Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Prospective Cohort Studies
3.1.1. All-Cause Mortality
3.1.2. Cause-Specific Mortality
Diabetes Mortality
CVD Mortality
Coronary Heart Disease Mortality
Stroke Mortality
3.1.3. Incidence of Type 2 Diabetes, CVD, Hypertension, CHD and Stroke
Type 2 Diabetes
Cardiovascular Disease
Hypertension
Coronary Heart Disease
Fatal/Non-Fatal Coronary Heart Disease
Stroke
3.1.4. Body Weight
3.2. Weight, Blood Glucose, Lipids and Inflammatory Markers, Endothelial Function and Blood Pressure in Meta-Analyses of Intervention Studies
3.2.1. Body Weight
3.2.2. Glycemic Control
3.2.3. Blood Lipids
3.2.4. Adipokines and Inflammatory Markers
3.2.5. Endothelial Function
3.2.6. Blood Pressure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, F.; Moellering, D.R.; Garvey, W.T. The progression of cardiometabolic disease: Validation of a new cardiometabolic disease staging system applicable to obesity. Obesity 2014, 22, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Viguiliouk, E.; Kendall, C.W.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef] [PubMed]
- Jaceldo-Siegl, K.; Haddad, E.; Oda, K.; Fraser, G.E.; Sabate, J. Tree nuts are inversely associated with metabolic syndrome and obesity: The adventist health study-2. PLoS ONE 2014, 9, e85133. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, A.J.; de Souza, R.J.; Meyre, D.; Anand, S.S.; Mente, A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br. J. Nutr. 2016, 115, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.G.; Gomes, A.C.; Naves, M.M.; Mota, J.F. Nuts and legume seeds for cardiovascular risk reduction: Scientific evidence and mechanisms of action. Nutr. Rev. 2015, 73, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Benefits of nut consumption on insulin resistance and cardiovascular risk factors: Multiple potential mechanisms of actions. Nutrients 2017, 9, 1271. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Kirpichnikov, D.; Sowers, J.R. Diabetes mellitus and diabetes-associated vascular disease. Trends Endocrinol. MeTable 2001, 12, 225–230. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Cardwell, C.R.; Woodside, J.V.; Young, I.S.; Hunter, S.J.; McKinley, M.C. A posteriori dietary patterns are related to risk of type 2 diabetes: Findings from a systematic review and meta-analysis. J. Acad. Nutr. Diet. 2014, 114, 1759–1775. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; Bassett, J.K.; Dugue, P.A.; Shivappa, N.; Hebert, J.R.; Milne, R.L.; English, D.R.; Giles, G.G. Dietary inflammatory index or mediterranean diet score as risk factors for total and cardiovascular mortality. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Zhang, R.; Martinez-Gonzalez, M.A.; Zhang, Z.L.; Bonaccio, M.; van Dam, R.M.; Qin, L.Q. Nut consumption in relation to all-cause and cause-specific mortality: A meta-analysis 18 prospective studies. Food Funct. 2017, 8, 3893–3905. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, Y.; Ding, Y.; Shan, Z.; Chen, S.; Yu, M.; Hu, F.B.; Liu, L. Nut consumption and risk of type 2 diabetes, cardiovascular disease and all-cause mortality: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 256–269. [Google Scholar] [CrossRef] [PubMed]
- van den Brandt, P.A.; Schouten, L.J. Relationship of tree nut, peanut and peanut butter intake with total and cause-specific mortality: A cohort study and meta-analysis. Int. J. Epidemiol. 2015, 44, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.N.; Blot, W.J.; Xiang, Y.B.; Cai, H.; Hargreaves, M.K.; Li, H.; Yang, G.; Signorello, L.; Gao, Y.T.; Zheng, W.; et al. Prospective evaluation of the association of nut/peanut consumption with total and cause-specific mortality. JAMA Intern. Med. 2015, 175, 755–766. [Google Scholar] [CrossRef]
- Bao, Y.; Han, J.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med. 2013, 369, 2001–2011. [Google Scholar] [CrossRef]
- Fraser, G.E.; Shavlik, D.J. Risk factors for all-cause and coronary heart disease mortality in the oldest-old. The adventist health study. Arch. Intern. Med. 1997, 157, 2249–2258. [Google Scholar] [CrossRef]
- Hshieh, T.T.; Petrone, A.B.; Gaziano, J.M.; Djousse, L. Nut consumption and risk of mortality in the physicians’ health study. Am. J. Clin. Nutr. 2015, 101, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Blomhoff, R.; Carlsen, M.H.; Andersen, L.F.; Jacobs, D.R., Jr. Health benefits of nuts: Potential role of antioxidants. Br. J. Nutr. 2006, 96 (Suppl. 2), S52–S60. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Montero, A.; Bes-Rastrollo, M.; Barrio-Lopez, M.T.; Fuente-Arrillaga Cde, L.; Salas-Salvado, J.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Nut consumption and 5-y all-cause mortality in a mediterranean cohort: The sun project. Nutrition 2014, 30, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.E.; Sumbureru, D.; Pribis, P.; Neil, R.L.; Frankson, M.A. Association among health habits, risk factors and all-cause mortality in a black california population. Epidemiology 1997, 8, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferre, M.; Bullo, M.; Martinez-Gonzalez, M.A.; Ros, E.; Corella, D.; Estruch, R.; Fito, M.; Aros, F.; Warnberg, J.; Fiol, M.; et al. Frequency of nut consumption and mortality risk in the predimed nutrition intervention trial. BMC Med. 2013, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.I.; Appleby, P.N.; Key, T.J.; Thorogood, M. Dietary determinants of ischaemic heart disease in health conscious individuals. Heart 1997, 78, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Bonaccio, M.; Di Castelnuovo, A.; De Curtis, A.; Costanzo, S.; Bracone, F.; Persichillo, M.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Nut consumption is inversely associated with both cancer and total mortality in a mediterranean population: Prospective results from the moli-sani study. Br. J. Nutr. 2015, 114, 804–811. [Google Scholar] [CrossRef]
- Gopinath, B.; Flood, V.M.; Burlutksy, G.; Mitchell, P. Consumption of nuts and risk of total and cause-specific mortality over 15 years. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 1125–1131. [Google Scholar] [CrossRef]
- Eslamparast, T.; Sharafkhah, M.; Poustchi, H.; Hashemian, M.; Dawsey, S.M.; Freedman, N.D.; Boffetta, P.; Abnet, C.C.; Etemadi, A.; Pourshams, A.; et al. Nut consumption and total and cause-specific mortality: Results from the golestan cohort study. Int. J. Epidemiol. 2017, 46, 75–85. [Google Scholar] [CrossRef]
- Sluik, D.; Boeing, H.; Li, K.; Kaaks, R.; Johnsen, N.F.; Tjonneland, A.; Arriola, L.; Barricarte, A.; Masala, G.; Grioni, S.; et al. Lifestyle factors and mortality risk in individuals with diabetes mellitus: Are the associations different from those in individuals without diabetes? Diabetologia 2014, 57, 63–72. [Google Scholar] [CrossRef]
- Wang, J.B.; Fan, J.H.; Dawsey, S.M.; Sinha, R.; Freedman, N.D.; Taylor, P.R.; Qiao, Y.L.; Abnet, C.C. Dietary components and risk of total, cancer and cardiovascular disease mortality in the linxian nutrition intervention trials cohort in china. Sci. Rep. 2016, 6, 22619. [Google Scholar] [CrossRef] [PubMed]
- Leenders, M.; Sluijs, I.; Ros, M.M.; Boshuizen, H.C.; Siersema, P.D.; Ferrari, P.; Weikert, C.; Tjonneland, A.; Olsen, A.; Boutron-Ruault, M.C.; et al. Fruit and vegetable consumption and mortality: European prospective investigation into cancer and nutrition. Am. J. Epidemiol. 2013, 178, 590–602. [Google Scholar] [CrossRef] [PubMed]
- di Giuseppe, R.; Fjeld, M.K.; Dierkes, J.; Theoflylaktopoulou, D.; Arregui, M.; Boeing, H.; Weikert, C. The association between nut consumption and the risk of total and ischemic stroke in a german cohort study. Eur. J. Clin. Nutr. 2015, 69, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Yochum, L.A.; Folsom, A.R.; Kushi, L.H. Intake of antioxidant vitamins and risk of death from stroke in postmenopausal women. Am. J. Clin. Nutr. 2000, 72, 476–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, K.C.; Chiuve, S.E.; Buring, J.E.; Ridker, P.M.; Glynn, R.J. Comparison of associations of adherence to a dietary approaches to stop hypertension (dash)-style diet with risks of cardiovascular disease and venous thromboembolism. J. Thromb. Haemost. 2012, 10, 189–198. [Google Scholar] [CrossRef] [PubMed]
- von Ruesten, A.; Feller, S.; Bergmann, M.M.; Boeing, H. Diet and risk of chronic diseases: Results from the first 8 years of follow-up in the epic-potsdam study. Eur. J. Clin. Nutr. 2013, 67, 412–419. [Google Scholar] [CrossRef]
- Haring, B.; Gronroos, N.; Nettleton, J.A.; von Ballmoos, M.C.; Selvin, E.; Alonso, A. Dietary protein intake and coronary heart disease in a large community based cohort: Results from the atherosclerosis risk in communities (aric) study [corrected]. PLoS ONE 2014, 9, e109552. [Google Scholar] [CrossRef]
