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Abstract: Afromontane tropical forests maintain high biodiversity and provide valuable ecosystem
services, such as carbon sequestration. The spatial distribution of aboveground biomass (AGB)
in forest-agriculture landscape mosaics is highly variable and controlled both by physical and
human factors. In this study, the objectives were (1) to generate a map of AGB for the Taita Hills,
in Kenya, based on field measurements and airborne laser scanning (ALS), and (2) to examine
determinants of AGB using geospatial data and statistical modelling. The study area is located
in the northernmost part of the Eastern Arc Mountains, with an elevation range of approximately
600–2200 m. The field measurements were carried out in 215 plots in 2013–2015 and ALS flights
conducted in 2014–2015. Multiple linear regression was used for predicting AGB at a 30 m × 30 m
resolution based on canopy cover and the 25th percentile height derived from ALS returns (R2 = 0.88,
RMSE = 52.9 Mg ha−1). Boosted regression trees (BRT) were used for examining the relationship
between AGB and explanatory variables at a 250 m× 250 m resolution. According to the results, AGB
patterns were controlled mainly by mean annual precipitation (MAP), the distribution of croplands
and slope, which explained together 69.8% of the AGB variation. The highest AGB densities have
been retained in the semi-natural vegetation in the higher elevations receiving more rainfall and in
the steep slope, which is less suitable for agriculture. AGB was also relatively high in the eastern
slopes as indicated by the strong interaction between slope and aspect. Furthermore, plantation
forests, topographic position and the density of buildings had a minor influence on AGB. The findings
demonstrate the utility of ALS-based AGB maps and BRT for describing AGB distributions across
Afromontane landscapes, which is important for making sustainable land management decisions in
the region.
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1. Introduction

Afromontane tropical forests are globally important ecosystems, which maintain high biodiversity
and provide valuable ecosystem services, such as carbon sequestration [1]. Tropical forests store
large amounts of carbon, but due to forest degradation and deforestation, they can emit carbon to
the atmosphere and boost global warming [2]. It tropical countries, such as Kenya, forests are under
constant pressure because of increasing demand for food and shelter [3]. In East Africa, between
2002 and 2008, wooded vegetation cover decreased in area by 5.1%, 15.8% and 19.4% from forests,
woodland and shrubland, respectively [4].
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Hence, mapping above ground biomass (AGB) is an essential task for monitoring carbon
stocks and dynamics across tropical African landscapes. Measuring AGB is also required for
implementing payments for ecosystem services schemes and the United Nations Reducing Emissions
from Deforestation and Forest Degradation (REDD+) mechanism [5]. Furthermore, AGB maps can
be used for studying the determinants that control AGB distribution [6], which is important for the
management of carbon stocks and understanding how carbon stocks might change in the future.

Field measurements provide accurate information about AGB, but sampling can be spatially
limited due to difficult terrain or lacking resources. Remote sensing provides a cost-efficient alternative
to mapping the wall-to-wall distribution of AGB across landscapes. Nonetheless, the use of optical
satellite imagery for AGB mapping is often hindered by frequent cloud coverage. Furthermore, over
dense crown covers, the data obtained by optical sensors may have limited capabilities in describing
vegetation structure, as most spectral information is retrieved from the topmost parts of the canopy [2].
Radar sensors also have critical limitations in assessing AGB over tropical regions, given that their
sensitivity to AGB variation decreases in the old-growth forests [7]. On the other hand, light detection
and ranging (LiDAR) systems offer three-dimensional information on canopy structure that is better
suited for AGB modelling than optical or radar imagery [8]. In particular, airborne laser scanning
(ALS) has been found to be useful for estimating forest biophysical parameters, such as leaf area index
(LAI), canopy height, canopy cover and AGB (e.g., [8,9]).

Although ALS has been used increasingly for AGB estimation and mapping in Africa [10–12], most
studies to date have focused on tropical forests (e.g., [11,13]). However, tropical African landscapes
are typically mosaics of multiple land uses, and a large fraction of landscape-level AGB can be located
outside the forests [14]. For example, [15] determined mean AGB densities for land cover classes using
samples of ALS data and a satellite image-based land cover map. Nevertheless, the distribution of
AGB is highly variable, even under the same climatic condition and land use types [16,17]. Under these
circumstances, wall-to-wall ALS coverage provides unique possibilities to recover spatial variations in
AGB patterns.

