Correlation of Nutritional Indices on Admission to the Coronary Intensive Care Unit with the Development of Delirium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Blood Sampling
2.3. Assessment of Nutritional Status
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marcantonio, E.R. Delirium in Hospitalized Older Adults. N. Engl. J. Med. 2017, 377, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Marcantonio, E.R. Postoperative delirium: A 76-year-old woman with delirium following surgery. JAMA 2012, 308, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Bellelli, G.; Morandi, A.; Di Santo, S.G.; Mazzone, A.; Cherubini, A.; Mossello, E.; Bo, M.; Bianchetti, A.; Rozzini, R.; Zanetti, E.; et al. “Delirium Day”: A nationwide point prevalence study of delirium in older hospitalized patients using an easy standardized diagnostic tool. BMC Med. 2016, 14, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, M.; Enander, R.A.; Tadiri, S.P.; Wolfe, R.E.; Shapiro, N.I.; Marcantonio, E.R. Delirium risk prediction, healthcare use and mortality of elderly adults in the emergency department. J. Am. Geriatr. Soc. 2014, 62, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Nagai, T.; Sugano, Y.; Okada, A.; Asaumi, Y.; Aiba, T.; Noguchi, T.; Kusano, K.; Ogawa, H.; Yasuda, S.; et al. Prevalence, determinants, and prognostic significance of delirium in patients with acute heart failure. Int. J. Cardiol. 2016, 222, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.K.; Westendorp, R.G.J.; Saczynski, J.S. Delirium in elderly people. Lancet 2014, 383, 911–922. [Google Scholar] [CrossRef] [Green Version]
- Ringaitiene, D.; Gineityte, D.; Vicka, V.; Zvirblis, T.; Sipylaite, J.; Irnius, A.; Ivaskevicius, J.; Kacergius, T. Impact of malnutrition on postoperative delirium development after on pump coronary artery bypass grafting. J. Cardiothorac. Surg. 2015, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, P.; Ward, L.; Zazzetta, S.; Broggini, V.; Anzuini, A.; Valcarcel, B.; Brathwaite, J.S.; Pasinetti, G.M.; Bellelli, G.; Annoni, G. Association Between Preoperative Malnutrition and Postoperative Delirium After Hip Fracture Surgery in Older Adults. J. Am. Geriatr. Soc. 2017, 65, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 146–156. [Google Scholar] [CrossRef]
- Quinlan, N.; Marcantonio, E.R.; Inouye, S.K.; Gill, T.M.; Kamholz, B.; Rudolph, J.L. Vulnerability: The crossroads of frailty and delirium. J. Am. Geriatr. Soc. 2011, 59 (Suppl. 2), S262–S268. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Mampuya, W.M. Cardiac rehabilitation past, present and future: An overview. Cardiovasc. Diagn. Ther. 2012, 2, 38–49. [Google Scholar] [PubMed]
- Falsini, G.; Grotti, S.; Porto, I.; Toccafondi, G.; Fraticelli, A.; Angioli, P.; Ducci, K.; Liistro, F.; Pieroni, M.; Taddei, T.; et al. Long-term prognostic value of delirium in elderly patients with acute cardiac diseases admitted to two cardiac intensive care units: A prospective study (DELIRIUM CORDIS). Eur. Heart J. Acute Cardiovasc. Care 2017, 7, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, T.; Watanabe, M.; Kawasaki, C.; Kuroda, I.; Abe, H.; Date, M.; Ueda, Y.; Yasumura, Y.; Koretsune, Y. A novel scoring system to predict delirium and its relationship with the clinical course in patients with acute decompensated heart failure. J. Cardiol. 2017, 71, 564–569. [Google Scholar] [CrossRef] [PubMed]