- Albert, C.M.; Gaziano, J.M.; Willett, W.C.; Manson, J.E. Nut consumption and decreased risk of sudden cardiac death in the physicians’ health study. Arch. Intern. Med. 2002, 162, 1382–1387. [Google Scholar] [CrossRef]
- Fraser, G.E.; Sabate, J.; Beeson, W.L.; Strahan, T.M. A possible protective effect of nut consumption on risk of coronary heart disease. The adventist health study. Arch. Intern. Med. 1992, 152, 1416–1424. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, A.M.; Sun, Q.; Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Willett, W.C. Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010, 122, 876–883. [Google Scholar] [CrossRef]
- Haring, B.; Misialek, J.R.; Rebholz, C.M.; Petruski-Ivleva, N.; Gottesman, R.F.; Mosley, T.H.; Alonso, A. Association of dietary protein consumption with incident silent cerebral infarcts and stroke: The atherosclerosis risk in communities (aric) study. Stroke 2015, 46, 3443–3450. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Pan, A.; Rexrode, K.M.; Stampfer, M.; Hu, F.B.; Mozaffarian, D.; Willett, W.C. Dietary protein sources and the risk of stroke in men and women. Stroke 2012, 43, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Gaziano, J.M.; Kase, C.S.; Kurth, T. Nut consumption and risk of stroke in US male physicians. Clin. Nutr. 2010, 29, 605–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaemsiri, S.; Sen, S.; Tinker, L.; Rosamond, W.; Wassertheil-Smoller, S.; He, K. Trans fat, aspirin and ischemic stroke in postmenopausal women. Ann. Neurol. 2012, 72, 704–715. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Cook, N.R.; Shay, C.M.; Rexrode, K.M.; Albert, C.M.; Manson, J.E.; Willett, W.C.; Rimm, E.B. Lifestyle-based prediction model for the prevention of CVD: The healthy heart score. J. Am. Heart Assoc. 2014, 3, e000954. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, B.; Buyken, A.E.; Flood, V.M.; Empson, M.; Rochtchina, E.; Mitchell, P. Consumption of polyunsaturated fatty acids, fish and nuts and risk of inflammatory disease mortality. Am. J. Clin. Nutr. 2011, 93, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Colditz, G.A.; Rosner, B.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Frequent nut consumption and risk of coronary heart disease in women: Prospective cohort study. BMJ 1998, 317, 1341–1345. [Google Scholar] [CrossRef]
- Li, T.Y.; Brennan, A.M.; Wedick, N.M.; Mantzoros, C.; Rifai, N.; Hu, F.B. Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes. J. Nutr. 2009, 139, 1333–1338. [Google Scholar] [CrossRef]
- Levitan, E.B.; Lewis, C.E.; Tinker, L.F.; Eaton, C.B.; Ahmed, A.; Manson, J.E.; Snetselaar, L.G.; Martin, L.W.; Trevisan, M.; Howard, B.V.; et al. Mediterranean and dash diet scores and mortality in women with heart failure: The women’s health initiative. Circ. Heart Fail. 2013, 6, 1116–1123. [Google Scholar] [CrossRef]
- van den Brandt, P.A. The impact of a mediterranean diet and healthy lifestyle on premature mortality in men and women. Am. J. Clin. Nutr. 2011, 94, 913–920. [Google Scholar] [CrossRef]
- Ellsworth, J.L.; Kushi, L.H.; Folsom, A.R. Frequent nut intake and risk of death from coronary heart disease and all causes in postmenopausal women: The iowa women’s health study. Nutr. Metab. Cardiovasc. Dis. 2001, 11, 372–377. [Google Scholar] [PubMed]
- Djousse, L.; Petrone, A.; Gaziano, J. Abstract p067: Nut consumption is associated with a lower risk of death among US male physicians. Circulation 2014, 129, AP067. [Google Scholar]
- Kochar, J.; Gaziano, J.M.; Djousse, L. Nut consumption and risk of type ii diabetes in the physicians’ health study. Eur. J. Clin. Nutr. 2010, 64, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.D.; Harnack, L.J.; Folsom, A.R. Nut consumption and risk of type 2 diabetes. Jama 2003, 290, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Manson, J.E.; Willett, W.C.; Hu, F.B. Walnut consumption is associated with lower risk of type 2 diabetes in women. J. Nutr. 2013, 143, 512–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.L.; Elasy, T.A.; Zheng, W.; Shu, X.O. Legume and soy food intake and the incidence of type 2 diabetes in the shanghai women’s health study. Am. J. Clin. Nutr. 2008, 87, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef]
- Weng, Y.Q.; Yao, J.; Guo, M.L.; Qin, Q.J.; Li, P. Association between nut consumption and coronary heart disease: A meta-analysis. Coron. Artery Dis. 2016, 27, 227–232. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Z.; Zhu, J.; Murad, A.L.; Prokop, L.J.; Murad, M.H. Nut consumption and risk of cancer and type 2 diabetes: A systematic review and meta-analysis. Nutr. Rev. 2015, 73, 409–425. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Asghari, G.; Ghorbani, Z.; Mirmiran, P.; Azizi, F. Nut consumption is associated with lower incidence of type 2 diabetes: The tehran lipid and glucose study. Diabetes MeTable 2017, 43, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Buijsse, B.; Boeing, H.; Drogan, D.; Schulze, M.B.; Feskens, E.J.; Amiano, P.; Barricarte, A.; Clavel-Chapelon, F.; de Lauzon-Guillain, B.; Fagherazzi, G.; et al. Consumption of fatty foods and incident type 2 diabetes in populations from eight european countries. Eur. J. Clin. Nutr. 2015, 69, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Zhou, Z.; Jiang, Y.; Li, W.; Li, Y. Meta-analysis of prospective studies on the effects of nut consumption on hypertension and type 2 diabetes mellitus. J. Diabetes 2015, 7, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yu, H.; He, F.; Reilly, K.H.; Zhang, J.; Li, S.; Zhang, T.; Wang, B.; Ding, Y.; Xi, B. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2014, 100, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Montonen, J.; Jarvinen, R.; Heliovaara, M.; Reunanen, A.; Aromaa, A.; Knekt, P. Food consumption and the incidence of type ii diabetes mellitus. Eur. J. Clin. Nutr. 2005, 59, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvado, J.; Bullo, M.; Estruch, R.; Ros, E.; Covas, M.I.; Ibarrola-Jurado, N.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; et al. Prevention of diabetes with mediterranean diets: A subgroup analysis of a randomized trial. Ann. Intern. Med. 2014, 160, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of hypertension: A systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Rudich, T.; Gaziano, J.M. Nut consumption and risk of hypertension in US male physicians. Clin. Nutr. 2009, 28, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Golzarand, M.; Bahadoran, Z.; Mirmiran, P.; Azizi, F. Protein foods group and 3-year incidence of hypertension: A prospective study from tehran lipid and glucose study. J. Ren. Nutr. 2016, 26, 219–225. [Google Scholar] [CrossRef]
- Martinez-Lapiscina, E.H.; Pimenta, A.M.; Beunza, J.J.; Bes-Rastrollo, M.; Martinez, J.A.; Martinez-Gonzalez, M.A. Nut consumption and incidence of hypertension: The sun prospective cohort. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 359–365. [Google Scholar] [CrossRef]
- Weng, L.C.; Steffen, L.M.; Szklo, M.; Nettleton, J.; Chambless, L.; Folsom, A.R. A diet pattern with more dairy and nuts but less meat is related to lower risk of developing hypertension in middle-aged adults: The atherosclerosis risk in communities (aric) study. Nutrients 2013, 5, 1719–1733. [Google Scholar] [CrossRef]
- Steffen, L.M.; Kroenke, C.H.; Yu, X.; Pereira, M.A.; Slattery, M.L.; Van Horn, L.; Gross, M.D.; Jacobs, D.R., Jr. Associations of plant food, dairy product and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: The coronary artery risk development in young adults (cardia) study. Am. J. Clin. Nutr. 2005, 82, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2017, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, F.; Guo, W.; Yang, H.; Liu, Y.; Zhang, W. Nut consumption and the risk of coronary artery disease: A dose-response meta-analysis of 13 prospective studies. Thromb. Res. 2014, 134, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Q.; Tang, J.J.; Wu, H.; Xie, C.Y.; He, Z.Z. Consumption of nuts and legumes and risk of stroke: A meta-analysis of prospective cohort studies. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; de Koning, L.; Flint, A.J.; Rexrode, K.M.; Willett, W.C. Soda consumption and the risk of stroke in men and women. Am. J. Clin. Nutr. 2012, 95, 1190–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, X.; Yuan, S.; Jin, Y.; Lu, J. Nut consumption and risk of metabolic syndrome and overweight/obesity: A meta-analysis of prospective cohort studies and randomized trials. Nutr. MeTable 2018, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The atherosclerosis risk in communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Montero, A.; Bes-Rastrollo, M.; Beunza, J.J.; Barrio-Lopez, M.T.; de la Fuente-Arrillaga, C.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Nut consumption and incidence of metabolic syndrome after 6-year follow-up: The sun (seguimiento universidad de navarra, university of navarra follow-up) cohort. Public Health Nutr. 2013, 16, 2064–2072. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour-Niazi, S.; Hosseini, S.; Mirmiran, P.; Azizi, F. Prospective study of nut consumption and incidence of metabolic syndrome: Tehran lipid and glucose study. Nutrients 2017, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- Bes-Rastrollo, M.; Sabate, J.; Gomez-Gracia, E.; Alonso, A.; Martinez, J.A.; Martinez-Gonzalez, M.A. Nut consumption and weight gain in a mediterranean cohort: The sun study. Obesity 2007, 15, 107–116. [Google Scholar] [CrossRef]