Furthermore, ALS-based AGB maps can be paired with other geospatial data to study the
fundamental biotic and abiotic determinants of AGB [6,18,19]. Digital elevation models (DEM), climate
data, land use and land cover maps and soil databases are commonly used for this purpose [6,16,18–20].
Although the underlining mechanisms of the relationships between large-scale drivers (e.g., climate
variables) and AGB are currently better understood [21], the landscape scale drivers of the spatial
distribution of AGB are still poorly understood. For instance, while the relationships between
topography, biophysical factors, climate and AGB have been evaluated in previous studies, inconsistent
results were observed in different ecosystems.

The objectives of this study were to (1) generate an AGB map for the Taita Hills using ALS and (2)
examine the determinants of AGB using geospatial datasets on topography, soils, climate, land use and
statistical modelling at the landscape to the regional scale. The Taita Hills, in southeastern Kenya, provide
a unique setting to address our objectives. In a relatively small area, with large topographic variations,
the landscape is characterized by a complex land cover mosaic, with large local variations in AGB.

2. Materials and Methods

2.1. Study Area

The Taita Hills (study area ca. 55,000 ha) in southeast Kenya are part of the Eastern Arc Mountains
(Figure 1). The highest hilltop (Vuria) reaches 2208 meters above sea level (m a.s.l.). The hills are
surrounded by semi-arid scrublands and dry savannas at an elevation of 600–900 m a.s.l. Due to the
altitude difference, the hills experience a lower mean annual temperature (18.2 ◦C) compared with the
lowlands (24.6 ◦C) [22]. The region has a bimodal rainfall pattern: long rains from March–May/June
and short rains from October–December. Mean annual precipitations between 1986 and 2003 were
1132 mm at 1768 m a.s.l (Mgange) and 587 mm at 560 m a.s.l. (Voi) [23]. The higher elevations receive
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more rain because of the orographic rainfall pattern, while the northwestern slope in the rain-shadow
receives less precipitation compared with the southeastern slope [3].

The area belongs to one of the world’s most important biodiversity hotspots [1] and hosts some
remaining indigenous montane forests [24]. The landscape is a highly fragmented mosaic of montane
forest patches, exotic plantations and agriculture with agroforestry and horticulture being common [25].
According to [15], the main land use and land cover types in 2011 were cropland (40.5%), thicket
(28.9%), shrubland (12.8%), woodland and agroforestry (10.7%), plantation forest (4.6%), indigenous
montane forest (1.4%) and bare rock, soil and built-up areas (1.1%). Agricultural expansion has been
taking place in the area for decades. Since 1987, cropland area has increased at the expense of thickets
and shrublands in the foothills and lowlands, while the hills were taken to agriculture before the 1950s
and after [23,24].

The remnant montane forests can be separated into lower and upper montane forests. The lower
montane forests are taller and drier compared with the elfin forest like upper montane forests, which
receive significant amounts of precipitation through a mist. These mist forests on the top of Vuria,
have typically only one layer and are covered by epiphytic mosses and lichens [26,27].

Common tree species in the montane forests include Tabernaemontana stapfiana, Macaranga capensis,
Psychotria petitii, Xymalos monospora, Prunus africana, Maesa lanceolata and Albizia gummifera, while
Eucalyptus spp., Cupressus lusitanica and Pinus spp. are the main tree species in the plantations. In
the lowlands, common tree species include Albizia amara, Sterculia africana, Lannea alata, Acacia tortilis,
Commiphora africana and Commiphora incisa. Rocky and sandy areas outside the forests are dominated by
Acacia mearnsii, while typical agroforestry species in the hills are Grevillea robusta and Persea americana
and Mangifera indica in the lowlands [28,29].
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Figure 1. The location of the study area and sample plots with false color Sentinel-2A Multispectral
Instrument (MSI) satellite image from 8 October 2016 [30].

2.2. Field Measurements and Aboveground Biomass Computations

The field measurements from a total of 215 circular 0.1-ha sample plots (radius 17.84 m) were
used in this study for AGB modelling (Figure 1). The sampling design depended on the field campaign
and sampling year. In 2013 and 2014, 150 plots were sampled randomly within 100-ha clusters in the
hills and lowlands. In addition, 65 plots were sampled subjectively from high-biomass forest areas in
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2014 and 2015. Sampling in the forest was guided by the ALS data [31] and visible to near-infrared
imaging spectroscopy data (AisaEAGLE) [32] acquired in 2013 in order to cover variation in canopy
structure and tree species composition.

Sample plot centers were positioned using a Trimble GeoXH GNSS receiver, and differential
correction was made using a GNSS base station setup close to the town of Wundanyi (Figure 1). The
slope in field plots varied from 0–50.5◦. Slope correction was done either in the field in order to keep
the plot area constant (i.e., 0.1 ha), or sample plot areas were corrected based on mean slope computed
from ALS-derived DEM.

