods. All the experiments were performed on a personal computer with i7-4790 central processing unit, 8-G memory, and 64-bit Windows 10 using MATLAB 2013b.




4.3. Two-Dimension Embedding


In this section, we use the Indian Pines data set to analyze the two-dimension embedding of the proposed LGSFA method. In the experiment, we only chose five land cover types from Indian Pines data set including Corn-mintill, Grass-trees, Hay-windrowed, Wheat and Woods, and they were denoted by 1, 2, 3, 4 and 5. We randomly chose 100 samples per class for training, and the remaining samples were used for two-dimension embedding. Figure 7 shows the data distribution after application of different DR methods.


Figure 7. Two-dimension embedding of different DR methods on the Indian Pines data set. (a) Spectral signatures; (b) PCA; (c) NPE; (d) LPP; (e) SDE; (f) LFDA; (g) MMC; (h) MFA; (i) LGSFA.
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As shown in Figure 7, the results of PCA, NPE and LPP produced the scattered distribution of points from the same class and the overlapped points from different classes. This phenomenon may be caused by the unsupervised nature of the methods. The LFDA and MMC methods improved the compactness of points from the same class, while there still existed overlapping points between different classes. The reason is that LFDA and MMC originate from the theory of statistics that cannot effectively reveal the intrinsic manifold structure of data. SDE and MFA can reveal the intrinsic properties of data, but it may not effectively represent the manifold structure of hyperspectral data. This case resulted in some overlapping points between different classes. The proposed LGSFA method achieved better results than ohter DR methods, for the reason that LGSFA can effectively represent the manifold structure of hyperspectral data.




4.4. Experiments on the Salinas Data Set


To explore the classification accuracy with different numbers of intraclass neighbor points and interclass neighbor points, we randomly selected 60 samples from each class for training and the remaining samples for testing. After DR, the NN classifier was used to discriminate the test samples. Parameters k and [image: there is no content] were tuned with a set of [image: there is no content] and a set of [image: there is no content], respectively. We repeated the experiment 10 times in each condition. In Figure 8, a curved surface map was depicted to display the average OAs with respect to parameters k and [image: there is no content].


Figure 8. OAs with respect to different numbers of neighbors on the Salinas data set.
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According to Figure 8, with the increase in k, the OAs first increased and then decreased, for a small or large number of intraclass neighbor points cannot effectively represent the intrinsic structure of HSI. When the value of k was lower than 15, the OAs improved and then maintained a stable value with an increasing parameter [image: there is no content]. The OAs decreased quickly with a large value of [image: there is no content] when the value of k exceeded 15. The reason is that too large values of k and [image: there is no content] will result in the appearance of over-learning in the margins of interclass data. As a result, the parameters k and [image: there is no content] possesses a small influence on the classification accuracy for the Salinas data set, and we selected k and [image: there is no content] to 9 and 20 in the next experiments.



To analyze the influence of embedding dimension, we randomly selected 60 training samples for each class in Salinas data set and the NN classifier is used to discriminating the class of test samples. Figure 9 shows the average OAs under different dimensions with 10 times repeated experiment.


Figure 9. OAs with respect to different dimensions on the Salinas data set.
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According to Figure 9, the classification accuracies improved with the increase of the embedding dimension and then reached a peak value. When the embedding dimension exceeded a certain value, the classification results of LGSFA began to decline, which resulted in the Hughes phenomena. NPE, LPP, LFDA, MFA, and LGSFA achieved better results than the baseline, thus indicating that the DR methods can reduce redundant information in HSI data. MFA and LGSFA generated higher OAs than other DR methods, the reason is that MFA and LGSFA can effectively reveal the intrinsic properties of hyperspectral data. In all the methods, LGSFA obtained the best classification accuracy, which indicates that LGSFA can better represent the intrinsic manifold of hyperspectral data that contains many homogenous areas.



To show the performance of LGSFA with different numbers of training samples, we randomly selected [image: there is no content] samples from each class for training and the remaining samples were used for testing. We adopted NN, SAM and SVMCK for the classification of test samples and repeated the experiment 10 times in each condition. The average OAs with STD and the average KCs are given in Table 1.



Table 1. Classification results with different numbers of training samples on the Salinas data set (OA ± std (%) (KC)).







	
Classifier

	
DR

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
NN

	
Baseline

	
82.4 ± 0.9 (0.805)

	
84.1 ± 0.7 (0.824)

	
84.7 ± 0.6 (0.830)

	
85.1 ± 0.4 (0.834)




	
PCA

	
82.4 ± 0.9 (0.805)

	
84.1 ± 0.7 (0.824)

	
84.6 ± 0.6 (0.830)

	
85.1 ± 0.4 (0.834)




	
NPE

	
83.3 ± 0.9 (0.815)

	
85.8 ± 0.6 (0.842)

	
86.2 ± 0.5 (0.847)

	
87.1 ± 0.4 (0.856)




	
LPP

	
83.6 ± 0.9 (0.818)

	
85.6 ± 0.4 (0.840)

	
86.1 ± 0.5 (0.845)

	
86.7 ± 0.5 (0.852)




	
SDE

	
82.5 ± 1.0 (0.806)

	
83.8 ± 0.8 (0.821)