- Freisling, H.; Noh, H.; Slimani, N.; Chajes, V.; May, A.M.; Peeters, P.H.; Weiderpass, E.; Cross, A.J.; Skeie, G.; Jenab, M.; et al. Nut intake and 5-year changes in body weight and obesity risk in adults: Results from the epic-panacea study. Eur. J. Nutr. 2018, 57, 2399–2408. [Google Scholar] [CrossRef] [PubMed]
- Bes-Rastrollo, M.; Wedick, N.M.; Martinez-Gonzalez, M.A.; Li, T.Y.; Sampson, L.; Hu, F.B. Prospective study of nut consumption, long-term weight change and obesity risk in women. Am. J. Clin. Nutr. 2009, 89, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Hivert, M.F.; Lemaitre, R.N.; McKeown, N.M.; Mozaffarian, D.; Tanaka, T.; Wojczynski, M.K.; Hruby, A.; Djousse, L.; Ngwa, J.S.; et al. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts. Am. J. Epidemiol. 2013, 177, 103–115. [Google Scholar] [CrossRef]
- Ezzati, M.; Hoorn, S.V.; Rodgers, A.; Lopez, A.D.; Mathers, C.D.; Murray, C.J. Estimates of global and regional potential health gains from reducing multiple major risk factors. Lancet 2003, 362, 271–280. [Google Scholar] [CrossRef]
- Jiang, R.; Manson, J.E.; Stampfer, M.J.; Liu, S.; Willett, W.C.; Hu, F.B. Nut and peanut butter consumption and risk of type 2 diabetes in women. Jama 2002, 288, 2554–2560. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Thorogood, M.; Appleby, P.N.; Burr, M.L. Dietary habits and mortality in 11,000 vegetarians and health conscious people: Results of a 17 year follow up. BMJ 1996, 313, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Bamia, C.; Trichopoulos, D. Mediterranean diet and survival among patients with coronary heart disease in Greece. Arch. Intern. Med. 2005, 165, 929–935. [Google Scholar] [CrossRef]
- Dilis, V.; Katsoulis, M.; Lagiou, P.; Trichopoulos, D.; Naska, A.; Trichopoulou, A. Mediterranean diet and chd: The greek European prospective investigation into cancer and nutrition cohort. Br. J. Nutr. 2012, 108, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.E.; Lindsted, K.D.; Beeson, W.L. Effect of risk factor values on lifetime risk of and age at first coronary event. The adventist health study. Am. J. Epidemiol. 1995, 142, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Urpi-Sarda, M.; Casas, R.; Chiva-Blanch, G.; Romero-Mamani, E.S.; Valderas-Martinez, P.; Salas-Salvado, J.; Covas, M.I.; Toledo, E.; Andres-Lacueva, C.; Llorach, R.; et al. The mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J. Nutr. 2012, 142, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Kushi, L.H.; Folsom, A.R.; Prineas, R.J.; Mink, P.J.; Wu, Y.; Bostick, R.M. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N. Engl. J. Med. 1996, 334, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Prineas, R.J.; Kushi, L.H.; Folsom, A.R.; Bostick, R.M.; Wu, Y. Walnuts and serum lipids. N. Engl. J. Med. 1993, 329, 359. [Google Scholar]
- Guasch-Ferre, M.; Li, J.; Hu, F.B.; Salas-Salvado, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Njike, V.Y.; Millet, J.; Dutta, S.; Doughty, K.; Treu, J.A.; Katz, D.L. Effects of walnut consumption on endothelial function in type 2 diabetic subjects: A randomized controlled crossover trial. Diabetes Care 2010, 33, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Gillen, L.J.; Patch, C.S.; Batterham, M.; Owen, A.; Bare, M.; Kennedy, M. Including walnuts in a low-fat/modified-fat diet improves hdl cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 2004, 27, 2777–2783. [Google Scholar] [CrossRef]
- Almario, R.U.; Vonghavaravat, V.; Wong, R.; Kasim-Karakas, S.E. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am. J. Clin. Nutr. 2001, 74, 72–79. [Google Scholar] [CrossRef]
- Damasceno, N.R.; Perez-Heras, A.; Serra, M.; Cofan, M.; Sala-Vila, A.; Salas-Salvado, J.; Ros, E. Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers. Nutr. Metab. Cardiovasc. Dis. 2011, 21 (Suppl. 1), S14–S20. [Google Scholar] [CrossRef]
- Wu, H.; Pan, A.; Yu, Z.; Qi, Q.; Lu, L.; Zhang, G.; Yu, D.; Zong, G.; Zhou, Y.; Chen, X.; et al. Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J. Nutr. 2010, 140, 1937–1942. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Batterham, M.J.; Teuss, G.; Tan, S.Y.; Dalton, S.; Quick, C.J.; Gillen, L.J.; Charlton, K.E. Long-term effects of increased dietary polyunsaturated fat from walnuts on metabolic parameters in type ii diabetes. Eur. J. Clin. Nutr. 2009, 63, 1008–1015. [Google Scholar] [CrossRef]
- Spaccarotella, K.J.; Kris-Etherton, P.M.; Stone, W.L.; Bagshaw, D.M.; Fishell, V.K.; West, S.G.; Lawrence, F.R.; Hartman, T.J. The effect of walnut intake on factors related to prostate and vascular health in older men. Nutr. J. 2008, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Mukuddem-Petersen, J.; Stonehouse Oosthuizen, W.; Jerling, J.C.; Hanekom, S.M.; White, Z. Effects of a high walnut and high cashew nut diet on selected markers of the metabolic syndrome: A controlled feeding trial. Br. J. Nutr. 2007, 97, 1144–1153. [Google Scholar] [CrossRef]
- Ros, E.; Núñez, I.; Pérez-Heras, A.; Serra, M.; Gilabert, R.; Casals, E.; Deulofeu, R. A walnut diet improves endothelial function in hypercholesterolemic subjects: A randomized crossover trial. Circulation 2004, 109, 1609. [Google Scholar] [CrossRef]
- Zambon, D.; Sabate, J.; Munoz, S.; Campero, B.; Casals, E.; Merlos, M.; Laguna, J.C.; Ros, E. Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women. A randomized crossover trial. Ann. Intern. Med. 2000, 132, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Davidhi, A.; Ma, Y.; Kavak, Y.; Bifulco, L.; Njike, V.Y. Effects of walnuts on endothelial function in overweight adults with visceral obesity: A randomized, controlled, crossover trial. J. Am. Coll. Nutr. 2012, 31, 415–423. [Google Scholar] [CrossRef]
- Canales, A.; Sanchez-Muniz, F.J.; Bastida, S.; Librelotto, J.; Nus, M.; Corella, D.; Guillen, M.; Benedi, J. Effect of walnut-enriched meat on the relationship between VCAM, ICAM and LTB4 levels and PON-1 activity in ApoA4 360 and PON-1 allele carriers at increased cardiovascular risk. Eur. J. Clin. Nutr. 2011, 65, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Schutte, A.E.; Van Rooyen, J.M.; Huisman, H.W.; Mukuddem-Petersen, J.; Oosthuizen, W.; Hanekom, S.M.; Jerling, J.C. Modulation of baroreflex sensitivity by walnuts versus cashew nuts in subjects with metabolic syndrome. Am. J. Hypertens. 2006, 19, 629–636. [Google Scholar] [CrossRef]
- Perna, S.; Giacosa, A.; Bonitta, G.; Bologna, C.; Isu, A.; Guido, D.; Rondanelli, M. Effects of hazelnut consumption on blood lipids and body weight: A systematic review and bayesian meta-analysis. Nutrients 2016, 8, 747. [Google Scholar] [CrossRef] [PubMed]
- Tey, S.L.; Brown, R.; Gray, A.; Chisholm, A.; Delahunty, C. Nuts improve diet quality compared to other energy-dense snacks while maintaining body weight. J. Nutr. MeTable 2011, 2011, 357350. [Google Scholar] [CrossRef]
- Tey, S.L.; Gray, A.R.; Chisholm, A.W.; Delahunty, C.M.; Brown, R.C. The dose of hazelnuts influences acceptance and diet quality but not inflammatory markers and body composition in overweight and obese individuals. J. Nutr. 2013, 143, 1254. [Google Scholar] [CrossRef] [PubMed]