All of the tree stems with a diameter (D) at breast height (1.3 m) ≥10 cm were measured for
D [18,20], and tree species were identified by a local para-taxonomist. In 2013, tree height (H) was
measured for the majority of the trees outside forests by a clinometer, but only random measurements
were made in the forests. In 2014 and 2015, H was measured using a laser range finder for at least
three trees in each plot (i.e., the tree with minimum, maximum and median D) [32]. Furthermore,
H was measured for all of the palms. For trees with only D measurement, H was predicted using a
two-parameter Curtis height function [33]. Non-linear mixed effect modelling and the plot as random
effects (e.g., [34]) were used to calibrate the H-D model for each sample plot. The ‘nlme’ package [35]
in the R statistical software [36] was used to fit the model (RMSE 1.47 m, 22.6%).

In total, 6337 trees belonging to 141 species were measured. Tree species-specific equations
are poorly available for the species-rich study area (e.g., [37]). However, generic species-specific
models were used for Acacia spp., Eucalyptus spp., Pinus spp. and palms [37–39]; for the rest of the
species, the AGB (kg) was computed based on wood-specific density ($, g cm−3), D (cm) and H
(m) by the pantropical allometric model of [40]. Values of $ were obtained from the global wood
density databases [41,42]. Genus level averages were used for the species that lacked species-specific
values, and if such could not be derived, a site-averaged value was used. Based on the tree-wise AGB
estimates, AGB was calculated for the plots. Descriptive statistics for the field plots are given in Table 1.

Table 1. Descriptive statistics for the field plots (n = 215).

Attribute Range Median Mean SD

Density (stems/ha) 10–1214 160 309 301
Basal area (m2) 0.1–94.3 9.2 19.9 21.6

Mean DBH (cm) 10.4–46.1 22.4 23.5 7.2
Lorey’s mean height (m) 3.0–39.3 12.6 13.8 7.0

AGB (Mg/ha) 0.1–671.3 37.9 123.0 153.0

2.3. Airborne Laser Scanning Data

ALS flights were conducted during several periods in 2014–2015 (Table 2). The data were provided
as pre-processed and georeferenced point clouds. LAStools software (rapidlasso GmbH) was used to
classify ground, building and vegetation returns and to create 2-m (for normalizing height) and 5-m
(for explanatory variables) resolution DEMs. Triangular irregular network (TIN) interpolation was
used for interpolating between the ground points [43].

The ALS point cloud elevations were normalized to heights above the ground surface by using
the 2-m resolution DEM. Based on the normalized heights, noisy returns (e.g., high points) and returns
from the electric lines were identified and removed manually.

2.4. Aboveground Biomass Mapping

The vegetation returns were further analyzed using FUSION software [44]. For modelling, various
ALS metrics representing return height distribution and canopy cover were computed for the plots
(Table 3). A 3-m threshold was used to separate understory and ground returns from canopy returns.
This threshold was considered to match well with the minimum D used in the field measurements
(i.e., 10 cm). For prediction, spatial grids of ALS metrics were generated at a spatial resolution of 30 m
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× 30 m. The spatial resolution of ALS metrics was determined by the sample plot size (0.1 ha). The
correlation coefficients among the ALS metrics are shown in Figure A1.

General models for modelling AGB from ALS metrics are available (e.g., [45,46]). To obtain the
highest possible accuracy to map AGB in the study area, the linear regression models were fit using the
‘lm’ function in R, and the ‘regsubsets’ function in the package ‘leaps’ [9,47] was used for exhaustive
search of the best models having 1–4 predictors. The coefficient of determination (R2) and the root
mean square error (RMSE) were used to evaluate the AGB models. The models were validated using
leave-one-out cross-validation. The best model was selected based on the lowest Akaike’s information
criterion and variance inflation factor (VIF < 4) [48].

Table 2. Scanner properties and flight parameters of the ALS data.

Parameter Value

Dates of acquisition 2014 (26 January, 6 February and 8 February)
and 2015 (5, 6, 11 and 13 February)

Sensor Leica ALS60
Mean range (m) 1460
Pulse rate (kHz) 58
Scan rate (Hz) 66
Scan angle (◦) ±16

Mean Pulse density (pulses m−2) 3.1
Range of Pulse density (pulses m−2) 1.0–4.9
Mean return density (returns m−2) 3.4

Beam divergence at 1/e2 (mrad) 0.22
Mean footprint diameter (cm) 32

Table 3. Summary of airborne laser scanning (ALS) metrics.