- McKee, P.A.; Castelli, W.P.; McNamara, P.M.; Kannel, W.B. The natural history of congestive heart failure: The Framingham study. N. Engl. J. Med. 1971, 285, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Abd-El-Gawad, W.M.; Abou-Hashem, R.M.; El Maraghy, M.O.; Amin, G.E. The validity of Geriatric Nutrition Risk Index: Simple tool for prediction of nutritional-related complication of hospitalized elderly patients. Comparison with Mini Nutritional Assessment. Clin. Nutr. 2014, 33, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Kanda, M.; Fujii, T.; Kodera, Y.; Nagai, S.; Takeda, S.; Nakao, A. Nutritional predictors of postoperative outcome in pancreatic cancer. Br. J. Surg. 2011, 98, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, T.; Kohno, M.; Iguchi, T.; Mori, E.; Maeda, T.; Matsukuma, A.; Ezaki, T. The prognostic nutritional index can be a prognostic indicator in colorectal carcinoma. Surg. Today 2012, 42, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.H.; Tian, G.Y.; Wan, Y.Y.; Kang, Y.M.; Guo, H.S.; Liu, Q.H.; Lin, D.J. Prognostic nutritional index predicts outcomes of malignant pleural mesothelioma. J. Cancer Res. Clin. Oncol. 2013, 139, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Chan, S.L.; Wong, G.L.; Wong, V.W.; Chong, C.C.; Lai, P.B.; Chan, H.L.; To, K.F. Prognostic Nutritional Index (PNI) Predicts Tumor Recurrence of Very Early/Early Stage Hepatocellular Carcinoma After Surgical Resection. Ann. Surg. Oncol. 2015, 22, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.; Kanauchi, N.; Watanabe, H. Preoperative prognostic nutritional index as a predictor of outcomes in elderly patients after surgery for lung cancer. Jpn. J. Clin. Oncol. 2018, 48, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.L.; Sung, S.H.; Cheng, H.M.; Hsu, P.F.; Guo, C.Y.; Yu, W.C.; Chen, C.H. Prognostic Nutritional Index and the Risk of Mortality in Patients with Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, e004876. [Google Scholar] [CrossRef] [PubMed]
- Alvares-da-Silva, M.R.; Reverbel da Silveira, T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition 2005, 21, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Ignacio de Ulibarri, J.; Gonzalez-Madrono, A.; de Villar, N.G.; Gonzalez, P.; Gonzalez, B.; Mancha, A.; Rodriguez, F.; Fernandez, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Gibbs, J.; Cull, W.; Henderson, W.; Daley, J.; Hur, K.; Khuri, S.F. Preoperative serum albumin level as a predictor of operative mortality and morbidity: Results from the National VA Surgical Risk Study. JAMA Surg. 1999, 134, 36–42. [Google Scholar] [CrossRef]
- Reuben, D.B.; Ix, J.H.; Greendale, G.A.; Seeman, T.E. The predictive value of combined hypoalbuminemia and hypocholesterolemia in high functioning community-dwelling older persons: MacArthur Studies of Successful Aging. J. Am. Geriatr. Soc. 1999, 47, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Shronts, E.P. Basic concepts of immunology and its application to clinical nutrition. Nutr. Clin. Pract. 1993, 8, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Engelborghs, S.; Gilles, C.; Ivanoiu, A.; Vandewoude, M. Rationale and clinical data supporting nutritional intervention in Alzheimer’s disease. Acta Clin. Belg. 2014, 69, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sanford, A.M.; Flaherty, J.H. Do nutrients play a role in delirium? Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.M.; Roubenoff, R. The nutrition implications of cardiac cachexia. Nutr. Rev. 1994, 52, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, M.; Rodrigues Dos Santos, M.; von Haehling, S. Muscle wasting in heart failure: The role of nutrition. Wien. Klin. Wochenschr. 2016, 128 (Suppl. 7), 455–465. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D. Interplay of stress and physical inactivity on muscle loss: Nutritional countermeasures. J. Nutr. 2006, 136, 2123–2126. [Google Scholar] [CrossRef] [PubMed]