- Orem, A.; Yucesan, F.B.; Orem, C.; Akcan, B.; Kural, B.V.; Alasalvar, C.; Shahidi, F. Hazelnut-enriched diet improves cardiovascular risk biomarkers beyond a lipid-lowering effect in hypercholesterolemic subjects. J. Clin. Lipidol. 2013, 7, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Banel, D.K.; Hu, F.B. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: A meta-analysis and systematic review. Am. J. Clin. Nutr. 2009, 90, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; Gillies, P.J.; West, S.G.; Kris-Etherton, P.M. Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am. J. Clin. Nutr. 2007, 85, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Canales, A.; Benedi, J.; Nus, M.; Librelotto, J.; Sanchez-Montero, J.M.; Sanchez-Muniz, F.J. Effect of walnut-enriched restructured meat in the antioxidant status of overweight/obese senior subjects with at least one extra chd-risk factor. J. Am. Coll. Nutr. 2007, 26, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, M.; Imaizumi, K.; Sato, M.; Hirooka, Y.; Sakai, K.; Takeshita, A.; Kono, M. Serum lipid profiles in Japanese women and men during consumption of walnuts. Eur. J. Clin. Nutr. 2002, 56, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, J.M.; Horton, K.; Reese, D.; Carey, C.; Walker, K.; Capuzzi, D.M. Effects of walnut consumption as part of a low-fat, low-cholesterol diet on serum cardiovascular risk factors. Int. J. Vitam. Nutr. Res. 2002, 72, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martinez, P.; Lopez-Miranda, J.; Blanco-Colio, L.; Bellido, C.; Jimenez, Y.; Moreno, J.A.; Delgado-Lista, J.; Egido, J.; Perez-Jimenez, F. The chronic intake of a mediterranean diet enriched in virgin olive oil, decreases nuclear transcription factor κb activation in peripheral blood mononuclear cells from healthy men. Atherosclerosis 2007, 194, e141–e146. [Google Scholar] [CrossRef]
- Sabate, J.; Fraser, G.E.; Burke, K.; Knutsen, S.F.; Bennett, H.; Lindsted, K.D. Effects of walnuts on serum lipid levels and blood pressure in normal men. N. Engl. J. Med. 1993, 328, 603–607. [Google Scholar] [CrossRef]
- Chisholm, A.; Mann, J.; Skeaff, M.; Frampton, C.; Sutherland, W.; Duncan, A.; Tiszavari, S. A diet rich in walnuts favourably influences plasma fatty acid profile in moderately hyperlipidaemic subjects. Eur. J. Clin. Nutr. 1998, 52, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Flores-Mateo, G.; Rojas-Rueda, D.; Basora, J.; Ros, E.; Salas-Salvadó, J. Nut intake and adiposity: Meta-analysis of clinical trials. Am. J. Clin. Nutr. 2013, 97, 1346–1355. [Google Scholar] [CrossRef]
- O’Byrne, D.J.; Knauft, D.A.; Shireman, R.B. Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 1997, 32, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Parker, T.L.; Connelly, P.W.; Qian, W.; Haight, J.S.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; et al. Dose response of almonds on coronary heart disease risk factors: Blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine and pulmonary nitric oxide: A randomized, controlled, crossover trial. Circulation 2002, 106, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; Trautwein, E.A.; Parker, T.L.; Josse, R.G.; Leiter, L.A.; et al. The effect of combining plant sterols, soy protein, viscous fibers and almonds in treating hypercholesterolemia. Metabolism 2003, 52, 1478–1483. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Popovich, D.G.; Kendall, C.W.; Vidgen, E.; Tariq, N.; Ransom, T.P.; Wolever, T.M.; Vuksan, V.; Mehling, C.C.; Boctor, D.L.; et al. Effect of a diet high in vegetables, fruit and nuts on serum lipids. Metabolism 1997, 46, 530–537. [Google Scholar] [CrossRef]
- Wien, M.A.; Sabate, J.M.; Ikle, D.N.; Cole, S.E.; Kandeel, F.R. Almonds vs complex carbohydrates in a weight reduction program. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 1365–1372. [Google Scholar] [CrossRef] [Green Version]
- Hollis, J.; Mattes, R. Effect of chronic consumption of almonds on body weight in healthy humans. Br. J. Nutr. 2007, 98, 651–656. [Google Scholar] [CrossRef]
- Sheridan, M.J.; Cooper, J.N.; Erario, M.; Cheifetz, C.E. Pistachio nut consumption and serum lipid levels. J. Am. Coll. Nutr. 2007, 26, 141–148. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Granado-Lorencio, F.; Herrero-Barbudo, C.; Blanco-Navarro, I.; Blazquez-Garcia, S.; Perez-Sacristan, B. Consumption of restructured meat products with added walnuts has a cholesterol-lowering effect in subjects at high cardiovascular risk: A randomised, crossover, placebo-controlled study. J. Am. Coll. Nutr. 2008, 27, 342–348. [Google Scholar] [CrossRef]
- Gebauer, S.K.; West, S.G.; Kay, C.D.; Alaupovic, P.; Bagshaw, D.; Kris-Etherton, P.M. Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: A dose-response study. Am. J. Clin. Nutr. 2008, 88, 651–659. [Google Scholar] [CrossRef]
- Tapsell, L.; Batterham, M.; Tan, S.Y.; Warensjo, E. The effect of a calorie controlled diet containing walnuts on substrate oxidation during 8-h in a room calorimeter. J. Am. Coll. Nutr. 2009, 28, 611–617. [Google Scholar] [CrossRef]
- Razquin, C.; Martinez, J.A.; Martinez-Gonzalez, M.A.; Fernandez-Crehuet, J.; Santos, J.M.; Marti, A. A mediterranean diet rich in virgin olive oil may reverse the effects of the -174g/c il6 gene variant on 3-year body weight change. Mol. Nutr. Food Res. 2010, 54 (Suppl. 1), S75–S82. [Google Scholar] [CrossRef] [PubMed]
- Casas-Agustench, P.; López-Uriarte, P.; Bulló, M.; Ros, E.; Cabré-Vila, J.; Salas-Salvadó, J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 126–135. [Google Scholar] [CrossRef]
- Sabate, J.; Haddad, E.; Tanzman, J.S.; Jambazian, P.; Rajaram, S. Serum lipid response to the graduated enrichment of a step i diet with almonds: A randomized feeding trial. Am. J. Clin. Nutr. 2003, 77, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Spiller, G.A.; Jenkins, D.A.; Bosello, O.; Gates, J.E.; Cragen, L.N.; Bruce, B. Nuts and plasma lipids: An almond-based diet lowers LDL-C while preserving HDL-C. J. Am. Coll. Nutr. 1998, 17, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Lamarche, B.; Desroches, S.; Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; Trautwein, E.A.; Parker, T.L.; et al. Combined effects of a dietary portfolio of plant sterols, vegetable protein, viscous fibre and almonds on LDL particle size. Br. J. Nutr. 2004, 92, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Cordero-Macintyre, Z.; Siapco, G.; Torabian, S.; Haddad, E. Does regular walnut consumption lead to weight gain? Br. J. Nutr. 2005, 94, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Wien, M.; Bleich, D.; Raghuwanshi, M.; Gould-Forgerite, S.; Gomes, J.; Monahan-Couch, L.; Oda, K. Almond consumption and cardiovascular risk factors in adults with prediabetes. J. Am. Coll. Nutr. 2010, 29, 189–197. [Google Scholar] [CrossRef]
- Chisholm, A.; Mc Auley, K.; Mann, J.; Williams, S.; Skeaff, M. Cholesterol lowering effects of nuts compared with a canola oil enriched cereal of similar fat composition. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 284–292. [Google Scholar] [CrossRef]
- Foster, G.D.; Shantz, K.L.; Vander Veur, S.S.; Oliver, T.L.; Lent, M.R.; Virus, A.; Szapary, P.O.; Rader, D.J.; Zemel, B.S.; Gilden-Tsai, A. A randomized trial of the effects of an almond-enriched, hypocaloric diet in the treatment of obesity. Am. J. Clin. Nutr. 2012, 96, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Mercanligil, S.M.; Arslan, P.; Alasalvar, C.; Okut, E.; Akgul, E.; Pinar, A.; Geyik, P.O.; Tokgozoglu, L.; Shahidi, F. Effects of hazelnut-enriched diet on plasma cholesterol and lipoprotein profiles in hypercholesterolemic adult men. Eur. J. Clin. Nutr. 2007, 61, 212–220. [Google Scholar] [CrossRef]
- Morgan, W.A.; Clayshulte, B.J. Pecans lower low-density lipoprotein cholesterol in people with normal lipid levels. J. Am. Diet. Assoc. 2000, 100, 312–318. [Google Scholar] [CrossRef]
- Kocyigit, A.; Koylu, A.A.; Keles, H. Effects of pistachio nuts consumption on plasma lipid profile and oxidative status in healthy volunteers. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Liu, Y.H.; Liu, J.F.; Chang, W.H.; Chen, C.M.; Chen, C.Y. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 2011, 60, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Blanco Mejia, S.; Kendall, C.W.; Viguiliouk, E.; Augustin, L.S.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Z.; Liu, Y.; Lv, X.; Yang, W. Effects of pistachios on body weight in chinese subjects with metabolic syndrome. Nutr. J. 2012, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Mattes, R.D. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: A randomized, controlled trial. Eur. J. Clin. Nutr. 2013, 67, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in asian indians with metabolic syndrome: A 24-wk, randomized control trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef]
- Somerset, S.M.; Graham, L.; Markwell, K. Isoenergetic replacement of dietary saturated with monounsaturated fat via macadamia nuts enhances endothelial function in overweight subjects. e-SPEN J. 2013, 8, e113–e119. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kendall, C.W.; Banach, M.S.; Srichaikul, K.; Vidgen, E.; Mitchell, S.; Parker, T.; Nishi, S.; Bashyam, B.; de Souza, R.; et al. Nuts as a replacement for carbohydrates in the diabetic diet. Diabetes Care 2011, 34, 1706–1711. [Google Scholar] [CrossRef]
- Damavandi, R.D. The effects of cashew consumption on serum glucose, insulin and lipoprotein in type 2 diabetic patients. Iran. J. Endocrinol. MeTable 2012, 14, 325–334. [Google Scholar]