Metric Description

H.p01, H.p05, H.p10, H.p20, H.p25, H.p30, H.p40, H.p50,
H.p60, H.p70, H.p75, H.p80, H.p90, H.p95, H.p99

1st, 5th, 10th . . . and 99th percentile of return
heights >3 m

H.max Maximum of return heights >3 m
H.mean Mean of return heights >3 m

H.cv Coefficient of variation of return heights >3 m
H.stdev Standard deviation of return heights >3 m

H.skewness Skewness of return heights >3 m
H.kurtosis Kurtosis of return heights >3 m

CC.first First returns >3 m/total first returns × 100
CC.all All returns >3 m/total all returns × 100

CC.all.first All returns >3 m/total first returns × 100
CC.first.mean First returns above mean/total first returns × 100
CC.all.mean All returns above mean/total all returns × 100

CC.all.mean.first All returns above mean/total first returns × 100

2.5. Explanatory Variables for Modelling Distribution of Aboveground Biomass

A range of explanatory variables was derived from geospatial datasets for modelling AGB. Table 4
presents the complete list of variables.

The topographical and hydrological variables were derived from ALS-based DEM (5 m × 5 m
cell). Higher spatial resolution (5 m) was used as the spatial resolution of ALS metrics was considered
too coarse for topographic modelling. Slope, aspect, topographic position index (TPI), topographic
wetness index (TWI) and river network were computed using System for Automated Geoscientific
Analyses (SAGA) GIS (v. 2.1.2). The default settings were used if not stated otherwise. Slope (◦) and
aspect (◦) were created using the ‘slope, aspect, curvature’ module. TPI is the difference between the
elevation of a cell and the mean elevation of the cells in a neighborhood or within a specified radius
around it. Positive values represent ridges, negative values valleys, and near zero values are either
flat or have a constant slope [49]. Six radii between 50 m and 500 m were tested to cover local and
landscape-scale variation in the ‘topographic position index’ module [50]. TWI was calculated using
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the ‘SAGA wetness index’ module [51]. River networks were extracted using the ‘channel network’
module, which requires elevation and catchment area as input. Catchment area was computed using
the ‘catchment area (flow tracing)’ module [52], and the initiation type greater than 100,000 was used
for channel network calculation. Soil type was derived from the Soil Atlas of Africa in the vector
format [53]. Soil types included calcaric fluvisols (FL), rhodic ferralsols (FR), rendzic leptosols (LP),
chromic luvisols (LV) and cambic umbrisols (UM).

Climatic variables included mean annual temperature (◦C) and mean annual precipitation (mm),
which were derived from [54] and [23], respectively. Temperatures were collected using small data
loggers, which were placed at a height of 1.5 m at 40 sites covering different elevation zones and land
cover types from dry, lowlands savannas to humid montane forest [54]. A 20-m resolution grid of mean
annual precipitation (MAP) data was produced by interpolating monthly rainfall records of 11 ground
stations in the Taita Hills from 1987–2005 using the procedures from the ANUSPLINE [55] package [23].

Land use classes (extent of croplands and plantation forest) were extracted from the most recent
land use and land cover classification for the area [15,56]. A SPOT 4 HRVIR satellite image from
October 2011 with a pixel size of 20 m × 20 m has been used for the classification with ten classes. The
distribution of buildings was based on the ALS point clouds ’building’ class. Misclassified buildings
were removed manually with the help of high-resolution satellite imagery available as the base map
in ArcGIS [57]. Furthermore, the intensity image from ALS and the same imagery were used for
digitizing the main roads. The correlation coefficients among the explanatory variables are shown in
Figure A2 (Appendix A).

Finally, the AGB map and all of the explanatory variables were aggregated to a 250 m × 250 m cell
size for analysis. This was done in order to reduce uncertainties in AGB predictions [6] and explanatory
variables and to better capture the landscape- and regional-scale impacts of explanatory variables on AGB.

Table 4. Explanatory variables for aboveground biomass modelling.

Variable Description Resolution (m)

Topography, hydrology and soil
Elevation Elevation (m a.s.l.) based on DEM 5

Slope Slope (◦) based on DEM 5
Aspect Aspect (◦) based on DEM 5

TPI50–TPI500 Topographic position index (TPI) with 50 m, 100 m, 150 m, 200 m, 300 m
and 500 m radii based on DEM 5

TWI Topographic wetness index based on DEM 5
Rivers Length of rivers (m); river network extracted from DEM 10

Soil Soil type vector layer from the Soil Atlas of Africa -
Climate

MAT Mean annual temperature (◦C) 20
MAP Mean annual precipitation (mm) 20

Land use
Cropland Cropland cover (%) based on the LULC map 20
Plantation Plantation forest cover (%) based on the LULC map 20
Building Cover (%) of buildings extracted from ALS point cloud 2

Road Length (m) of road digitized from the high-resolution imagery -

2.6. Statistical Analysis

Boosted regression trees (BRT) [58] were used for examining the relationship between AGB and
the explanatory variables. BRT improves the predictive performance by combining many simple
models. BRT combines the strength of two algorithms: (1) regression trees and (2) boosting [58]. BRT
can fit complex nonlinear relationships, and there is no need for prior data transformation. BRT had
been used in similar studies for analyzing the effect of topography on biomass (e.g., [59]).