	
84.9 ± 0.6 (0.832)

	
85.1 ± 0.3 (0.835)




	
LFDA

	
83.5 ± 1.0 (0.818)

	
84.8 ± 0.6 (0.832)

	
85.3 ± 0.6 (0.836)

	
85.7 ± 0.4 (0.841)




	
MMC

	
82.2 ± 0.9 (0.803)

	
84.0 ± 0.7 (0.822)

	
84.4 ± 0.5 (0.827)

	
84.9 ± 0.4 (0.832)




	
MFA

	
86.6 ± 1.0 (0.852)

	
87.9 ± 0.7 (0.866)

	
88.2 ± 0.8 (0.869)

	
88.4 ± 0.7 (0.871)




	
LGSFA

	
87.3 ± 1.4 (0.859)

	
88.8 ± 0.4 (0.875)

	
89.4 ± 0.6 (0.882)

	
89.8 ± 0.5 (0.886)




	
SAM

	
Baseline

	
82.9 ± 1.0 (0.811)

	
84.0 ± 0.9 (0.823)

	
84.3 ± 0.7 (0.826)

	
85.5 ± 0.5 (0.839)




	
PCA

	
82.8 ± 1.0 (0.809)

	
83.8 ± 0.8 (0.821)

	
84.1 ± 0.7 (0.824)

	
85.3 ± 0.4 (0.837)




	
NPE

	
84.2 ± 1.1 (0.825)

	
85.7 ± 1.0 (0.841)

	
86.1 ± 0.9 (0.846)

	
87.3 ± 0.5 (0.859)




	
LPP

	
83.2 ± 1.1 (0.814)

	
84.8 ± 0.9 (0.832)

	
85.3 ± 0.9 (0.837)

	
86.6 ± 0.4 (0.851)




	
SDE

	
83.4 ± 1.0 (0.815)

	
84.0 ± 1.1 (0.823)

	
85.2 ± 0.5 (0.835)

	
85.2 ± 0.4 (0.835)




	
LFDA

	
83.7 ± 1.0 (0.819)

	
84.4 ± 0.9 (0.827)

	
84.5 ± 0.7 (0.829)

	
85.6 ± 0.5 (0.840)




	
MMC

	
82.6 ± 0.9 (0.807)

	
83.6 ± 0.9 (0.818)

	
84.0 ± 0.6 (0.823)

	
85.0 ± 0.5 (0.833)




	
MFA

	
85.6 ± 1.1 (0.840)

	
86.7 ± 0.7 (0.853)

	
87.0 ± 0.6 (0.856)

	
87.4 ± 0.9 (0.860)




	
LGSFA

	
88.2 ± 0.6 (0.869)

	
89.3 ± 1.0 (0.881)

	
89.4 ± 0.8 (0.882)

	
90.0 ± 0.4 (0.889)




	
SVMCK

	
Baseline

	
89.2 ± 1.2 (0.880)

	
92.3 ± 0.9 (0.914)

	
94.1 ± 0.5 (0.934)

	
94.6 ± 0.4 (0.940)




	
PCA

	
88.1 ± 1.1 (0.868)

	
91.6 ± 0.7 (0.906)

	
93.7 ± 0.9 (0.930)

	
94.3 ± 0.4 (0.937)




	
NPE

	
87.0 ± 2.3 (0.855)

	
91.2 ± 1.0 (0.902)

	
93.4 ± 0.9 (0.927)

	
95.1 ± 0.3 (0.945)




	
LPP

	
86.7 ± 0.7 (0.853)

	
90.5 ± 1.1 (0.894)

	
92.8 ± 0.7 (0.920)

	
93.5 ± 1.0 (0.927)




	
SDE

	
86.2 ± 2.0 (0.847)

	
90.4 ± 1.2 (0.893)

	
92.6 ± 0.7 (0.917)

	
93.4 ± 0.6 (0.927)




	
LFDA

	
89.6 ± 1.4 (0.885)

	
92.1 ± 1.2 (0.912)

	
94.3 ± 0.7 (0.936)

	
94.8 ± 0.7 (0.942)




	
MMC

	
89.3 ± 2.0 (0.881)

	
91.9 ± 0.3 (0.910)

	
93.5 ± 0.8 (0.928)

	
94.1 ± 0.8 (0.934)




	
MFA

	
92.3 ± 1.5 (0.914)

	
94.9 ± 0.9 (0.943)

	
95.9 ± 0.3 (0.954)

	
96.1 ± 0.4 (0.956)




	
LGSFA

	
94.2 ± 1.2 (0.935)

	
95.8 ± 0.8 (0.953)

	
96.8 ± 0.5 (0.964)

	
97.1 ± 0.4 (0.968)










According to Table 1, the OAs and the KCs of each method improved as the increase of the number of training samples, because there is more priori information to represent the intrinsic properties of HSI. For different classifiers, each method with SVMCK possessed better classification accuracies than that with other classifiers, because SVMCK utilizes the spatial-spectral information that is beneficial to HSI classification. In all conditions, LGSFA achieved better results compared with MFA, and it also displayed the best accuracies than other DR methods. The reason is that LGSFA utilizes the neighbor points and corresponding intraclass reconstruction points to enhance the intraclass compactness and the interclass separability. It can effectively represent the intrinsic structure of HSI and obtain better discriminating features for classification.