- Lee, Y.J.; Nam, G.E.; Seo, J.A.; Yoon, T.; Seo, I.; Lee, J.H.; Im, D.; Bahn, K.N.; Jeong, S.A.; Kang, T.S.; et al. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome. Nutr. Res. 2014, 34, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.D.M.; Moreira, A.P.B.; Macedo, V.S.; Alfenas, R.; Bressan, J.; Mattes, R.; Costa, N.M.B. Regular intake of high-oleic peanuts improves fat oxidation and body composition in overweight/obese men pursuing a energy-restricted diet. Obesity 2014, 22, 1422–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wien, M.; Oda, K.; Sabate, J. A randomized controlled trial to evaluate the effect of incorporating peanuts into an american diabetes association meal plan on the nutrient profile of the total diet and cardiometabolic parameters of adults with type 2 diabetes. Nutr. J. 2014, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Barbour, J.A.; Howe, P.R.; Buckley, J.D.; Bryan, J.; Coates, A.M. Effect of 12 weeks high oleic peanut consumption on cardio-metabolic risk factors and body composition. Nutrients 2015, 7, 7381–7398. [Google Scholar] [CrossRef]
- Jaceldo-Siegl, K.; Sabate, J.; Batech, M.; Fraser, G.E. Influence of body mass index and serum lipids on the cholesterol-lowering effects of almonds in free-living individuals. Nutr. Metab. Cardiovasc. Dis. 2011, 21 (Suppl. 1), S7–S13. [Google Scholar] [CrossRef] [PubMed]
- Abazarfard, Z.; Salehi, M.; Keshavarzi, S. The effect of almonds on anthropometric measurements and lipid profile in overweight and obese females in a weight reduction program: A randomized controlled clinical trial. J. Res. Med. Sci. 2014, 19, 457–464. [Google Scholar] [PubMed]
- Babio, N.; Toledo, E.; Estruch, R.; Ros, E.; Martinez-Gonzalez, M.A.; Castaner, O.; Bullo, M.; Corella, D.; Aros, F.; Gomez-Gracia, E.; et al. Mediterranean diets and metabolic syndrome status in the predimed randomized trial. Can. Med. Assoc. J. 2014, 186, E649–E657. [Google Scholar] [CrossRef] [PubMed]
- Bento, A.P.; Cominetti, C.; Simoes Filho, A.; Naves, M.M. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1330–1336. [Google Scholar] [CrossRef]
- Berryman, C.E.; West, S.G.; Fleming, J.A.; Bordi, P.L.; Kris-Etherton, P.M. Effects of daily almond consumption on cardiometabolic risk and abdominal adiposity in healthy adults with elevated LDL-cholesterol: A randomized controlled trial. J. Am. Heart Assoc. 2015, 4, e000993. [Google Scholar] [CrossRef]
- Jamshed, H.; Sultan, F.A.; Iqbal, R.; Gilani, A.H. Dietary almonds increase serum HDL cholesterol in coronary artery disease patients in a randomized controlled trial. J. Nutr. 2015, 145, 2287–2292. [Google Scholar] [CrossRef]
- Dhillon, J.; Tan, S.Y.; Mattes, R.D. Almond consumption during energy restriction lowers truncal fat and blood pressure in compliant overweight or obese adults. J. Nutr. 2016, 146, 2513–2519. [Google Scholar] [CrossRef] [PubMed]
- Ruisinger, J.F.; Gibson, C.A.; Backes, J.M.; Smith, B.K.; Sullivan, D.K.; Moriarty, P.M.; Kris-Etherton, P. Statins and almonds to lower lipoproteins (the stall study). J. Clin. Lipidol. 2015, 9, 58–64. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, J.F.; Li, S.C.; Huang, C.L.; Hsirh, A.T.; Weng, S.F.; Chang, M.L.; Li, H.T.; Mohn, E.; Chen, C.O. Almonds ameliorate glycemic control in Chinese patients with better controlled type 2 diabetes: A randomized, crossover, controlled feeding trial. Nutr. MeTable 2017, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Chen, C.O.; Blumberg, J.B.; Kwak, H.K. The effect of almonds on vitamin e status and cardiovascular risk factors in korean adults: A randomized clinical trial. Eur. J. Nutr. 2018, 57, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hwang, H.J.; Ryu, H.; Lee, Y.S.; Kim, H.S.; Park, H. The effects of daily intake timing of almond on the body composition and blood lipid profile of healthy adults. Nutr. Res. Pract. 2017, 11, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Flatt, S.W.; Natarajan, L.; Pakiz, B.; Quintana, E.L.; Heath, D.D.; Rana, B.K.; Rock, C.L. Effects of diet composition and insulin resistance status on plasma lipid levels in a weight loss intervention in women. J. Am. Heart Assoc. 2016, 5, e002771. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Flatt, S.W.; Pakiz, B.; Quintana, E.L.; Heath, D.D.; Rana, B.K.; Natarajan, L. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status. Metabolism 2016, 65, 1605–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, E.P.; Tapsell, L.C.; Martin, A.; Batterham, M.J.; Wibisono, C.; Probst, Y.C. Impact of providing walnut samples in a lifestyle intervention for weight loss: A secondary analysis of the healthtrack trial. Food Nutr. Res. 2017, 61, 1344522. [Google Scholar] [CrossRef]
- Rock, C.L.; Flatt, S.W.; Barkai, H.S.; Pakiz, B.; Heath, D.D. Walnut consumption in a weight reduction intervention: Effects on body weight, biological measures, blood pressure and satiety. Nutr. J. 2017, 16, 76. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Lonergan, M.; Batterham, M.J.; Neale, E.P.; Martin, A.; Thorne, R.; Deane, F.; Peoples, G. Effect of interdisciplinary care on weight loss: A randomised controlled trial. BMJ Open 2017, 7, e014533. [Google Scholar] [CrossRef]
- Li, Z.; Song, R.; Nguyen, C.; Zerlin, A.; Karp, H.; Naowamondhol, K.; Thames, G.; Gao, K.; Li, L.; Tseng, C.H.; et al. Pistachio nuts reduce triglycerides and body weight by comparison to refined carbohydrate snack in obese subjects on a 12-week weight loss program. J. Am. Coll. Nutr. 2010, 29, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alonso, P.; Salas-Salvado, J.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bullo, M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation and related metabolic risk markers: A randomized clinical trial. Diabetes Care 2014, 37, 3098–3105. [Google Scholar] [CrossRef] [PubMed]
- Kasliwal, R.R.; Bansal, M.; Mehrotra, R.; Yeptho, K.P.; Trehan, N. Effect of pistachio nut consumption on endothelial function and arterial stiffness. Nutrition 2015, 31, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Sauder, K.A.; McCrea, C.E.; Ulbrecht, J.S.; Kris-Etherton, P.M.; West, S.G. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation and endothelial function in type 2 diabetes: A randomized trial. Metabolism 2015, 64, 1521–1529. [Google Scholar] [CrossRef]
- Damavandi, R.D.; Eghtesadi, S.; Shidfar, F.; Heydari, I.; Foroushani, A.R. Effects of hazelnuts consumption on fasting blood sugar and lipoproteins in patients with type 2 diabetes. J. Res. Med. Sci. 2013, 18, 314–321. [Google Scholar]
- Njike, V.Y.; Ayettey, R.; Petraro, P.; Treu, J.A.; Katz, D.L. Walnut ingestion in adults at risk for diabetes: Effects on body composition, diet quality and cardiac risk measures. BMJ Open Diabetes Res. Care 2015, 3, e000115. [Google Scholar] [CrossRef]
- Parham, M.; Heidari, S.; Khorramirad, A.; Hozoori, M.; Hosseinzadeh, F.; Bakhtyari, L.; Vafaeimanesh, J. Effects of pistachio nut supplementation on blood glucose in patients with type 2 diabetes: A randomized crossover trial. Rev. Diab. Stud. 2014, 11, 190–196. [Google Scholar] [CrossRef]
- Mazidi, M.; Rezaie, P.; Ferns, G.A.; Gao, H.K. Impact of different types of tree nut, peanut and soy nut consumption on serum c-reactive protein (CRP): A systematic review and meta-analysis of randomized controlled clinical trials. Medicine 2016, 95, e5165. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Paulionis, L.; Poon, T.; Lee, H.Y. The effects of almond consumption on fasting blood lipid levels: A systematic review and meta-analysis of randomised controlled trials. J. Nutr. Sci. 2016, 5, e34. [Google Scholar] [CrossRef]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins and blood pressure: Systematic review, meta-analysis and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvado, J.; Guasch-Ferre, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Phung, O.J.; Makanji, S.S.; White, C.M.; Coleman, C.I. Almonds have a neutral effect on serum lipid profiles: A meta-analysis of randomized trials. J. Am. Diet. Assoc. 2009, 109, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xia, J.; Ke, Y.; Cheng, J.; Yuan, J.; Wu, S.; Lv, Z.; Huang, S.; Kim, J.H.; Wong, S.Y.; et al. Effects of nut consumption on selected inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2018, 54, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Neale, E.P.; Tapsell, L.C.; Guan, V.; Batterham, M.J. The effect of nut consumption on markers of inflammation and endothelial function: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2017, 7, e016863. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zheng, S.; Wang, T.; Yang, X.; Luo, Q.; Li, H. Effect of oral nut supplementation on endothelium-dependent vasodilation—A meta-analysis. VASA Z. Gefasskrankh. 2018, 47, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, W.; Peng, C.; Zhang, J.; Wong, C.; Kim, J.H.; Yeoh, E.K.; Su, X. Effect of nut consumption on vascular endothelial function: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2018, 37, 831–839. [Google Scholar] [CrossRef]