In order to reduce spatial autocorrelation, 25% of the cells were systematically sampled before
statistical analysis. Correlations between the explanatory variables were studied, and highly correlated
variables were excluded based on the Pearson correlation coefficient (|r| > 0.7) [60]. Among the
correlated explanatory variables, the variable with the strongest univariate relationship with the
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response variable was retained [20]. The mean annual temperature (MAT) and elevation were
correlated with MAP and hence removed (Appendix A). Furthermore, TWI was correlated with
the slope. TPIs were correlated with each other, and the TPI500 having the strongest univariate
relationship with AGB was retained.

BRT analysis was done using the ‘dismo’ package [61] in R. The Gaussian error distribution was
used. Furthermore, the minimum predictive error was achieved when using a learning rate of 0.008, a
tree complexity (interaction depth) of 7, a bag fraction of 0.5 and the tolerance method ‘fixed’.

3. Results

3.1. Aboveground Biomass Map

The best AGB model was fitted with an R2 of 0.88 and RMSE of 52.9 Mg·ha−1 based on the
25th percentile of height values (H.p25) and canopy cover (CC.all.first) (Table 5). The inclusion of
additional ALS metrics did not significantly improve the model fit. The scatterplot of the predicted
versus field-estimated AGB is presented in Figure 2. A single model performed well across the study
area without any signs of systematic over- or under-estimation in any range of the values. The results
were back-transformed (squared), and the square of residual standard error (3.78) was added to the
predicted values [62].

Remote Sens. 2017, 9, 827  7 of 19 

 

with the response variable was retained [20]. The mean annual temperature (MAT) and elevation 
were correlated with MAP and hence removed (Appendix A). Furthermore, TWI was correlated with 
the slope. TPIs were correlated with each other, and the TPI500 having the strongest univariate 
relationship with AGB was retained. 

BRT analysis was done using the ‘dismo’ package [61] in R. The Gaussian error distribution was 
used. Furthermore, the minimum predictive error was achieved when using a learning rate of 0.008, 
a tree complexity (interaction depth) of 7, a bag fraction of 0.5 and the tolerance method ‘fixed’. 

3. Results 

3.1. Aboveground Biomass Map 

The best AGB model was fitted with an R2 of 0.88 and RMSE of 52.9 Mg⋅ha−1 based on the 25th 
percentile of height values (H.p25) and canopy cover (CC.all.first) (Table 5). The inclusion of 
additional ALS metrics did not significantly improve the model fit. The scatterplot of the predicted 
versus field-estimated AGB is presented in Figure 2. A single model performed well across the study 
area without any signs of systematic over- or under-estimation in any range of the values. The results 
were back-transformed (squared), and the square of residual standard error (3.78) was added to the 
predicted values [62]. 

 
Figure 2. ALS predicted vs. field estimated AGB based on leave-one-out cross-validation.  

Table 5. Summary of the final model for AGB mapping. H.p25 = 25th percentile point of all laser 
return heights above 3 m; CC.all.first = all returns above 3 m/total first returns × 100; *** p < 0.001. 

Dependent Variable Explanatory Variables Estimate SE of Estimate √ܤܩܣ Intercept 0.423 *** 0.268 
 H.p25 0.372 *** 0.033 
 CC.all.first 0.086 *** 0.005 

The AGB map predicted at 30 m × 30 m resolution is shown in Figure. 3. The largest values were 
concentrated on montane forest patches in the hills and slopes with northeast and southeast aspects. 
In general, the AGB density decreases towards the lower elevations. Furthermore, lower densities 
(less than 31 Mg ha−1) are observed in the northwestern part of the area, which is in the rain-shadow 
of the hills. Some hilltops, for example in Yale and Ngangao, are without tree cover. In the foothills 
and lowlands, AGB densities are low and less variable compared with the hills, particularly in the 
northeast and southeast parts of the area. In the lowlands, larger AGB is concentrated in riverine 
areas, as those provide the consistent wetness necessary for trees.  