To explore the performance of LGSFA under different training conditions, we evaluated the classification accuracy of each class with a training set containing about 2% of samples per class. The remaining samples were used for testing. After the low-dimensional features were obtained with different DR methods, the SVMCK classifier was used to classify the test samples. The classification results are shown in Table 2 and corresponding classification maps are given in Figure 10.


Figure 10. Classification maps of different methods with SVMCK on the Salinas data set. (a) Ground truth; (b) Baseline (95.8%, 0.954); (c) PCA (94.8%, 0.942); (d) NPE (96.4%, 0.960); (e) LPP (96.0%, 0.955); (f) SDE (95.5%, 0.950); (g) LFDA (96.3%, 0.958); (h) MMC (94.7%, 0.941); (i) MFA (95.5%, 0.950); (j) LGSFA (99.2%, 0.991). Note that OA and KC are given in parentheses.
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Table 2. Classification results of different DR methods with SVMCK on the Salinas data set.







	
Class

	
Samples

	
DR with SVMCK Classifier




	
Training

	
Test

	
Baseline

	
PCA

	
NPE

	
LPP

	
SDE

	
LFDA

	
MMC

	
MFA

	
LGSFA






	
1

	
40

	
1969

	
100

	
100

	
99.9

	
99.9

	
99.7

	
100

	
100

	
99.8

	
100




	
2

	
75

	
3651

	
99.5

	
99.9

	
100

	
99.9

	
99.5

	
99.8

	
99.9

	
100

	
100




	
3

	
40

	
1936

	
100

	
97.1

	
99.9

	
99.9

	
99.9

	
99.5

	
96.1

	
99.8

	
100




	
4

	
28

	
1366

	
99.9

	
99.9

	
99.8

	
99.7

	
99.7

	
99.9

	
99.9

	
99.9

	
100




	
5

	
54

	
2624

	
99.6

	
96.4

	
98.6

	
98.9

	
98.5

	
98.7

	
97.1

	
99.3

	
99.8




	
6

	
79

	
3880

	
100

	
99.9

	
99.9

	
100

	
100.0

	
100

	
99.9

	
100

	
100




	
7

	
72

	
3507

	
99.5

	
99.4

	
99.7

	
99.7

	
99.3

	
99.5

	
99.5

	
100

	
100




	
8

	
225

	
11,046

	
90.1

	
89.1

	
89.7

	
90.4

	
89.5

	
91.0

	
88.8

	
92.4

	
97.8




	
9

	
124

	
6079

	
99.7

	
99.5

	
100

	
99.1

	
100

	
100

	
99.1

	
100

	
100




	
10

	
66

	
3212

	
97.9

	
96.9

	
98.2

	
97.2

	
98.0

	
98.8

	
97.1

	
98.0

	
100




	
11

	
21

	
1047

	
97.8

	
96.0

	
99.4

	
99.0

	
96.6

	
99.5

	
97.1

	
99.1

	
100




	
12

	
39

	
1888

	
100

	
99.9

	
99.9

	
100

	
99.9

	
99.7

	
100

	
100

	
100




	
13

	
18

	
898

	
97.9

	
96.8

	
97.6

	
88.8

	
98.0

	
99.2

	
96.1

	
100

	
99.2




	
14

	
21

	
1049

	
99.3

	
98.7

	
99.7

	
97.6

	
96.6

	
97.0

	
98.7

	
98.7

	
98.8




	
15

	
145

	
7123

	
87.2

	
84.0

	
91.6

	
90.3

	
87.3

	
88.6

	
84.3

	
80.1

	
97.4




	
16

	
36

	
1771

	
98.9

	
99.1

	
98.7

	
97.7

	
97.5

	
98.9

	
98.8

	
99.5

	
100




	
AA

	
98.0

	
97.0

	
98.3

	
97.4

	
97.5

	
98.1

	
97.0

	
97.9

	
99.6




	
OA

	
95.8

	
94.8

	
96.4

	
96.0

	
95.5

	
96.3

	
94.7

	
95.5

	
99.2




	
KC

	
0.954

	
0.942

	
0.960

	
0.955

	
0.950

	
0.958

	
0.941

	
0.950

	
0.991




	
DR time (s)

	
-

	
0.059

	
0.220

	
0.119

	
2.228

	
0.045

	
0.243

	
0.179

	
2.185




	
Classification time (s)

	
1194.0

	
360.0

	
353.8

	
349.5

	
400.5

	
359.9

	
357.2

	
356.5

	
353.7










As shown in Table 2, the proposed method obtained the strongest classification effect in most classes and achieved the best OA, AA, and KC. LGSFA is clearly effective in revealing the intrinsic manifold structure of HSI, and it extracts better discriminating features for classification. The Baseline method cost more running time than other method for classification, because the hyperspectral data contains a large number of spectral bands to increase the computational cost of classification. LGSFA took more running time to reduce the dimensionality of data for the graph construction. However, LGSFA reduced the total running time for classification compared with the Baseline method, and it improved the classification performances compared with other methods.



