Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data
Abstract
:1. Introduction
2. Data
2.1. In Situ Data
2.2. GOCI Imagery
2.3. HYCOM Imagery
2.4. NOAA Greenhouse Gas Marine Boundary Layer Reference
2.5. European Reanalysis of (ERA-) Interim Data
3. Methodology
3.1. Experimental Schemes
3.2. Multi-Variate Nonlinear Regression
3.3. Machine Learning Approaches
3.3.1. Random Forest
3.3.2. Support Vector Regression
3.4. Cost Function
3.5. Sea-Air CO2 Flux Calculation
4. Results and Discussion
4.1. Estimation of Surface Seawater ƒCO2
4.2. Spatial and Temporal Distribution of Surface Seawater ƒCO2
4.3. Sea-Air CO2 Fluxes
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.; Wallace, D.W.; Tilbrook, B. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef] [Green Version]
- Raven, J.; Caldeira, K.; Elderfield, H.; Hoegh-Guldberg, O.; Liss, P.; Riebesell, U.; Shepherd, J.; Turley, C.; Watson, A. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide; The Royal Society: London, UK, 2005. [Google Scholar]
- Sung, C.-G.; Kim, T.W.; Park, Y.-G.; Kang, S.-G.; Inaba, K.; Shiba, K.; Choi, T.S.; Moon, S.-D.; Litvin, S.; Lee, K.-T. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2. J. Mar. Syst. 2014, 137, 67–73. [Google Scholar] [CrossRef]
- Zeng, J.; Nojiri, Y.; Landschützer, P.; Telszewski, M.; Nakaoka, S. A global surface ocean ƒCO2 climatology based on a feed-forward neural network. J. Atmos. Ocean. Technol. 2014, 31, 1838–1849. [Google Scholar] [CrossRef]
- Bai, Y.; Cai, W.J.; He, X.; Zhai, W.; Pan, D.; Dai, M.; Yu, P. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea. J. Geophys. Res. Oceans 2015, 120, 2331–2349. [Google Scholar] [CrossRef]
- Borges, A.V.; Ruddick, K.; Lacroix, G.; Nechad, B.; Asteroca, R.; Rousseau, V.; Harlay, J. Estimating pCO2 from Remote Sensing in the Belgian Coastal Zone. Available online: http://orbi.ulg.be/bitstream/2268/81111/1/borges_et_al_2010_esa_living_planet%5B1%5D.pdf (accessed on 10 August 2017).
- Chen, S.; Hu, C.; Byrne, R.H.; Robbins, L.L.; Yang, B. Remote estimation of surface pCO2 on the West Florida Shelf. Cont. Shelf Res. 2016, 128, 10–25. [Google Scholar] [CrossRef]
- Chierici, M.; Olsen, A.; Johannessen, T.; Trinañes, J.; Wanninkhof, R. Algorithms to estimate the carbon dioxide uptake in the northern North Atlantic using shipboard observations, satellite and ocean analysis data. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 630–639. [Google Scholar] [CrossRef]
- Chierici, M.; Signorini, S.R.; Fransson, A.; Olsen, A. Surface water ƒCO2 algorithms for the high-latitude Pacific sector of the Southern Ocean. Remote Sens. Environ. 2012, 119, 184–196. [Google Scholar] [CrossRef]
- Cosca, C.E.; Feely, R.A.; Boutin, J.; Etcheto, J.; McPhaden, M.J.; Chavez, F.P.; Strutton, P.G. Seasonal and interannual CO2 fluxes for the central and eastern equatorial Pacific Ocean as determined from ƒCO2-SST relationships. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Hales, B.; Strutton, P.G.; Saraceno, M.; Letelier, R.; Takahashi, T.; Feely, R.; Sabine, C.; Chavez, F. Satellite-Based prediction of pCO2 in coastal waters of the eastern North Pacific. Prog. Oceanogr. 2012, 103, 1–15. [Google Scholar] [CrossRef]
- Jo, Y.H.; Dai, M.; Zhai, W.; Yan, X.H.; Shang, S. On the variations of sea surface pCO2 in the northern South China Sea: A remote sensing based neural network approach. J. Geophys. Res Oceans 2012, 117. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.; Schuster, U.; Nakaoka, S.; Payne, M.; Sasse, T.; Zeng, J. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 2013, 10, 7793–7815. [Google Scholar] [CrossRef] [Green Version]
- Lauvset, S.K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A. Annual and seasonal ƒCO2 and air–sea CO2 fluxes in the Barents Sea. J. Mar. Syst. 2013, 113, 62–74. [Google Scholar] [CrossRef]
- Ono, T.; Saino, T.; Kurita, N.; Sasaki, K. Basin-Scale extrapolation of shipboard pCO2 data by using satellite SST and Chl-a. Int. J. Remote Sens. 2004, 25, 3803–3815. [Google Scholar] [CrossRef]