Figure 2. ALS predicted vs. field estimated AGB based on leave-one-out cross-validation.

Table 5. Summary of the final model for AGB mapping. H.p25 = 25th percentile point of all laser return
heights above 3 m; CC.all.first = all returns above 3 m/total first returns × 100; *** p < 0.001.

Dependent Variable Explanatory Variables Estimate SE of Estimate
√

AGB Intercept 0.423 *** 0.268
H.p25 0.372 *** 0.033

CC.all.first 0.086 *** 0.005

The AGB map predicted at 30 m × 30 m resolution is shown in Figure 3. The largest values were
concentrated on montane forest patches in the hills and slopes with northeast and southeast aspects.
In general, the AGB density decreases towards the lower elevations. Furthermore, lower densities
(less than 31 Mg ha−1) are observed in the northwestern part of the area, which is in the rain-shadow
of the hills. Some hilltops, for example in Yale and Ngangao, are without tree cover. In the foothills
and lowlands, AGB densities are low and less variable compared with the hills, particularly in the
northeast and southeast parts of the area. In the lowlands, larger AGB is concentrated in riverine areas,
as those provide the consistent wetness necessary for trees.
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Figure 3. The ALS-based AGB map at 30 m × 30 m resolution with hillshade based on DEM in
the background.

3.2. Determinants of Aboveground Biomass

The AGB map and all of the explanatory variables used to explain the spatial distribution of
AGB in the Afromontane landscape are shown in Figure A3. Plantation forests are limited in the
northeast and southwest regions, which could be due to the distribution of precipitation in the region.
LULC variables, for example buildings, are spatially concentrated, and croplands are really sparsely
distributed (Figure A3).

The total explained deviance (cross-validated D2) of the BRT model was 72.7%. Figure 4 shows
the relative importance and partial dependence plot for each explanatory variable. The most influential
variables were MAP (37.6%), cropland (16.9%) and slope (15.3%). Only 5.9% of the total deviance was
explained by rivers, roads and soil type.

According to the partial dependence plots, AGB increases rapidly with increasing precipitation after
approximately 1240 mm, which corresponds to elevations above 1350 m. Cropland and slope also play a
role in AGB distribution, especially at the lower cropland coverage and the steeper slope (<37 degrees).

The effect of the plantation as predictor variables is observed especially at the lower plantation
coverage (i.e., below 65%), and above that, it is constant. Plantation forests were available on small
patches, and only a few areas were completely covered. The relative strength of the contribution
of TPI500 is high especially at the beginning and end of the range. At the landscape scale (TPI500),
high AGB was found both in the upper and lower slope. Aspect clearly shows that AGB is more
concentrated in northeast and southeast slopes with decreasing AGB on the leeward side. Furthermore,
areas with fewer buildings contain more AGB.

Figure 5 displays two-variable partial dependence plots on some of the most influential variables.
Interaction effects of varying degree are presented among these variable pairs. The strongest
interactions in the final model were observed between MAP and cropland (Figure 5a), and MAP
and slope (Figure 5b). Cropland and slope have important effects on the predicted spatial distribution
of AGB when MAP is at the highest and cropland and slope are at the lowest fraction (below 20)
and below 37 degrees, respectively. When MAP is less than approximately 1250 mm, cropland and
slope have low impacts on AGB. Additionally, the steep slope (up to 37 degrees) in the northeast
aspect (Figure 5c) and regions with low cropland fraction (Figure 5d) contain high AGB. However,
comparatively less AGB is present in the steepest slope.
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Figure 5. The strongest interactions between the explanatory variables in the fitted boosted regression
trees (BRT) model: (a) cropland vs. mean annual precipitation (MAP), (b) slope vs. MAP, (c) aspect vs.
slope and (d) cropland vs. slope. Note that the plots have different scaling for the Y-axis.
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4. Discussion

4.1. ALS-Based Aboveground Biomass Map

Using a combination of field plots and ALS metrics, a wall-to-wall high-resolution AGB map
was made for the Taita Hills. The AGB model had an R2 of 0.88 and an RMSE of 52.9 Mg·ha−1 (43%).
Some of the previous studies in the tropics have achieved better model fits and accuracies [10,12,16,63].
However, a larger plot size has usually been used, which reduces the error [18]. Furthermore, the
heterogeneous land cover could explain the worse accuracy, but a single model for the whole area was
considered appropriate here as systematic over- or under-estimation was not observed. Therefore,
averaging AGB estimates to 250 m × 250 m resolution for modelling is likely to improve accuracy
considerably [6]. The final model was based on percentile height (H.p25) and canopy cover (CC.all.first).
The variables are in line with the previous studies in Africa, which have used, for example, mean
canopy height, height percentiles and canopy density for modelling [6,10–12]. Both modelling accuracy
and explanatory variables are similar to the model used for the hills in the study by [15], who developed
separate models for hills and lowlands using different ALS data.