According to Figure 10, LGSFA produced more homogenous areas than other DR methods, especially for the areas labeled as Grapes, Corn, Lettuce 4wk, Lettuce 7wk and Vinyard untrained.




4.5. Experiments on the Indian Pines Data Set


To analyze the performance of LGSFA with different land cover scenes, we utilized the AVIRIS Indian Pines data set for classification. In the experiment, we randomly selected [image: there is no content] samples from each class for training, and the remaining samples were used for testing. For the classes that are very small, i.e., Alfalfa, Grass/Pasture-mowed, and Oats, the number of training samples was set to [image: there is no content] if [image: there is no content] where [image: there is no content] is the number of the i-th class.



To explore the influence of parameters k and [image: there is no content], 60 samples were randomly selected from each class for training, and the remaining samples were used for testing. The NN classifier was adopted to classify the test samples. Figure 11 shows the OAs with respect to parameters k and [image: there is no content].


Figure 11. OAs with respect to different numbers of neighbors on the Indian Pines data set.



[image: Remotesensing 09 00790 g011]






According to Figure 11, the OAs improved quickly and then declined with the increase of k, because a small value of k cannot obtain enough information to reveal the intraclass structure and a large value of k will cause over-fitting to represent the intrinsic properties of hyperspectral data. The increased [image: there is no content] promoted the improvement of OAs, and then OAs reached to a stable peak value. To obtain optimal classification results, we set k and [image: there is no content] to 9 and 20 in the experiments.



To analyze the classification accuracy under different embedding dimensions, 60 samples of each class were randomly selected as training set, and the NN classifier was used to classify the remaining samples. The results are shown in Figure 12. In the figure, LGSFA possessed the best classification accuracy, because it can better reveal the intrinsic manifold properties of hyperspectral data.


Figure 12. OAs with respect to different dimensions on the Indian Pines data set.
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To compare the results of each DR with different classifiers, we randomly selected 20, 40, 60, 80 samples from each class for training, and the remaining samples were used for testing. Each experiment was repeated 10 times and Table 3 shows the average OAs with STD and the average KCs.



Table 3. Classification results with different numbers of training samples on the Indian Pines data set (OA ± std (%) (KC)).







	
Classifier

	
DR

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
NN

	
Baseline

	
55.1 ± 1.1 (0.498)

	
58.5 ± 1.6 (0.535)

	
61.1 ± 0.9 (0.562)

	
62.6 ± 0.7 (0.578)




	
PCA

	
55.0 ± 1.2 (0.496)

	
58.6 ± 1.7 (0.535)

	
61.4 ± 1.1 (0.565)

	
62.6 ± 0.9 (0.578)




	
NPE

	
54.5 ± 1.9 (0.491)

	
57.3 ± 1.5 (0.521)

	
60.1 ± 1.3 (0.552)

	
61.5 ± 1.0 (0.566)




	
LPP

	
55.9 ± 1.4 (0.506)

	
60.3 ± 1.6 (0.554)

	
62.8 ± 1.1 (0.581)

	
64.4 ± 0.4 (0.598)




	
SDE

	
53.3 ± 1.2 (0.478)

	
57.5 ± 0.9 (0.523)

	
61.0 ± 0.9 (0.561)

	
62.3 ± 0.8 (0.575)




	
LFDA

	
55.2 ± 1.4 (0.499)

	
59.2 ± 1.6 (0.542)

	
62.4 ± 0.8 (0.576)

	
63.9 ± 0.9 (0.593)




	
MMC

	
54.8 ± 1.4 (0.494)

	
58.7 ± 1.6 (0.537)

	
61.9 ± 1.0 (0.571)

	
63.4 ± 0.5 (0.587)




	
MFA

	
51.0 ± 1.1 (0.454)

	
57.8 ± 1.2 (0.528)

	
60.8 ± 1.6 (0.559)

	
61.3 ± 1.0 (0.564)




	
LGSFA

	
58.1 ± 1.5 (0.530)

	
67.0 ± 1.6 (0.628)

	
72.2 ± 0.8 (0.686)

	
73.7 ± 0.9 (0.702)




	
SAM

	
Baseline

	
55.5 ± 1.8 (0.502)

	
60.4 ± 1.1 (0.555)

	
62.2 ± 1.5 (0.574)

	
64.6 ± 1.1 (0.600)




	
PCA

	
55.8 ± 1.8 (0.505)

	
60.9 ± 1.2 (0.560)

	
62.3 ± 1.4 (0.575)

	
64.6 ± 1.2 (0.600)




	
NPE

	
53.0 ± 2.0 (0.474)

	
58.0 ± 1.6 (0.528)

	
60.2 ± 1.1 (0.551)

	
62.3 ± 1.3 (0.575)




	
LPP

	
55.8 ± 1.8 (0.505)

	
61.0 ± 1.5 (0.561)

	
62.8 ± 1.2 (0.581)

	
65.0 ± 1.1 (0.605)




	
SDE

	
54.1 ± 2.0 (0.487)

	
58.7 ± 0.7 (0.537)

	
60.2 ± 1.1 (0.552)

	
62.9 ± 1.0 (0.581)




	
LFDA

	
54.3 ± 1.8 (0.489)

	
60.0 ± 1.4 (0.550)

	
62.1 ± 1.5 (0.573)