- Fogacci, F.; Cicero, A.F.G.; Derosa, G.; Rizzo, M.; Veronesi, M.; Borghi, C. Effect of pistachio on brachial artery diameter and flow-mediated dilatation: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Crit. Rev. Food Sci. Nutr. 2017. [Google Scholar] [CrossRef]
- Colpo, E.; Dalton, D.A.V.C.; Reetz, L.G.; Duarte, M.M.; Farias, I.L.; Meinerz, D.F.; Mariano, D.O.; Vendrusculo, R.G.; Boligon, A.A.; Dalla Corte, C.L.; et al. Brazilian nut consumption by healthy volunteers improves inflammatory parameters. Nutrition 2014, 30, 459–465. [Google Scholar] [CrossRef]
- Rajaram, S.; Connell, K.M.; Sabate, J. Effect of almond-enriched high-monounsaturated fat diet on selected markers of inflammation: A randomised, controlled, crossover study. Br. J. Nutr. 2010, 103, 907–912. [Google Scholar] [CrossRef]
- Bakhtiary, A.; Yassin, Z.; Hanachi, P.; Rahmat, A.; Ahmad, Z.; Jalali, F. Effects of soy on metabolic biomarkers of cardiovascular disease in elderly women with metabolic syndrome. Arch. Iran. Med. 2012, 15, 462–468. [Google Scholar] [PubMed]
- Reverri, E.J.; LaSalle, C.D.; Franke, A.A.; Steinberg, F.M. Soy provides modest benefits on endothelial function without affecting inflammatory biomarkers in adults at cardiometabolic risk. Mol. Nutr. Food Res. 2015, 59, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Kimiagar, M.; Mehrabi, Y.; Esmaillzadeh, A.; Padyab, M.; Hu, F.B.; Willett, W.C. Soy inclusion in the diet improves features of the metabolic syndrome: A randomized crossover study in postmenopausal women. Am. J. Clin. Nutr. 2007, 85, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.M.; Sweeney, L.L.; Liu, X.; Mantzoros, C.S. Walnut consumption increases satiation but has no effect on insulin resistance or the metabolic profile over a 4-day period. Obesity 2010, 18, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Aronis, K.N.; Vamvini, M.T.; Chamberland, J.P.; Sweeney, L.L.; Brennan, A.M.; Magkos, F.; Mantzoros, C.S. Short-term walnut consumption increases circulating total adiponectin and apolipoprotein a concentrations but does not affect markers of inflammation or vascular injury in obese humans with the metabolic syndrome: Data from a double-blinded, randomized, placebo-controlled study. Metabolism 2012, 61, 577–582. [Google Scholar] [PubMed]
- Wu, L.; Piotrowski, K.; Rau, T.; Waldmann, E.; Broedl, U.C.; Demmelmair, H.; Koletzko, B.; Stark, R.G.; Nagel, J.M.; Mantzoros, C.S.; et al. Walnut-enriched diet reduces fasting non-hdl-cholesterol and apolipoprotein b in healthy caucasian subjects: A randomized controlled cross-over clinical trial. Metabolism 2014, 63, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Moreira Alves, R.D.; Boroni Moreira, A.P.; Macedo, V.S.; Bressan, J.; de Cassia Goncalves Alfenas, R.; Mattes, R.; Brunoro Costa, N.M. High-oleic peanuts: New perspective to attenuate glucose homeostasis disruption and inflammation related obesity. Obesity 2014, 22, 1981–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Josse, A.R.; Nguyen, T.H.; Faulkner, D.A.; Lapsley, K.G.; Blumberg, J. Almonds reduce biomarkers of lipid peroxidation in older hyperlipidemic subjects. J. Nutr. 2008, 138, 908–913. [Google Scholar] [CrossRef]
- Holligan, S.; West, S.; Gebauer, S.; Kay, C.; Kris-Etherton, P. A moderate-fat diet with pistachios lowers small-dense LDL and improves markers of insulin sensitivity in subjects with moderately-elevated cholesterol levels. Faseb J. 2013, 27, 1057. [Google Scholar]
- Anderson, A.; Anderson, M.; Jacobson, J.; Popko, M.; Young, J.; Limburg, P.; Wilson, T. Metabolic effects of bedtime pistachio consumption for 6 weeks in overweight persons. Faseb J. 2013, 27, 1072. [Google Scholar]
- Sauder, K.; Mccrea, C.; Kris-Etherton, P.; Ulbrecht, J.; West, S. Effect of pistachios on lipids, lipoproteins, glucose metabolism and insulin sensitivity in type 2 diabetes. Faseb J. 2013, 27, 368. [Google Scholar]
- Lovejoy, J.C.; Most, M.M.; Lefevre, M.; Greenway, F.L.; Rood, J.C. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am. J. Clin. Nutr. 2002, 76, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.E.; Johnston, C.S. Almond ingestion at mealtime reduces postprandial glycemia and chronic ingestion reduces hemoglobin a(1c) in individuals with well-controlled type 2 diabetes mellitus. Metabolism 2011, 60, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Stark, R.G.; Altenhofer, J.; Henze, K.; Parhofer, K.G. A walnut-enriched diet reduces lipids in healthy caucasian subjects, independent of recommended macronutrient replacement and time point of consumption: A prospective, randomized, controlled trial. Nutrients 2017, 9, 1097. [Google Scholar] [CrossRef]
- Burns-Whitmore, B.; Haddad, E.; Sabate, J.; Rajaram, S. Effects of supplementing n-3 fatty acid enriched eggs and walnuts on cardiovascular disease risk markers in healthy free-living lacto-ovo-vegetarians: A randomized, crossover, free-living intervention study. Nutr. J. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Din, J.N.; Aftab, S.M.; Jubb, A.W.; Carnegy, F.H.; Lyall, K.; Sarma, J.; Newby, D.E.; Flapan, A.D. Effect of moderate walnut consumption on lipid profile, arterial stiffness and platelet activation in humans. Eur. J. Clin. Nutr. 2011, 65, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martinez, P.; Ordovas, J.M.; Garcia-Rios, A.; Delgado-Lista, J.; Delgado-Casado, N.; Cruz-Teno, C.; Camargo, A.; Yubero-Serrano, E.M.; Rodriguez, F.; Perez-Jimenez, F.; et al. Consumption of diets with different type of fat influences triacylglycerols-rich lipoproteins particle number and size during the postprandial state. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Torabian, S.; Haddad, E.; Cordero-MacIntyre, Z.; Tanzman, J.; Fernandez, M.L.; Sabate, J. Long-term walnut supplementation without dietary advice induces favorable serum lipid changes in free-living individuals. Eur. J. Clin. Nutr. 2010, 64, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, S.; Haddad, E.H.; Mejia, A.; Sabaté, J. Walnuts and fatty fish influence different serum lipid fractions in normal to mildly hyperlipidemic individuals: A randomized controlled study. Am. J. Clin. Nutr. 2009, 89, 1657S. [Google Scholar] [CrossRef]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; West, S.G.; Gillies, P.J.; Kris-Etherton, P.M. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr. 2004, 134, 2991–2997. [Google Scholar] [CrossRef] [PubMed]
- Sweazea, K.L.; Johnston, C.S.; Ricklefs, K.D.; Petersen, K.N. Almond supplementation in the absence of dietary advice significantly reduces c-reactive protein in subjects with type 2 diabetes. J. Funct. Foods 2014, 10, 252–259. [Google Scholar] [CrossRef]
- Kurlandsky, S.B.; Stote, K.S. Cardioprotective effects of chocolate and almond consumption in healthy women. Nutr. Res. 2006, 26, 509–516. [Google Scholar] [CrossRef]
- Jia, X.; Li, N.; Zhang, W.; Zhang, X.; Lapsley, K.; Huang, G.; Blumberg, J.; Ma, G.; Chen, J. A pilot study on the effects of almond consumption on DNA damage and oxidative stress in smokers. Nutr. Cancer 2006, 54, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Tamizifar, B.; Rismankarzadeh, M.; Vosoughi, A.-A.; Rafieeyan, M.; Tamizifar, B.; Aminzade, A. A low-dose almond-based diet decreases LDL-C while preserving HDL-C. Arch. Iran. Med. 2005, 8, 45–51. [Google Scholar]
- Rajaram, S.; Burke, K.; Connell, B.; Myint, T.; Sabate, J. A monounsaturated fatty acid-rich pecan-enriched diet favorably alters the serum lipid profile of healthy men and women. J. Nutr. 2001, 131, 2275–2279. [Google Scholar] [CrossRef] [PubMed]
- Curb, J.D.; Wergowske, G.; Dobbs, J.C.; Abbott, R.D.; Huang, B. Serum lipid effects of a high-monounsaturated fat diet based on macadamia nuts. Arch. Intern. Med. 2000, 160, 1154–1158. [Google Scholar] [CrossRef]
- Griel, A.E.; Cao, Y.; Bagshaw, D.D.; Cifelli, A.M.; Holub, B.; Kris-Etherton, P.M. A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women. J. Nutr. 2008, 138, 761–767. [Google Scholar] [CrossRef]
- Lopez-Uriarte, P.; Nogues, R.; Saez, G.; Bullo, M.; Romeu, M.; Masana, L.; Tormos, C.; Casas-Agustench, P.; Salas-Salvado, J. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin. Nutr. 2010, 29, 373–380. [Google Scholar] [CrossRef]