Although the general patterns of AGB are very similar, the current map is an improvement
over an earlier aboveground carbon map for the Taita Hills [15]. The authors in [15] generated their
map for analyzing the effect of the land cover change on carbon stocks using a satellite image-based
land cover map and land cover type-specific mean carbon density values. However, the continuous
AGB estimates are important as AGB depends on many variables, also within land cover classes
(see Section 4.2). If converted to carbon, the new map had slightly larger mean carbon densities
for montane forests (94.9 Mg·C·ha−1), exotic plantation forests (36.0 Mg·C·ha−1) and woodland
(27.1 Mg·C·ha−1) in comparison to [15], who reported mean values of 89.5 Mg·C·ha−1, 29.4 Mg·C·ha−1

and 16.8 Mg·C·ha−1, respectively.
Uncertainties in the ALS-based mapping could be decreased by using species-specific allometric

equations [37]. Due to the absence of local wood density data and species-level allometric equations,
beside genera Acacia and Eucalyptus, we used [40] for the rest of the species. Therefore, future studies
should attempt to contribute to filling this gap. Furthermore, stems having D < 10 cm were not sampled
in this study as they usually contribute only little to the aboveground carbon in mature African tropical
forests [20,64]. However, in a boreal forest, The author of [65] showed that a minimum DBH of 3 cm
produced better AGB modelling results than 10 cm for the young forests, although improvement was
small for the mature forests. Therefore, having a smaller DBH limit could improve modelling accuracy
slightly in the areas with abundant small trees and shrubs. Additionally, the slope can bias ALS height
percentiles [66], which were used in the final AGB model. This could increase AGB predictions in
the steep slopes with an effect on the BRT analysis (Section 4.2), and future studies should consider
applying a slope correction [67] before computing ALS height metrics. Nonetheless, there was no sign
of systematic overestimation in the steep slopes when assessing the model residuals against the slope.

4.2. Determinants of Aboveground Biomass Distribution

AGB distribution in the Taita Hills is driven by the quantity and spatial distribution of
precipitation. Precipitation is uneven due to the orographic rain pattern causing the eastern slopes
and eastern parts of the hills to receive more precipitation than the leeward side in the western region,
which is suffering from high water stress. AGB was the greatest at mid-altitude hills where MAP is
high in comparison with the lowlands. The authors of [21] observed that precipitation explained 39%
of the variation in LAI, and LAI increased significantly with increasing MAP in woody biomes. The
bimodal rainfall pattern in the study area provides precipitation for more than half a year. In this study,
precipitation explained 37.6% of AGB variation. The authors of [68] observed that AGB in African
tropical forests shows a positive relationship with rainfall in the driest nine months and is negative for
the wettest three months of the year. Low AGB in the lowlands could be due to higher air temperature,
which results in higher respiration, and low precipitation in the lowlands could limit photosynthesis.
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Both precipitation and temperature are closely related to elevation. We removed elevation
and MAT from the analysis as they strongly correlated with MAP. The authors of [6] observed that
elevation and the fraction of photosynthetic vegetation cover together accounted for 27–67% of the
spatial variation in aboveground carbon density in areas in the north and south aspects of Madagascar.
The authors of [20] revealed that AGB was the greatest in gentle slope and mid-elevation, which
explained 63.7% of the variation in aboveground carbon in the Eastern Arc Mountains, especially
Tanzania. The authors of [16] highlighted the fact that increasing elevation corresponds to a 53–84%
decrease in AGB levels depending on substrate age class. Normally, at higher elevations, growth can
be limited by water shortage and reduced temperature [20,69]. However, in tropical montane cloud
forests, high atmospheric-humidity levels are sustained due to frequent cloud cover and fog [69].