- Sarma, V.; Saino, T.; Sasaoka, K.; Nojiri, Y.; Ono, T.; Ishii, M.; Inoue, H.; Matsumoto, K. Basin-Scale pCO2 distribution using satellite sea surface temperature, Chl-a, and climatological salinity in the North Pacific in spring and summer. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Tao, Z.; Qin, B.; Li, Z.; Yang, X. Satellite observations of the partial pressure of carbon dioxide in the surface water of the Huanghai Sea and the Bohai Sea. Acta Oceanol. Sin. 2012, 31, 67–73. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, D.J.; Lee, T.; Kim, K.R. Long-Term trend of CO2 and ocean acidification in the surface water of the Ulleung Basin, the East/Japan sea inferred from the underway observational data. Biogeosciences 2014, 11, 2443. [Google Scholar] [CrossRef] [Green Version]
- Else, B.G.; Yackel, J.J.; Papakyriakou, T.N. Application of satellite remote sensing techniques for estimating air–sea CO2 fluxes in Hudson Bay, Canada during the ice-free season. Remote Sens. Environ. 2008, 112, 3550–3562. [Google Scholar] [CrossRef]
- Telszewski, M.; Chazottes, A.; Schuster, U.; Watson, A.; Moulin, C.; Bakker, D.; González-Dávila, M.; Johannessen, T.; Körtzinger, A.; Luger, H.O. Estimating the monthly pCO2 distribution in the north Atlantic using a self-organizing neural network. Biogeosciences 2009, 6, 1405–1421. [Google Scholar] [CrossRef] [Green Version]
- Park, G.H.; Lee, K.; Tishchenko, P.; Min, D.H.; Warner, M.J.; Talley, L.D.; Kang, D.J.; Kim, K.R. Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Park, Y.G.; Choi, S.H.; Kim, C.H. Assessment of pCO2 in the Yellow and East China Sea using an earth system model. Ocean Polar Res. 2011, 33, 447–455. [Google Scholar] [CrossRef]
- Gamo, T.; Momoshima, N.; Tolmachyov, S. Recent upward shift of the deep convection system in the Japan Sea, as inferred from the geochemical tracers tritium, oxygen, and nutrients. Geophys. Res. Lett. 2001, 28, 4143–4146. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.R.; Min, D.H.; Volkov, Y.; Yoon, J.H.; Takematsu, M. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global Oceans? Geophys. Res. Lett. 2001, 28, 3293–3296. [Google Scholar] [CrossRef]
- Min, D.H.; Warner, M.J. Basin-Wide circulation and ventilation study in the East Sea (Sea of Japan) using chlorofluorocarbon tracers. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 1580–1616. [Google Scholar] [CrossRef]
- Park, Y.G.; Park, J.H.; Lee, H.J.; Min, H.S.; Kim, S.D. The effects of geothermal heating on the East/Japan sea circulation. J. Geophys. Res. Oceans 2013, 118, 1893–1905. [Google Scholar] [CrossRef]
- Park, Y.G. The effects of Tsushima warm current on the interdecadal variability of the East/Japan Sea thermohaline circulation. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, D.; Shim, J.; Min, H.S. The spatial distribution of surface ƒCO2 in the Southwestern East Sea/Japan Sea during summer 2005. Ocean Sci. J. 2011, 46, 13. [Google Scholar] [CrossRef]
- Park, Y.G.; Seol, K.H.; Boo, K.O.; Lee, J.; Cho, C.; Byun, Y.H.; Seo, S. Acidification at the surface in the marginal seas around Korea: A coupled climate-carbon cycle model study. 2017; under review. [Google Scholar]
- Park, S.; Lee, T.; Jo, Y.H. Sea surface pCO2 and its variability in the Ulleung Basin, East Sea constrained by a neural network model. Sea 2016, 21, 1–10. [Google Scholar] [CrossRef]
- Chen, F.; Cai, W.J.; Benitez-Nelson, C.; Wang, Y. Sea surface pCO2-SST relationships across a cold-core cyclonic eddy: Implications for understanding regional variability and air-sea gas exchange. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Parard, G.; Charantonis, A.A.; Rutgerson, A. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology. Biogeosciences 2015, 12, 3369–3384. [Google Scholar] [CrossRef]
- Parard, G.; Charantonis, A.A.; Rutgersson, A. Using satellite data to estimate partial pressure of CO2 in the Baltic Sea. J. Geophys. Res. Biogeosci. 2016, 121, 1002–1015. [Google Scholar] [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. Guide to Best Practices for Ocean CO2 Measurements; North Pacific Marine Science Organization: Sidney, BC, Canada, 2007; p. 191. [Google Scholar]
- Pierrot, D.; Neill, C.; Sullivan, K.; Castle, R.; Wanninkhof, R.; Lüger, H.; Johannessen, T.; Olsen, A.; Feely, R.A.; Cosca, C.E. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 512–522. [Google Scholar] [CrossRef]
- Millero, F.J. Thermodynamics of the carbon dioxide system in the Oceans. Geochim. Cosmochim. Acta 1995, 59, 661–677. [Google Scholar] [CrossRef]
- Korea Ocean Satellite Center (KOSC) Website. Available online: http://kosc.kiost.ac.kr/eng/ (accessed on 3 March 2016).