- Chen, C.Y.; Holbrook, M.; Duess, M.A.; Dohadwala, M.M.; Hamburg, N.M.; Asztalos, B.F.; Milbury, P.E.; Blumberg, J.B.; Vita, J.A. Effect of almond consumption on vascular function in patients with coronary artery disease: A randomized, controlled, cross-over trial. Nutr. J. 2015, 14, 61. [Google Scholar] [CrossRef]
- Chiang, Y.L.; Haddad, E.; Rajaram, S.; Shavlik, D.; Sabate, J. The effect of dietary walnuts compared to fatty fish on eicosanoids, cytokines, soluble endothelial adhesion molecules and lymphocyte subsets: A randomized, controlled crossover trial. Prostaglandins Leukot. Essent. Fatty Acids 2012, 87, 111–117. [Google Scholar] [CrossRef]
- Djoussé, L.; Lu, B.; Gaziano, J. Effects of walnut consumption on endothelial function in people with type 2 diabetes: A randomized pilot trial. Curr. Nutr. Rep. 2016, 5, 1–8. [Google Scholar] [CrossRef]
- Hu, Y.; McIntosh, G.H.; Le Leu, R.K.; Somashekar, R.; Meng, X.Q.; Gopalsamy, G.; Bambaca, L.; McKinnon, R.A.; Young, G.P. Supplementation with brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans. Br. J. Nutr. 2016, 116, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Liu, Y.H.; Chen, C.M.; Chang, W.H.; Chen, C.Y. The effect of almonds on inflammation and oxidative stress in Chinese patients with type 2 diabetes mellitus: A randomized crossover controlled feeding trial. Eur. J. Nutr. 2013, 52, 927–935. [Google Scholar] [CrossRef]
- Casas, R.; Sacanella, E.; Urpi-Sarda, M.; Chiva-Blanch, G.; Ros, E.; Martinez-Gonzalez, M.A.; Covas, M.I.; Salas-Salvado, J.; Fiol, M.; Aros, F.; et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE 2014, 9, e100084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas, R.; Sacanella, E.; Urpi-Sarda, M.; Corella, D.; Castaner, O.; Lamuela-Raventos, R.M.; Salas-Salvado, J.; Martinez-Gonzalez, M.A.; Ros, E.; Estruch, R. Long-term immunomodulatory effects of a mediterranean diet in adults at high risk of cardiovascular disease in the prevencion con dieta mediterranea (predimed) randomized controlled trial. J. Nutr. 2016, 146, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Lasa, A.; Miranda, J.; Bullo, M.; Casas, R.; Salas-Salvado, J.; Larretxi, I.; Estruch, R.; Ruiz-Gutiérrez, V.; Portillo, M. Comparative effect of two mediterranean diets versus a low-fat diet on glycaemic control in individuals with type 2 diabetes. Eur. J. Clin. Nutr. 2014, 68, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Sola, R.; Valls, R.M.; Godas, G.; Perez-Busquets, G.; Ribalta, J.; Girona, J.; Heras, M.; Cabre, A.; Castro, A.; Domenech, G.; et al. Cocoa, hazelnuts, sterols and soluble fiber cream reduces lipids and inflammation biomarkers in hypertensive patients: A randomized controlled trial. PLoS ONE 2012, 7, e31103. [Google Scholar] [CrossRef]
- West, S.G.; Gebauer, S.K.; Kay, C.D.; Bagshaw, D.M.; Savastano, D.M.; Diefenbach, C.; Kris-Etherton, P.M. Diets containing pistachios reduce systolic blood pressure and peripheral vascular responses to stress in adults with dyslipidemia. Hypertension 2012, 60, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Sari, I.; Baltaci, Y.; Bagci, C.; Davutoglu, V.; Erel, O.; Celik, H.; Ozer, O.; Aksoy, N.; Aksoy, M. Effect of pistachio diet on lipid parameters, endothelial function, inflammation and oxidative status: A prospective study. Nutrition 2010, 26, 399–404. [Google Scholar] [CrossRef]
- Ghadimi Nouran, M.; Kimiagar, M.; Abadi, A.; Mirzazadeh, M.; Harrison, G. Peanut consumption and cardiovascular risk. Public Health Nutr. 2010, 13, 1581–1586. [Google Scholar] [CrossRef]
- Claesson, A.L.; Holm, G.; Ernersson, A.; Lindstrom, T.; Nystrom, F.H. Two weeks of overfeeding with candy but not peanuts, increases insulin levels and body weight. Scand. J. Clin. Lab. Investig. 2009, 69, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gomez-Gracia, E.; Lopez-Sabater, M.C.; Vinyoles, E.; et al. Effects of a mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.M.; Howe, P.R. Edible nuts and metabolic health. Curr. Opin. Lipidol. 2007, 18, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alonso, P.; Camacho-Barcia, L.; Bullo, M.; Salas-Salvado, J. Nuts and dried fruits: An update of their beneficial effects on type 2 diabetes. Nutrients 2017, 9, 673. [Google Scholar] [CrossRef]
Ref/Studies | Analyses | Nut Types | Sample Size | SampleAge (year) | Follow-up Periods (year) | No. of Studies Included | RRs | Significant? | |
---|---|---|---|---|---|---|---|---|---|
All-cause mortality | Chen et al. 2017 [12]/18 prospective studies from 15 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] | High- vs. Low | total nuts | >498,730 subjects with 66,568 deaths | 25–85 | 4.3–30 | 16 studies from 13 publications [17,18,19,20,21,22,23,24,25,26,27,28,29] | 0.81 (95% CI 0.78, 0.84; p-het = 0.20; I2 = 22%) | S |
peanuts | 265,252 subjects with 44,396 deaths | 40–79 | 1, 10 & 12.2 | 5 studies from 3 publications [17,18,19] | 0.85 (95% CI 0.81, 0.89; p-het = 0.19; I2 = 34.1%) | S | |||
tree nuts | 130,987 subjects with 36,252 deaths | 55–69 | 4, 10 | 3 studies from 2 publications [17,19] | 0.83 (95% CI 0.77, 0.89; p-het = 0.95; I2 = 0%) | S | |||
Dose-response | per 1 serving (28 g) of total nuts per week | >766,470 subjects with 81,034 deaths | 25–85 | 4.3–30 | 18 studies from 15 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] | 0.96 (95% CI 0.94, 0.97; p-het < 0.001; I2 = 72.3%) | S | ||
Schwingshackl et al. 2017 [13]/16 prospective of 14 publications [17,18,19,21,22,23,24,25,26,27,28,29,30,31] | High- vs. Low | total nuts | 902,178 subjects with 80,204 deaths | 16–87 | 4.3–30 | 16 prospective of 14 publications [17,18,19,21,22,23,24,25,26,27,28,29,30,31] | 0.80 (95% CI 0.74, 0.86; I2 = 84%; p-het < 0.001) | S | |
Dose-response | per 1 serving (28 g)/day of total nuts | 902,178 subjects with 80,204 deaths | 16–87 | 4.3–30 | 16 prospective of 14 publications [17,18,19,21,22,23,24,25,26,27,28,29,30,31] | 0.76 (95% CI 0.69, 0.84; I2 = 82%; p-het = 0.001) | S | ||
Aune et al. 2016 [14]/20 prospective studies from 9 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] | High- vs. Low | total nuts | 819,448 subjects with 85,870 deaths | 25–95 | 2–30 | 15 studies from 15 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,31,32] | 0.81 (95% CI 0.77, 0.85; p-het = 0.05; I2 = 41%) | S | |
peanuts | 265,252 subjects with 44,396 deaths | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.85 (95% CI 0.82, 0.89; p-het = 0.30; I2 = 18%) | S | |||
tree nuts | 20,2751 subjects with 42,508 deaths | 40–79 | 4–30 | 4 studies from 3 publications [17,18,19] | 0.80 (95% CI 0.74, 0.86; p-het = 0.07; I2 = 58%) | S | |||
Dose-response: 28 g/day increase in total nuts, 10 g/day increase in peanuts and tree nuts | total nuts | 819,448 subjects with 85,870 deaths | 25–95 | 2–30 | 16 studies from 15 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,31,32] | 0.78 (95% CI 0.72, 0.84; p-het < 0.0001; I2 = 66%) | S | ||
peanuts | 265,252 subjects with 44,396 deaths | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.77 (95% CI 0.69, 0.86; p-het = 0.03; I2 = 64%) | S | |||
tree nuts | 202,751 subjects with 42,508 deaths | 40–79 | 4–30 | 4 studies from 3 publications [17,18,19] | 0.82 (95% CI 0.75, 0.90; p-het = 0.02; I2 = 70%) | S | |||
Mayhew et al. 2016 [5]/20 Prospective of 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High- vs. Low | total nuts | 277,432 subjects with 49,232 deaths | 25–94 | 4.6–30 | 10 studies from 9 publications [18,19,22,23,24,25,26,49,50] | 0.81 (95% CI 0.77, 0.85; p-het = 0·04, I2 = 43%) | S | |
Dose-response | increase 4 servings total nuts/week | 277,432 subjects with 49,232 deaths | 25–94 | 4.6–30 | 10 studies from 9 publications [18,19,22,23,24,25,26,49,50] | 0.81 (95% CI 0.75, 0.92) | S | ||
Grosso et al. 2015 [15]/9 prospective of 9 publications [19,23,24,25,38,39,50,51,52] | High- vs. Low | total nuts | 207,608 subjects with 34,482 deaths | ≥18 | 4.8–30 | 6 studies from 6 publications [19,23,24,25,51,52] | 0.77 (95% CI 0.69, 0.87; p-het = 0.04; I2 = 56%) | S | |
Dose-response | 1 serving of total nuts/week | 263,552 subjects with 30,059 deaths | 18–80 | 4.8–30 | 5 studies from 5 publications [19,23,25,50,51] | 0.96 (95% CI 0.93, 0.98; p-het = 0.07; I2 = 53%) | S | ||
1 serving of total nuts/day | 263,552 subjects with 30,059 deaths | 18–80 | 4.8–30 | 5 studies from 5 publications [19,23,25,50,51] | 0.73 (95% CI 0.60, 0.88; p-het = 0.07; I2 = 53%) | S | |||
Luo et al. 2014 [16]/18 prospective of 18 publications [19,20,22,24,25,26,38,39,40,42,43,44,48,50,53,54,55,56] | High (≥2 to ≥7 servings/week vs. Low (0 to ≤1 serving/week) | total nuts | 48,818 deaths | 25–94 | 4–30 | 7 studies from 7 publications [19,20,22,24,25,26,50] | 0.85 (95% CI 0.79, 0.91; p-het = 0.005; I2 = 60.2%) | S | |
Dose-response | total nuts | 3,112,510 subjects with 33,595 deaths | 40–80 | 4–30 | 4 studies from 4 publications [19,22,25,26] | 0.83 (95% CI 0.76, 0.91; p-het = 0.032; I2 = 62.1%) | S | ||