- Ritter, C.; Tomasi, C.D.; Dal-Pizzol, F.; Pinto, B.B.; Dyson, A.; de Miranda, A.S.; Comim, C.M.; Soares, M.; Teixeira, A.L.; Quevedo, J.; et al. Inflammation biomarkers and delirium in critically ill patients. Crit. Care 2014, 18, R106. [Google Scholar] [CrossRef] [PubMed]
Delirium Group (n = 58) | Non-Delirium Group (n = 595) | p | |
---|---|---|---|
Age, years | 80.4 ± 11.1 | 69.1 ± 13.8 | <0.001 |
Male, n (%) | 31 (53) | 408 (69) | 0.03 |
Body mass index, kg/m2 | 22.4 ± 3.8 | 23.7 ± 4.5 | 0.02 |
Left ventricular ejection fraction, % | 55 ± 14 | 55 ± 16 | NS |
Diabetes mellitus, n (%) | 24 (41) | 172 (29) | NS |
Dyslipidemia, n (%) | 20 (34) | 272 (46) | NS |
Hypertension, n (%) | 35 (60) | 305 (51) | NS |
Atrial fibrillation, n (%) | 15 (26) | 93 (16) | NS |
Dementia, n (%) | 17 (29) | 12 (2) | <0.001 |
Cerebral infarction, n (%) | 7 (12) | 46 (7.7) | NS |
Malignancy, n (%) | 11 (19) | 66 (11) | NS |
Diagnosis on admission | 0.002 | ||
Acute decompensated heart failure, n (%) | 32 (55) | 209 (35) | |
Acute coronary syndrome, n (%) | 7 (12) | 200 (34) | |
Aortic disease, n (%) | 5 (9) | 17 (3) | |
PTE/DVT, n (%) | 2 (3) | 20 (3) | |
VT/VF, n (%) | 1 (2) | 18 (3) | |
Others, n (%) | 11 (19) | 131 (22) | |
Laboratory data | |||
Albumin, g/dL | 3.2 ± 0.6 | 3.5 ± 0.6 | <0.001 |
Total cholesterol, mg/dL | 149 ± 51 | 164 ± 41 | 0.002 |
Triglycerides, mg/dL | 87 ± 56 | 95 ± 56 | NS |
HDL-C, mg/dL | 40 ± 13 | 44 ± 14 | 0.02 |
LDL-C, mg/dL | 89 ± 34 | 101 ± 33 | 0.007 |
Creatinine, mg/dL | 1.9 ± 2.2 | 1.5 ± 1.8 | 0.003 |
HbA1c, % | 6.4 ± 2.0 | 6.1 ± 1.0 | NS |
CRP, mg/dL | 4.1 ± 5.9 | 2.0 ± 4.0 | <0.001 |
NT-pro BNP, pg/mL | 14718 ± 22640 | 6209 ± 15418 | <0.001 |
Medication | |||
Antiplatelets, n (%) | 17 (29) | 222 (37) | NS |
Anticoagulants, n (%) | 14 (24) | 101 (17) | NS |
ACE-I/ARBs, n (%) | 20 (34) | 195 (33) | NS |
β-blockers, n (%) | 20 (34) | 184 (31) | NS |
Calcium channel blockers, n (%) | 15 (26) | 194 (33) | NS |
Statin, n (%) | 16 (28) | 199 (33) | NS |
Oral hypoglycemic agents, n (%) | 11 (20) | 97 (18) | NS |
Insulin, n (%) | 4 (7) | 31 (5) | NS |
Antipsychotics, n (%) | 2 (3.5) | 2 (0.3) | 0.04 |
Anti-depressants, n (%) | 0 (0) | 3 (0.5) | NS |
Anxiolytic drugs, n (%) | 0 (0) | 9 (1.5) | NS |
Benzodiazepines, n (%) | 1 (1.8) | 20 (3.4) | NS |
Nonbenzodiazepines, n (%) | 2 (3.5) | 6 (1.0) | NS |
OR | 95% CI | p | |
---|---|---|---|
Age, 1 year increase | 1.09 | 1.06–1.12 | <0.001 |
Female | 1.90 | 1.10–3.27 | 0.02 |
Body mass index, 1 increase | 0.94 | 0.88–0.99 | 0.04 |
Albumin, 1mg/dL increase | 0.41 | 0.25–0.66 | <0.001 |
Total cholesterol, 1 mg/dL increase | 0.99 | 0.98–0.99 | 0.009 |
HDL-C, 1 mg/dL increase | 0.98 | 0.96–0.99 | 0.03 |
LDL-C, 1 mg/dL increase | 0.99 | 0.98–0.99 | 0.007 |
CRP, 1mg/dL increase | 1.08 | 1.03–1.13 | 0.002 |
NT-proBNP, 1pg/mL increase | 1.00 | 1.00–1.00 | 0.005 |
Creatinine, 1 mg/dL increase | 0.90 | 0.81–1.03 | 0.051 |
ADHF on admission | 2.27 | 1.32–3.94 | 0.003 |
History of dementia | 20.1 | 9.08–46.0 | <0.001 |