	
64.4 ± 1.3 (0.598)




	
MMC

	
58.6 ± 2.0 (0.537)

	
63.6 ± 1.0 (0.590)

	
65.7 ± 1.2 (0.613)

	
67.3 ± 1.1 (0.630)




	
MFA

	
48.8 ± 2.2 (0.432)

	
57.0 ± 2.2 (0.519)

	
58.4 ± 1.9 (0.533)

	
58.9 ± 1.9 (0.538)




	
LGSFA

	
57.6 ± 1.5 (0.525)

	
67.7 ± 1.1 (0.635)

	
71.0 ± 1.4 (0.672)

	
73.3 ± 0.8 (0.697)




	
SVMCK

	
Baseline

	
77.1 ± 1.7 (0.743)

	
84.6 ± 1.1 (0.825)

	
88.2 ± 1.0 (0.865)

	
89.8 ± 1.0 (0.883)




	
PCA

	
73.1 ± 2.5 (0.697)

	
81.8 ± 1.5 (0.793)

	
85.4 ± 1.0 (0.833)

	
87.9 ± 1.5 (0.862)




	
NPE

	
73.1 ± 2.9 (0.697)

	
81.6 ± 2.2 (0.791)

	
85.4 ± 1.2 (0.834)

	
87.7 ± 1.7 (0.859)




	
LPP

	
70.7 ± 1.6 (0.672)

	
81.1 ± 2.1 (0.786)

	
84.6 ± 1.2 (0.825)

	
87.4 ± 1.4 (0.856)




	
SDE

	
73.4 ± 1.8 (0.700)

	
81.8 ± 1.4 (0.794)

	
86.7 ± 1.1 (0.849)

	
89.2 ± 0.8 (0.876)




	
LFDA

	
74.4 ± 2.4 (0.712)

	
82.4 ± 1.4 (0.800)

	
86.2 ± 1.1 (0.843)

	
88.1 ± 1.0 (0.863)




	
MMC

	
74.7 ± 2.3 (0.715)

	
81.3 ± 1.3 (0.788)

	
84.4 ± 2.7 (0.822)

	
84.7 ± 2.4 (0.825)




	
MFA

	
71.3 ± 2.0 (0.678)

	
82.2 ± 1.4 (0.798)

	
88.1 ± 1.0 (0.865)

	
91.4 ± 1.1 (0.901)




	
LGSFA

	
85.3 ± 3.1 (0.833)

	
91.2 ± 1.7 (0.900)

	
95.0 ± 1.0 (0.942)

	
96.2 ± 1.0 (0.957)










As shown in Table 3, the classification accuracy of each DR method improved with the increasing number of training samples. The results of different DR methods with NN or SAM were unsatisfactory for the restricted discriminating power of NN or SAM. However, LGSFA with NN or SAM showed better results than other DR methods in most cases. The reason is that LGSFA effectively reveals the intrinsic manifold structure of hyperspectral data and obtains better discriminating features for classification. In addition, each DR method with SVMCK possessed better results than that with NN or SAM, and LGSFA with SVMCK achieved the best classification performances in all conditions.



To show the classification power of different methods for each class, 10% samples per class were selected for training, and other samples were used for testing. For very small classes, we take a minimum of ten training samples per class. The results of different methods with SVMCK are shown in Table 4.



Table 4. Classification results of different DR methods with SVMCK on the Indian Pines data set.