- KOSC Website. Available online: http://kosc.kiost.ac/ (accessed on 3 March 2016).
- HYCOM + NCODA Homepage. Available online: http://tds.hycom.org/thredds/catalog.html (accessed on 3 March 2016).
- Dlugokency, E.J.; Masarie, K.A.; Lang, P.M.; Tans, P.P. NOAA Greenhouse Gas Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network. Available online: ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (accessed on 10 October 2016).
- NOAA ESRL Greenhouse Gas MBL Reference Homepage. Available online: https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html (accessed on 3 March 2016).
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0; ERA Report Series 1; ECMWF: Reading, UK, 2011. [Google Scholar]
- ECMWF Homepage. Available online: http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (accessed on 3 March 2016).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jensen, J.R.; Im, J. Remote sensing change detection in urban environments. In Geo-Spatial Technologies in Urban Environments; Springer: Berlin/Heidelberg, Germany, 2007; pp. 7–31. [Google Scholar]
- Im, J.; Jensen, J.R.; Coleman, M.; Nelson, E. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto Int. 2009, 24, 293–312. [Google Scholar] [CrossRef]
- Lu, Z.; Im, J.; Quackenbush, L.J. A volumetric approach to population estimation using LiDAR remote sensing. Photogramm. Eng. Remote Sens. 2011, 77, 1145–1156. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J.; Jensen, J.R. Delineation of climate regions using in-situ and remotely sensed data for the Carolinas. Remote Sens. Environ. 2008, 112, 3099–3111. [Google Scholar] [CrossRef]
- Richardson, H.J.; Hill, D.J.; Denesiuk, D.R.; Fraser, L.H. A comparison of geographic datasets and field measurements to model soil carbon using Random Forests and stepwise regressions (British Columbia, Canada). GISci. Remote Sens. 2017, 54, 573–591. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agric. For. Meteorol. 2017, 237, 105–122. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agric. For. Meteorol. 2017, 237, 257–269. [Google Scholar] [CrossRef]
- Lee, S.; Im, J.; Kim, J.; Kim, M.; Shin, M.; Kim, H.-C.; Quackenbush, L.J. Arctic sea ice thickness estimation from Cryosat-2 satellite data using machine learning-based lead detection. Remote Sens. 2016, 8, 698. [Google Scholar] [CrossRef]
- Lee, S.; Han, H.; Im, J.; Jang, E.; Lee, M.-I. Detection of deterministic and probabilistic convection initiation using Himawari-8 advanced Himawari imager data. Atmos. Meas. Tech. 2017, 10, 1859. [Google Scholar] [CrossRef]
- Lu, Z.; Im, J.; Rhee, J.; Hodgson, M. Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data. Landsc. Urban Plan. 2014, 130, 134–148. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.K.; Ha, S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GISci. Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Kim, M.; Im, J.; Han, H.; Kim, J.; Lee, S.; Shin, M.; Kim, H.C. Landfast sea ice monitoring using multisensor fusion in the Antarctic. GISci. Remote Sens. 2015, 52, 239–256. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Rhee, J.; Park, S.; Lu, Z. Relationship between land cover patterns and surface temperature in urban areas. GISci. Remote Sens. 2014, 51, 521–536. [Google Scholar] [CrossRef]