History of diabetes mellitus | 1.73 | 1.00–3.00 | 0.054 |
Antipsychotics use | 10.8 | 1.27–91.1 | 0.03 |
Crude | Model 1 | Model 2 | Model 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
GNRI, 1 decrease | 1.05 | 1.02–1.07 | <0.001 | 1.03 | 0.99–1.07 | 0.06 | 1.03 | 0.99–1.07 | 0.13 | 0.96 | 0.84–1.09 | 0.63 |
GNRI as a categorical variable | ||||||||||||
No risk | 1.00 | (reference) | 1.00 | (reference) | 1.00 | (reference) | 1.00 | (reference) | ||||
Low risk | 1.60 | 0.60–4.52 | 0.35 | 1.01 | 0.36–2.94 | 0.98 | 1.02 | 0.35–3.09 | 0.97 | 1.34 | 0.39–4.89 | 0.65 |
Moderate risk | 2.01 | 0.85–5.23 | 0.11 | 1.10 | 0.44–3.01 | 0.84 | 1.09 | 0.41–3.15 | 0.86 | 1.62 | 0.37–7.62 | 0.52 |
High risk | 5.81 | 2.48–15.3 | <0.001 | 2.86 | 1.10–8.13 | 0.03 | 2.46 | 0.87–7.48 | 0.09 | 3.93 | 0.47–33.0 | 0.20 |
PNI, 1 decrease | 1.10 | 1.06–1.14 | <0.001 | 1.08 | 1.03–1.13 | <0.001 | 1.07 | 1.02–1.13 | 0.003 | 1.17 | 1.05–1.33 | 0.004 |
PNI as a categorical variable | ||||||||||||
No risk | 1.00 | (reference) | 1.00 | (reference) | 1.00 | (reference) | 1.00 | (reference) | ||||
Moderate risk | 1.83 | 0.74–4.09 | 0.18 | 1.08 | 0.42–2.53 | 0.86 | 1.03 | 0.38–2.51 | 0.95 | 1.11 | 0.37–3.06 | 0.84 |
High risk | 4.18 | 2.28–7.71 | <0.001 | 2.90 | 1.52–5.52 | 0.001 | 2.53 | 1.26–5.04 | 0.009 | 2.62 | 0.89–7.68 | 0.08 |
CONUT, 1 increase | 1.33 | 1.20–1.48 | <0.001 | 1.31 | 1.17–1.48 | <0.001 | 1.29 | 1.14–1.46 | <0.001 | 1.44 | 1.17–1.79 | 0.02 |
CONUT as a categorical variable | ||||||||||||
No risk | 1.00 | (reference) | 1.00 | (reference) | 1.00 | (reference) | 1.00 | (reference) | ||||
Low risk | 5.32 | 1.51–33.7 | 0.006 | 3.52 | 0.97–22.6 | 0.06 | 5.81 | 1.37–42.4 | 0.01 | 7.03 | 1.52–55.0 | 0.009 |
Moderate risk | 8.65 | 2.48–54.7 | <0.001 | 4.51 | 1.23–29.1 | 0.02 | 6.03 | 1.39–43.9 | 0.01 | 8.66 | 1.58–74.6 | 0.01 |
High risk | 27.3 | 6.68–185.0 | <0.001 | 22.1 | 5.03–155.8 | <0.001 | 33.2 | 6.39–270.9 | <0.001 | 46.1 | 4.90–601.4 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugita, Y.; Miyazaki, T.; Shimada, K.; Shimizu, M.; Kunimoto, M.; Ouchi, S.; Aikawa, T.; Kadoguchi, T.; Kawaguchi, Y.; Shiozawa, T.; et al. Correlation of Nutritional Indices on Admission to the Coronary Intensive Care Unit with the Development of Delirium. Nutrients 2018, 10, 1712. https://doi.org/10.3390/nu10111712
Sugita Y, Miyazaki T, Shimada K, Shimizu M, Kunimoto M, Ouchi S, Aikawa T, Kadoguchi T, Kawaguchi Y, Shiozawa T, et al. Correlation of Nutritional Indices on Admission to the Coronary Intensive Care Unit with the Development of Delirium. Nutrients. 2018; 10(11):1712. https://doi.org/10.3390/nu10111712
Chicago/Turabian StyleSugita, Yurina, Tetsuro Miyazaki, Kazunori Shimada, Megumi Shimizu, Mitsuhiro Kunimoto, Shohei Ouchi, Tatsuro Aikawa, Tomoyasu Kadoguchi, Yuko Kawaguchi, Tomoyuki Shiozawa, and et al. 2018. "Correlation of Nutritional Indices on Admission to the Coronary Intensive Care Unit with the Development of Delirium" Nutrients 10, no. 11: 1712. https://doi.org/10.3390/nu10111712
APA StyleSugita, Y., Miyazaki, T., Shimada, K., Shimizu, M., Kunimoto, M., Ouchi, S., Aikawa, T., Kadoguchi, T., Kawaguchi, Y., Shiozawa, T., Takasu, K., Hiki, M., Takahashi, S., Sumiyoshi, K., Iwata, H., & Daida, H. (2018). Correlation of Nutritional Indices on Admission to the Coronary Intensive Care Unit with the Development of Delirium. Nutrients, 10(11), 1712. https://doi.org/10.3390/nu10111712