Furthermore, greater AGB was found in areas with smaller cropland fraction and on the relatively
steep slope, compared with valleys and ridges. Croplands, if present in the mid-altitude, are
concentrated on the northern and southwestern slopes, for example around Vuria and Ngangao.
There is an increasing trend in croplands at the expense of thickets and shrublands in the lowlands.
The amount of precipitation is low in the lowlands, which is directly linked with productivity. In the
hills above 1220 m a.s.l., croplands are converted to shrublands and woodlands, due to the growing
number of trees in the farms due to agroforestry and government policies [15]. Besides that, cropland
in hills has less economic returns from cash crop and high labor demand. This pattern is also observed
here as even though the cropland fraction in the area is more than 50%, there is still some AGB
(<120 Mg·ha−1). Steeper slopes have less cropland as they are not suitable for agriculture due to soil
loss during heavy rainfall. The slope was the most important control in tropical landscapes in Costa
Rica [19]. Convexity, elevation and slope were significantly related to AGB in subtropical broad-leaved
forests of Taiwan [70]. The results are in line with [19] and [70], as slope also explained more of the
variation in AGB in the Afromontane landscape mosaic. In this study, larger AGBs are limited to steep
slopes (<37 degrees), compared with shallow and steepest slope in [20] and [71]. The steepest slopes
and hilltops are covered by bare rocks, and they do not have enough nutrients and soil to hold high
biomass forests. For instance, part of the hilltops in Ngangao are covered by Erica mannii and the top
of Vuria by short elfin forests. The forest on the hilltops is also reserved for conservation under the
Kenya Forest Service [72] and recognized as sacred forests [73].

Plantation of trees on former agriculture lands substantially increases biomass accumulation
during the first few years of forest recovery in the restored tropical forest in Costa Rica [74]. In addition
to the small and fragmented indigenous forest patches, the Taita Hills host plantations of exotic
tree species, such as Cupressus lusitanica, Eucalyptus spp., Grevillea robusta and Pinus spp. [24], which
explained 8.3% of the AGB variation. Forests found on a steep slope at higher altitudes were less likely
to be deforested and less accessible to transport forest materials, while they were more likely to contain
the tallest trees harboring the highest AGB. However, the height of trees is low in the upper montane
forest, like in Vuria, which could be due to the frequent occurrence of low cloud, the possibility of
mechanical damage due to the wind and low radiation (persistence cloud) [69].

Except for plantation and cropland, other land use and land cover variables were found to be
relatively insensitive to the spatial distribution of AGB, for example road and rivers. Built-up areas
are sparsely distributed and have less impact on AGB. The local people practice agroforestry in the
hills in order to preserve the soil, its nutrients and provide shade from trees. There is a low population
density in the drier northwestern part of the study area. The authors of [75] showed the dependency
of dense population with precipitation in the Taita Hills. In rural Africa, dense populations are linked
to croplands with low biomass compared with forests. The authors of [18] observed that for upland
tropical rain forest landscapes, AGB was relatively insensitive to soil type and topography. The
influence of soil was among the lowest also in this study.

Previous studies have analyzed the relationship between ALS-based AGB and biotic and abiotic
explanatory variables from the plot to the landscape level [6,18,19]. The relationship between the
predictors and response variables differs between biomes and changes over spatial scales and through
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time [60]. The fitted functions are not supposed to be applied to another area as the objective of BRT
analysis was to help with understanding the controlling factors of AGB, but not making a predictive
model for AGB. Although the regression methods were different, explanatory variables with higher
spatial resolution (1 ha) explained 67% of the spatial variation in aboveground carbon density in [6].
Additional research is needed to compare the explained deviance using the same regression techniques
and explanatory variables at different spatial resolutions. Furthermore, the model could be further
improved by including forest stand characteristics, for example stand age or disturbance history.

5. Conclusions

The Taita Hills comprise a human-dominated landscape with heterogeneous land cover and forest
being limited to small patches typically far from the main areas of human settlement. In this study,
field estimates of AGB were used for mapping AGB using ALS metrics to construct a wall-to-wall
map for the Taita Hills area. ALS metrics representing the height of the canopy and canopy cover
(i.e., volume of the canopy) predict AGB with the highest accuracy. AGB is concentrated in native
moist evergreen montane forests, which are located in the windward side in the north and southeast
aspects of the Taita Hills in higher elevations receiving more rainfall. The high biomass areas are also
located on hilltops and steep slopes, as they are too cumbersome to take into agricultural practice.
This study revealed the influence of climate, land use and topography in shaping the spatial patterns
in AGB in a heterogeneous landscape. Using the coverage of the AGB map and various explanatory
variables, it was possible to capture the spatial variation in AGB throughout the highly complex region
and a large altitudinal gradient. Hence, the results provide novel insights into the cross-scale nature
of determinants of AGB, in a region where multiple factors may interact non-linearly in defining
landscape-level AGB.
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(i.e., 250 m × 250 m). See Table 4 for description of the variables.  

  

Figure A3. ALS-based aboveground biomass (AGB) map (a) and (b–k) explanatory variables at 250-m
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250 m × 250 m). See Table 4 for description of the variables.
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