- Torbick, N.; Corbiere, M. Mapping urban sprawl and impervious surfaces in the Northeast United States for the past four decades. GISci. Remote Sens. 2015, 52, 746–764. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Shin, K.S.; Lee, T.S.; Kim, H.J. An application of support vector machines in bankruptcy prediction model. Expert Syst. Appl. 2005, 28, 127–135. [Google Scholar] [CrossRef]
- Maxwell, A.; Strager, M.; Warner, T.; Zegre, N.; Yuill, C. Comparison of NAIP orthophotography and RapidEye satellite imagery for mapping of mining and mine reclamation. GISci. Remote Sens. 2014, 51, 301–320. [Google Scholar] [CrossRef]
- Moreira, L.C.J.; Teixeira, A.d.S.; Galvão, L.S. Potential of multispectral and hyperspectral data to detect saline-exposed soils in Brazil. GISci. Remote Sens. 2015, 52, 416–436. [Google Scholar] [CrossRef]
- Lin, Z.; Yan, L. A support vector machine classifier based on a new kernel function model for hyperspectral data. GISci. Remote Sens. 2016, 53, 85–101. [Google Scholar] [CrossRef]
- Zeng, J.; Matsunaga, T.; Saigusa, N.; Shirai, T.; Nakaoka, S.-I.; Zheng-Hong, T. Evaluation of three machine learning models for surface ocean CO2 mapping. Ocean Sci. 2017, 13, 303. [Google Scholar] [CrossRef]
- Rao, C.; Malleswara Rao, J.; Senthil Kumar, A.; Lakshmi, B.; Dadhwal, V. Expansion of LISS III swath using AWiFS wider swath data and contourlet coefficients learning. GISci. Remote Sens. 2015, 52, 78–93. [Google Scholar] [CrossRef]
- Xun, L.; Wang, L. An object-based SVM method incorporating optimal segmentation scale estimation using Bhattacharyya Distance for mapping salt cedar (Tamarisk spp.) with QuickBird imagery. GISci. Remote Sens. 2015, 52, 257–273. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LibSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Holt, J.T.; Allen, J.I.; Proctor, R.; Gilbert, F. Error quantification of a high-resolution coupled hydrodynamic–ecosystem coastal–ocean model: Part 1 model overview and assessment of the hydrodynamics. J. Mar. Syst. 2005, 57, 167–188. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- RuleQuest Research. RuleQuest Research Data Mining Tools. 2012. Available online: http://www.rulequest.com/ (accessed on 3 March 2016).
- Moon, J.E.; Park, Y.J.; Ryu, J.H.; Choi, J.K.; Ahn, J.H.; Min, J.E.; Son, Y.B.; Lee, S.J.; Han, H.J.; Ahn, Y.H. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010–2011. Ocean Sci. J. 2012, 47, 261–277. [Google Scholar] [CrossRef]
- Lee, K.E. Surface water changes recorded in late quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 247, 18–31. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, D.; Shim, J.; Kim, K.H.; Min, H.S.; Kim, K.R. Seasonal variations of surface ƒCO2 and sea-air CO2 fluxes in the Ulleung Basin of the East/Japan. Sea. Terr. Atmos. Ocean. Sci. 2012, 23, 343–353. [Google Scholar] [CrossRef]
Ship Name (Belong) | In Situ Start Date | In Situ End Date | Latitude | Longitude | In Situ Products | GOCI c Products | HYCOM d Products | Number of In Situ Data Collected in the Ship | Number of Data Matched with Satellite g |
---|---|---|---|---|---|---|---|---|---|
Ieodo (KIOST a) | 04/05/2014 07:55 | 11/05/2014 00:25 | 35.24°–36.12°N | 129.38°–130.38°E | Date (YY-MM-DD), Time (hh-mm-dd), Latitude (°), Longitude (°), SST (°C), SSS, Ocean ƒCO2 (μatm) | Chl-a (mg/m3), CDOM (m−1), Band reflectance (Rrs) | SST (°C), SSS MLD (m) | 3348 | 499 |