	
Class

	
Samples

	
DR with SVMCK Classifier




	
Training

	
Test

	
Baseline

	
PCA

	
NPE

	
LPP

	
SDE

	
LFDA

	
MMC

	
MFA

	
LGSFA






	
1

	
10

	
36

	
83.3

	
91.7

	
75.0

	
72.2

	
94.4

	
61.1

	
44.4

	
55.6

	
66.7




	
2

	
143

	
1285

	
87.9

	
87.2

	
86.2

	
85.3

	
85.7

	
84.4

	
85.2

	
91.3

	
96.5




	
3

	
83

	
747

	
93.3

	
89.6

	
85.4

	
85.0

	
87.1

	
91.6

	
84.5

	
94.8

	
96.3




	
4

	
24

	
213

	
93.9

	
79.3

	
93.0

	
90.1

	
85.0

	
73.7

	
84.5

	
74.2

	
97.7




	
5

	
48

	
435

	
95.2

	
95.9

	
95.6

	
95.9

	
97.2

	
96.3

	
96.8

	
95.9

	
97.5




	
6

	
73

	
657

	
99.7

	
100

	
100

	
99

	
99.7

	
100

	
97.0

	
99.1

	
100




	
7

	
10

	
18

	
94.4

	
94.4

	
100

	
100

	
94.4

	
94.4

	
88.9

	
100

	
100




	
8

	
48

	
430

	
99.8

	
97.4

	
99

	
100

	
99.5

	
99.1

	
99.8

	
100

	
100




	
9

	
10

	
10

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
90.0

	
100




	
10

	
97

	
875

	
85.7

	
86.6

	
86.5

	
83.3

	
82.1

	
86.3

	
80.2

	
86.1

	
96.1




	
11

	
246

	
2209

	
95.2

	
91.1

	
92.3

	
91.4

	
91.8

	
90.6

	
91.1

	
94.7

	
99.3




	
12

	
59

	
534

	
92.3

	
84.8

	
83.9

	
82.0

	
83.3

	
81.3

	
85.0

	
88.4

	
97.8




	
13

	
21

	
184

	
98.9

	
98.9

	
97.8

	
98.9

	
97.8

	
99.5

	
98.9

	
98.9

	
97.3




	
14

	
127

	
1138

	
97.8

	
98.1

	
98.6

	
98.0

	
97.7

	
98.2

	
96.9

	
97.7

	
99.9




	
15

	
39

	
347

	
96.3

	
96.5

	
97.4

	
96.8

	
94.2

	
94.2

	
88.8

	
93.7

	
100




	
16

	
10

	
83

	
97.6

	
96

	
100

	
89.2

	
90.4

	
88

	
92.8

	
98.8

	
92.8




	
AA

	
94.5

	
93.0

	
93.2

	
91.7

	
92.5

	
89.9

	
88.4

	
91.2

	
96.1




	
OA

	
93.9

	
91.8

	
92.0

	
91.0

	
91.1

	
90.9

	
89.9

	
93.5

	
98.1




	
KC

	
0.930

	
0.907

	
0.908

	
0.897

	
0.899

	
0.896

	
0.885

	
0.926

	
0.978




	
DR time (s)

	
-

	
0.012

	
0.163

	
0.051

	
2.056

	
0.012

	
0.528

	
0.086

	
1.827




	
Classification time (s)

	
40.7

	
12.7

	
12.7

	
12.6

	
14.4

	
12.7

	
12.7

	
12.9

	
12.8










According to Table 4, LGSFA achieved the best classification accuracy for most classes, as well as the best AA, OA, and KC among all the methods, because it can effectively represent the hidden manifold structure of hyperspectral data. The corresponding classification maps are displayed in Figure 13, which clearly indicates that the proposed method produces a smoother classification map compared with other methods in many areas.


Figure 13. Classification maps of different methods with SVMCK on the Indian Pines data set. (a) Ground truth; (b) Baseline (93.9%, 0.930); (c) PCA (91.8%, 0.907); (d) NPE (92.0%, 0.908); (e) LPP (91.0%, 0.897); (f) SDE (91.1%, 0.899); (g) LFDA (90.9%, 0.896); (h) MMC (89.9%, 0.885); (i) MFA (93.5%, 0.926); (j) LGSFA (98.1%, 0.978). Note that OA and KC are given in parentheses.
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4.6. Experiments on the Urban Data Set


To further explore the effectiveness of LGSFA with different sensors, we selected the Urban data set captured by HYDICE sensor. We randomly selected 60 samples as training set to analyze OAs with respect to parameters k and [image: there is no content]. Figure 14 displays the classification results.


Figure 14. OAs with respect to different numbers of neighbors on the Urban data set.
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According to Figure 14, with the increase of intraclass neighbor k, the classification accuracies improved and then reached a stable value. The main reason is that the larger k will provide more effective information to reveal the intrinsic properties. The OAs also increased when the value of [image: there is no content] enlarged, because there is more information to represent the margin of different classes with a larger [image: there is no content]. To obtain better results, we set k and [image: there is no content] to 9 and 20 in the experiments.



To explore the relationship between the classification accuracy and the embedding dimension, we randomly selected 60 samples form each class for training, and the remaining samples were used for testing. Figure 15 shows the OAs with different dimensions using the NN classifier. As shown in Figure 15, the OAs improved with the increase of the embedding dimension and then kept a balanced value. Compared with other methods, the proposed LGSFA method provided the best classification results.


Figure 15. OAs with respect to different dimensions on the Urban data set.
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To compare the proposed method with other methods under different numbers of training samples, we randomly selected 20, 40, 60, 80 samples as training set, and the remaining samples were applied for testing. After DR with different methods, we adopted the NN, SAM, and SVMCK classifiers to discriminate the class of test samples with 10 times repeat experiments. The average OAs with std and KC (in parentheses) are given in Table 5.



Table 5. Classification results with different numbers of training samples on the Urban data set (OA ± std (%) (KC)).







	
Classifier

	
DR

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
NN

	
Baseline

	
72.3 ± 3.5 (0.577)

	
72.6 ± 2.1 (0.585)

	
75.1 ± 1.0 (0.614)

	
76.0 ± 1.3 (0.627)




	
PCA

	
72.3 ± 3.5 (0.577)

	
72.6 ± 2.1 (0.585)

	
75.1 ± 1.0 (0.615)

	
76.0 ± 1.3 (0.627)




	
NPE

	
72.2 ± 3.5 (0.575)

	
71.7 ± 2.1 (0.574)

	
74.8 ± 1.0 (0.613)

	
75.7 ± 1.4 (0.627)




	
LPP

	
71.9 ± 3.9 (0.571)

	
72.1 ± 2.2 (0.579)

	
74.3 ± 0.9 (0.604)

	
75.3 ± 1.6 (0.617)




	
SDE

	
72.6 ± 3.6 (0.581)

	
72.9 ± 2.2 (0.589)

	
75.3 ± 1.1 (0.617)

	
76.1 ± 1.3 (0.628)




	
LFDA

	
75.3 ± 2.7 (0.620)

	
75.6 ± 1.6 (0.625)

	
76.9 ± 1.0 (0.641)

	
77.5 ± 1.3 (0.651)




	
MMC

	
71.4 ± 4.0 (0.565)

	
70.9 ± 2.0 (0.562)

	
72.3 ± 1.7 (0.576)

	
73.4 ± 1.7 (0.590)




	
MFA

	
74.6 ± 3.3 (0.609)

	
74.1 ± 2.5 (0.605)

	
76.2 ± 1.0 (0.630)

	
77.1 ± 1.1 (0.644)




	
LGSFA

	
75.3 ± 3.1 (0.622)

	
76.7 ± 1.7 (0.641)

	
78.1 ± 1.5 (0.658)

	
78.7 ± 0.5 (0.669)




	
SAM

	
Baseline

	
70.3 ± 2.8 (0.552)

	
72.0 ± 3.4 (0.572)

	
72.6 ± 2.1 (0.584)

	
73.5 ± 1.3 (0.595)




	
PCA

	
70.2 ± 2.7 (0.550)

	
71.9 ± 3.4 (0.570)

	
72.6 ± 2.1 (0.583)

	
73.4 ± 1.3 (0.594)




	
NPE

	
72.0 ± 2.6 (0.574)

	
74.7 ± 3.6 (0.609)

	
75.4 ± 2.4 (0.620)

	
75.8 ± 1.4 (0.628)




	
LPP

	
72.0 ± 2.8 (0.576)

	
74.0 ± 4.0 (0.600)

	
74.5 ± 1.9 (0.610)

	
75.4 ± 1.7 (0.623)




	
SDE

	
70.3 ± 2.7 (0.551)

	
71.9 ± 3.4 (0.571)

	
72.6 ± 2.1 (0.584)

	
73.5 ± 1.3 (0.595)




	
LFDA

	
74.6 ± 2.0 (0.611)

	
74.9 ± 3.3 (0.614)

	
75.5 ± 1.5 (0.623)

	
75.8 ± 1.2 (0.628)




	
MMC

	
69.3 ± 2.9 (0.537)

	
69.3 ± 4.5 (0.535)

	
70.5 ± 2.5 (0.552)

	
70.6 ± 2.4 (0.554)




	
MFA

	
72.4 ± 2.1 (0.580)

	
73.6 ± 3.6 (0.595)

	
74.3 ± 1.8 (0.607)

	
75.0 ± 1.3 (0.617)




	
LGSFA

	
76.7 ± 1.9 (0.641)

	
77.8 ± 2.5 (0.655)

	
78.1 ± 1.1 (0.659)

	
78.9 ± 1.2 (0.671)




	
SVMCK

	
Baseline

	
75.5 ± 3.1 (0.626)

	
78.2 ± 0.9 (0.661)

	
79.8 ± 0.9 (0.684)

	
81.4 ± 1.4 (0.707)




	
PCA

	
72.0 ± 3.7 (0.581)

	
74.5 ± 2.5 (0.610)

	
75.6 ± 1.7 (0.627)

	
78.7 ± 1.4 (0.666)




	
NPE

	
73.1 ± 3.0 (0.592)

	
77.3 ± 1.7 (0.648)

	
78.0 ± 1.5 (0.660)

	
80.4 ± 1.8 (0.691)




	
LPP

	
72.5 ± 3.3 (0.586)

	
77.3 ± 3.5 (0.652)

	
79.6 ± 1.5 (0.683)

	
81.2 ± 2.0 (0.703)




	
SDE

	
73.0 ± 3.5 (0.591)

	
75.6 ± 3.2 (0.624)

	
77.8 ± 3.0 (0.656)

	
80.2 ± 2.7 (0.689)




	
LFDA

	
75.2 ± 2.6 (0.622)

	
77.9 ± 1.6 (0.658)

	
79.1 ± 1.9 (0.675)

	
80.5 ± 2.1 (0.693)




	
MMC

	
70.5 ± 4.8 (0.558)

	
75.7 ± 3.7 (0.628)

	
75.2 ± 3.8 (0.621)

	
80.4 ± 3.1 (0.691)




	
MFA

	
72.6 ± 2.8 (0.587)

	
76.7 ± 1.7 (0.642)

	
78.3 ± 1.8 (0.664)

	
80.2 ± 1.4 (0.688)




	
LGSFA

	
79.8 ± 2.8 (0.688)

	
82.9 ± 1.4 (0.731)

	
84.0 ± 1.5 (0.748)

	
85.5 ± 1.0 (0.767)










In Table 5, the results improved with the increase of the number of training samples in most conditions. Compared with other DR methods, LGSFA achieved the best OAs and KCs under different classifiers. Each DR method with SVMCK presented better classification results than other classifiers, and LGSFA with SVMCK possessed the best results in all cases. The experiment indicates that the proposed LGSFA method can effectively reveal the intrinsic manifold properties of hyperspectral data containing many homogenous areas.



To show the classification results of each class, we randomly selected 2% samples as training set, and the other samples were used for testing. The classification maps are shown in Figure 16.