Ieodo (KIOST) | 13/05/2014 07:30 | 16/05/2014 10:05 | 35.66°–38.04°N | 129.30°–132.00°E | 1878 | 121 | |||
Ieodo (KIOST) | 19/08/2014 09:00 | 25/08/2014 11:00 | 35.61°–37.40°N | 129.26°–131.06°E | 3252 | 93 | |||
Ieodo (KIOST) | 06/03/2015 13:00 | 10/03/2015 07:15 | 36.17°–38.05°N | 129.30°–132.25°E | 1725 | 329 | |||
Tamgu 3 (NIFS b) e | 08/04/2015 13:00 | 18/04/2015 14:00 | 35.08°–38.22°N | 128.59°–131.27°E | 3193 | 382 | |||
Ieodo (KIOST) | 10/08/2015 11:55 | 15/08/2015 08:45 | 34.97°–37.22°N | 128.76°–130.77°E | 3226 | 215 | |||
Tamgu 3 (NIFS) f | 19/10/2015 16:00 | 01/11/2015 10:00 | 35.37°–38.23°N | 128.59°–131.27°E | 2014 | 52 | |||
Ieodo (KIOST) | 13/11/2015 17:30 | 18/11/2015 07:40 | 34.97°–38.05°N | 128.71°–131.80°E | 2267 | 47 |
Statistics | May 2014 | August 2014 | March 2015 | April 2015 | August 2015 | October 2015 | November 2015 |
---|---|---|---|---|---|---|---|
Maximum | 396.56 | 439.15 | 343.12 | 355.78 | 415.36 | 411.32 | 446.06 |
Minimum | 287.52 | 297.10 | 306.63 | 252.34 | 226.30 | 317.92 | 336.9 |
Mean | 323.34 | 374.19 | 327.10 | 304.64 | 373.32 | 351.26 | 369.33 |
Standard Deviation | 13.21 | 21.91 | 8.97 | 17.09 | 26.11 | 14.85 | 17.25 |
Band | Bandwidth (nm) |
---|---|
Band 1 | 402–422 |
Band 2 | 433–453 |
Band 3 | 480–500 |
Band 4 | 545–565 |
Variables | Correlation Coefficients |
---|---|
CDOM a | −0.2082 |
Chl b | −0.1200 |
MLD c | −0.0866 |
SSS d | −0.7335 |
SST e | 0.7488 |
Band 1 | 0.2824 |
Band 2 | 0.2285 |
Band 3 | 0.1403 |
Band 4 | −0.0435 |
Band 1/2 | 0.0627 |
Band 1/3 | 0.2829 |
Band 1/4 | 0.2713 |
Band 2/3 | 0.1810 |
Band 2/4 | 0.2585 |
Band 3/4 | 0.1612 |
Approaches | Calibration/Validation | R2 | RMSE a (rRMSE) | Mean Bias | Cost Function |
---|---|---|---|---|---|
MNR b | Calibration | 0.92 | 8.55 (2.6%) | −0.01 | 0.08 |
Validation | 0.90 | 10.59 (3.2%) | −1.94 | 0.11 | |
RF c | Calibration | 0.99 | 1.82 (0.6%) | −0.02 | 0.00 |
Validation | 0.97 | 5.49 (1.7%) | −0.15 | 0.03 | |
SVR d | Calibration | 0.99 | 2.31 (0.7%) | −0.03 | 0.01 |
Validation | 0.95 | 6.82 (2.1%) | −0.15 | 0.05 |
Month | Surface Seawater ƒCO2 (µatm) | Delta (Sea-Air) ƒCO2 (µatm) | Sea-Air CO2 Flux (mol m−2 year−1) |
---|---|---|---|
January | 320.88 | −77.01 | −2.65 |
February | 323.54 | −75.49 | −3.32 |
March | 319.71 | −80.41 | −2.87 |
April | 315.76 | −83.50 | −2.05 |
May | 329.72 | −64.95 | −1.32 |
Jun | 360.24 | −29.50 | −0.56 |
July | 376.13 | −8.73 | −0.19 |
August | 375.11 | −4.14 | −0.11 |
September | 369.79 | −13.19 | −0.34 |
October | 354.85 | −34.38 | −1.03 |
November | 347.89 | −48.41 | −1.45 |
December | 332.70 | −67.32 | −2.50 |
Yearly mean | 343.86 | −48.92 | −1.53 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, E.; Im, J.; Park, G.-H.; Park, Y.-G. Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data. Remote Sens. 2017, 9, 821. https://doi.org/10.3390/rs9080821
Jang E, Im J, Park G-H, Park Y-G. Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data. Remote Sensing. 2017; 9(8):821. https://doi.org/10.3390/rs9080821
Chicago/Turabian StyleJang, Eunna, Jungho Im, Geun-Ha Park, and Young-Gyu Park. 2017. "Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data" Remote Sensing 9, no. 8: 821. https://doi.org/10.3390/rs9080821
APA StyleJang, E., Im, J., Park, G. -H., & Park, Y. -G. (2017). Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data. Remote Sensing, 9(8), 821. https://doi.org/10.3390/rs9080821