Figure 16. Classification maps of different methods with SVMCK on the Urban data set. (a) Ground truth; (b) Baseline (86.0%, 0.765); (c) PCA (85.1%, 0.750); (d) NPE (86.5%, 0.773); (e) LPP (87.0%, 0.781); (f) SDE (85.7%, 0.758); (g) LFDA (85.6%, 0.759); (h) MMC (86.1%, 0.765); (i) MFA (87.5%, 0.788); (j) LGSFA (88.8%, 0.809). Note that OA and KC are given in parentheses.
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As shown in Figure 16, the LGSFA method displayed more similar compared with the ground truth. The corresponding numerical results are shown in Table 6. In the table, the proposed method obtained better classification accuracy in most classes and achieved the best AA, OA, and KC among all the methods, which indicates that LGSFA is more beneficial to represent the hidden information of hyperspectral data.



Table 6. Classification results of different DR methods with SVMCK on the Urban data set.







	
Class

	
Samples

	
DR with SVMCK Classifier




	
Training

	
Test

	
Baseline

	
PCA

	
NPE

	
LPP

	
SDE

	
LFDA

	
MMC

	
MFA

	
LGSFA






	
1

	
185

	
9045

	
90.6

	
86.3

	
87.1

	
87.2

	
85.3

	
87.9

	
84.1

	
87.3

	
88.6




	
2

	
29

	
1444

	
14.1

	
54.1

	
53.0

	
51.3

	
51.2

	
55.9

	
46.6

	
60.4

	
53.6




	
3

	
65

	
3165

	
94.7

	
95.6

	
96.3

	
95.7

	
94.5

	
95.4

	
91.9

	
94.8

	
97.2




	
4

	
30

	
1466

	
90.0

	
93.0

	
92.2

	
91.5

	
88.3

	
93.4

	
92.2

	
91.5

	
95.0




	
5

	
829

	
40,613

	
90.7

	
88.9

	
90.8

	
91.4

	
90.4

	
89.5

	
91.6

	
92.3

	
93.5




	
6

	
268

	
13,108

	
73.7

	
72.2

	
73.5

	
74.8

	
72.7

	
72.3

	
72.8

	
73.4

	
75.5




	
AA

	
75.6

	
81.7

	
82.2

	
82.0

	
80.4

	
82.4

	
79.9

	
83.3

	
83.9




	
OA

	
86.0

	
85.1

	
86.5

	
87.0

	
85.7

	
85.6

	
86.1

	
87.5

	
88.8




	
KC

	
0.765

	
0.750

	
0.773

	
0.781

	
0.758

	
0.759

	
0.765

	
0.788

	
0.809




	
DR time (s)

	
-

	
0.040

	
0.308

	
0.085

	
3.390

	
3.390

	
0.449

	
2.185

	
3.837




	
Classification time (s)

	
1637.7

	
438.0

	
421.3

	
445.5

	
438.5

	
434.4

	
438.1

	
435.8

	
430.4











4.7. Discussion


The following interesting points are revealed in the experiments on the Salinas, Indian Pines, and Urban HSI data sets.



	
The proposed LGSFA method consistently outperforms Baseline, PCA, NPE, LPP, SDE, LFDA, MMC and MFA in most conditions on three real HSI data sets. The reason for this appearance is that LGSFA utilizes neighbor points and corresponding intraclass reconstruction points to construct the intrinsic and penalty graphs, while MFA just uses the neighbor points to construct the intrinsic and penalty graphs. That is to say, our proposed method can effictively compact the intraclass data and separate the interclass data, and it can capture more intrinsic information hidden in HSI data sets than other methods.



	
It is clear that LGSFA produces a smoother classification map and achieves better accuracy compared with other methods in most classes. LGSFA effectively reveal the intrinsic manifold structures of hyperspectral data. Thus, this method obtains good discriminating features and improves the classification performance of the NN, SAM and SVMCK classifiers for hyperspectral data.



	
In the experiments, it is noticeable that the SVMCK classifier always performs better than NN and SAM. The reason is that SVMCK applies the spatial and spectral information while NN and SAM only use the spectral information for HSI classification.



	
With the running time of different DR methods, the computational complexity of LGSFA depends on the number of bands, training samples, and neighbor points. The proposed method costs more time than other DR algorithms. The reason is that LGSFA needs much running time to construct the intrinsic graph and the penalty graph.



	
In the experiments of two-dimension embedding, LGSFA achieves better distribution for data points than other DR methods. The results show that LGSFA can improve the intra-manifold compactness and the inter-manifold separability to enhance the diversity of data from different classes.








5. Conclusions


In this paper, we proposed a new method called LGSFA for DR of HSI. The proposed LGSFA method constructs an intrinsic graph and a penalty graph using the intraclass neighbor points, the interclass neighbor points and their corresponding reconstruction points. It utilizes neighbor points and corresponding intraclass reconstruction points to improve the intraclass compactness and the interclass separability. As a result, LGSFA effectively reveals the intrinsic manifold structure of hyperspectral data to extract effective discriminating features for classification. Experiments on the Salinas, Indian Pines, and Urban data sets show that the proposed method achieves better results than other state-of-the-art methods in most conditions and LGSFA with SVMCK obtains the best classification accuracy. Our future work will focus on how to improve the computational efficiency and the misclassified pixels.
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