CVD mortality | Chen et al. 2017 [12]/18 prospective studies from 15 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] | High- vs. Low | total nuts | >524,610 subjects with 19,574 deaths | 25–85 | 4.3–30 | 16 studies from 13 publications [17,18,19,20,21,22,23,25,26,27,28,29,33] | 0.75 (95% CI 0.71, 0.79; p-het = 0.50; I2 = 0%) | S |
peanuts | 265,252 subjects with 12,052 deaths | 40–79 | 1, 10&12.2 | 5 studies from 3 publications [17,18,19] | 0.78 (95% CI 0.73–0.85; p-het = 0.30; I2 = 18%) | S | |||
tree nuts | 130,987 subjects with 9456 deaths | 55–69 | 4, 10 | 3 studies from 2 publications [17,19] | 0.81 (95% CI 0.74, 0.89; p-het = 0.62; I2 = 0%) | S | |||
Dose-response | per 1 serving of total nuts per week | >509,871 subjects with 20,362 deaths | 25–85 | 4.3–30 | 16 studies from 13 publications [17,18,19,20,21,22,25,26,27,28,29,31,33] | 0.94 (95% CI 0.93, 0.96; p-het = 0.001; I2 = 59.9%) | S | ||
Mayhew et al. 2016 [5]/20 Prospective of 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High- vs. Low | total nuts | 243,795 subjects with 13,726 deaths | 40–80 | 4–30 | 5 studies from 5 publications [17,18,19,22,25] | 0.73 (95% CI 0.68, 0.78; p-het = 0.31, I2 = 16%) | S | |
Dose-response | total nuts | 243,795 subjects with 13,726 deaths | 40–80 | 4–30 | 5 studies from 5 publications [17,18,19,22,25] | 0.78 (95% CI 0.63, 1.00) | NS | ||
Grosso et al. 2015 [15]/9 prospective of 9 publications [19,23,24,25,38,39,50,51,52] | High- vs. Low | total nuts | 354,933 subjects with 7775 deaths | 40–80 | 4–30 | 7 studies from 6 publications [19,25,38,39,51,52] | 0.71 (95% CI 0.62, 0.81; p-het = 0.24; I2 = 25%) | S | |
Dose-response | 1 serving of total nuts/week | 354,933 subjects with 7775 deaths | 49–80 | 4–30 | 4 studies from 4 publications [19,25,38,51] | 0.93 (95% CI 0.88, 0.99; p-het = 0.004; I2 = 74%) | S | ||
1 serving of total nuts/day | 354,933 subjects with 7775 deaths | 49–80 | 4–30 | 4 studies from 4 publications [19,25,38,51] | 0.61 (95% CI 0.42, 0.91; p-het = 0.003; I2 = 75%) | S | |||
CHD mortality | Chen et al. 2017 [12]/18 prospective studies from 15 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] | High- vs. Low | total nuts | >429,833 subjects with 10,083 deaths | 40–80 | 2–30 | 13 studies from 10 publications [17,18,19,20,21,22,25,26,27,28] | 0.73 (95% CI 0.67, 0.80; p-het = 0.30; I2 = 14.2%) | S |
peanuts | 265,252 subjects with 7025 deaths | 40–80 | 2–30 | 5 studies from 3 publications [17,18,19] | 0.76 (95% CI 0.69, 0.82; p-het = 0.65; I2 = 0%) | S | |||
tree nuts | 130,987 subjects with 6394 deaths | 40–80 | 2–30 | 3 studies from 2 publications [17,19] | 0.79 (95% CI 0.68, 0.92; p-het = 0.25; I2 = 27.5%) | S | |||
Dose-response | per 1 serving of total nuts per week | >412,892 subjects with 10,399 events | 40–80 | 2–30 | 13 studies from10 publications [17,18,19,20,21,22,25,26,28,31] | 0.94 (95% CI 0.93, 0.96; p-het = 0.11; I2 = 34.3%) | S | ||
Mayhew et al. 2016 [5]/20 Prospective of 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High- vs. Low | total nuts | 278,584 subjects with 8454 events | 40–80 | 2–30 | 7 studies from 7 publications [17,18,19,22,24,26,39] | 0.70 (95% CI 0.64, 0.76; p-het = 0.65; I2 = 0%) | S | |
Dose-response | total nuts | 278,584 subjects with 8454 events | 40–80 | 2–30 | 7 studies from 7 publications [17,18,19,22,24,26,39] | 0.78 (95% CI 0.57, 1.08) | NS | ||
Stroke mortality | Chen et al. 2017 [12]/18 prospective studies from 15 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] | High- vs. Low | total nuts | 449,293 subjects with 4398 deaths | 40–80 | 2–30 | 12 studies from 9 publications [17,18,19,21,25,27,28,33,34] | 0.82 (95% CI 0.73, 0.91; p-het = 0.82; I2 = 0%) | S |
peanuts | 265,252 subjects with 3315 deaths | 40–80 | 2–30 | 5 studies from 3 publications [17,18,19] | 0.83 (95% CI 0.71, 0.97; p-het = 0.12; I2 = 46.2%) | S | |||
tree nuts | 130,987 subjects with 2130 deaths | 40–80 | 2–30 | 3 studies from 2 publications [17,19] | 0.93 (95% CI 0.77, 1.13; p-het = 0.44; I2 = 0%) | NS | |||
Dose-response | per 1 serving of total nuts per week | >432,352 subjects with 4831 deaths | 40–80 | 2–30 | 12 studies from 9 publications [17,18,19,21,25,28,31,33,34] | 0.95 (95% CI 0.91, 0.997; p-het = 0.005; I2 = 60.6%) | NS | ||
Mayhew et al. 2016 [5]/20 Prospective of 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High- vs. Low | total nuts | 159,322 subjects with 2166 events | 29.2–69 | 8.3–30 | 3 studies from 3 publications [17,19,33] | 0.83 (95% CI 0.69, 1.00; p-het = 0.54; I2 = 0%) | NS | |
Dose-response | total nuts | 159,322 subjects with 2166 events | 29.2–69 | 8.3–30 | 3 studies from 3 publications [17,19,33] | 0.85 (95% CI 0.55, 1.31) | NS | ||
Diabetes Mortality | Aune et al. 2016 [14]/20 prospective studies from 9 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] | High- vs. Low | total nuts | 202,751 subjects with 800 deaths. | 40–79 | 4–30 | 4 studies from 3 publications [17,18,19] | 0.68 (95% CI 0.52–0.90; p-het = 0.59; I2 = 0%) | S |
peanuts | 265,252 subjects with 901 deaths | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.84 (95% CI 0.60, 1.19; p-het = 0.14; I2 = 42.6%) | NS | |||
tree nuts | 130,987 subjects with 4622 deaths | 40–79 | 4–30 | 3 studies from 2 publications [18,19] | 1.19 (95% CI 0.74, 1.89; p-het = 0.43; I2 = 0%) | NS | |||
Dose-response | total nuts | 202,751 subjects with 800 deaths. | 40–79 | 4–30 | 4 studies from 3 publications [17,18,19] | 0.61 (95% CI 0.43, 0.88; p-het = 0.76; I2 = 0%) | S | ||
peanuts | 265,252 subjects with 901 deaths | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.73 (95% CI 0.45–1.20; p-het = 0.32; I2 = 15.4%) | NS | |||
tree nuts | 130,987 subjects with 4622 deaths | 55–61 | 10–30 | 3 studies from 2 publications [17,19] | 1.23 (95% CI 0.68, 2.25; p-het = 0.62; I2 = 0%) | NS |
Variables | Ref/Studies | Analyses | Nut Types | Sample Size | Sample Age | Follow-up Periods | No. of Studies Included | RRs | Effects |
---|---|---|---|---|---|---|---|---|---|
T2DM | Schwingshackl et al. 2017 [60]/8 prospective studies from 7 publications [36,53,54,55,56,61,62] | High vs. Low | total nuts | 27,016 events | 20–80 | 4–19.2 | 8 studies from 7 publications [36,53,54,55,56,61,62] | 0.95 (95% CI 0.85, 1.05; p-het = 0.004; I2 = 67%) | NS |
Dose response: 28 g/day increase | total nuts | 27,016 events | 20–80 | 4–19.2 | 7 studies from 6 publications [36,53,54,55,56,61] | 0.89 (95% CI 0.71, 1.12; p-het = 0.0002; I2 = 77%) | NS | ||
Wu et al. 2015 [59]/(5 prospective studies from 5 publications [53,54,55,56,84]) | High vs. Low | total nuts | 263,406 subjects with 11,610 events | 20–87 | 4–19.2 | 5 studies from 5 publications [53,54,55,56,84] | 0.98 (95% CI 0.84, 1.14; p-het = 0.004; I2 = 74.2%) | NS | |
Guo et al. 2015 [63]/8 prospective studies from 8 publications [53,54,55,56,65,68,70,72] | High vs. Low | total nuts | 263,663 subjects with 11,580 events | 35–77 | 4.6–23 | 5 studies from 5 publications [53,54,55,56,65] | 0. 98 (95% CI 0.84, 1.15; p-het = 0. 008, I2 = 67.7%) | NS | |
Dose-response: | <1 serving nut per week | 263,663 subjects with 11,580 events | 35–77 | 4.6–23 | 3 studies from 3 publications [53,54,55] | 1.00 (95% CI 0.95, 1.04; p-het = 0.789, I2 = 0.0%) | NS | ||
1 to 4 servings nut per week | 263,663 subjects with 11,580 events | 35–77 | 4.6–23 | 3 studies from 3 publications [53,54,55] | 1.03 (95% CI 0.98, 1.08; p-het = 0.903, I2 = 0.0%) | NS | |||
≥5 servings nut per week | 263,663 subjects with 11,580 events | 35–77 | 4.6–23 | 3 studies from 3 publications [53,54,55] | 1.04 (95% CI 0.95, 1.14; p-het = 0.067, I2 = 58.1%) | NS | |||
Afshin et al. 2014 [57]/16 studies (14 prospective [2,19,22,38,39,40,42,43,47,53,55,56,65,85,86] & 2 RCTs [2,66] | Dose-response: for 4 servings (28.4 g)/week of total nuts | total nuts | 230,216 subjects with 13,308 events | 35–77 | 4–19.2 | 6 studies from 5 publications [53,55,56,65,66] | 0.87 (95% CI 0.81, 0.94; p-het = 0.269; I2 = 21.8%) | S | |
Zhou et al. 2014 [64]/23 prospective from 19 publications [22,34,38,40,42,43,48,53,54,55,56,68,70,71,72,86,87,88,89] | High vs. Low | total nuts | 342,213 subjects with 14,400 events | 34–87 | 4.6–19.2 | 6 studies from 5 publications [53,54,55,56,86] | 0.92 (95% CI 0.78, 1.09; p-het = 0.001; I2 = 78.7%) | NS | |
Dose-response: 1 serving/day increase | total nuts | 342,213 subjects with 14,400 events | 34–87 | 4.6–19.2 | 6 studies from 5 publications [53,54,55,56,86] | 0.80 (95% CI 0.57, 1.14; p-het < 0.001; I2 = 87.1%) | NS | ||
Luo et al. 2014 [16]/18 prospective studies from 18 publications [19,20,22,24,25,26,38,39,40,42,43,44,48,50,53,54,55,56] | High (≥2 to ≥7 servings/week) vs. Low (0 to ≤1 serving/week) | total nuts | 2,982,852 subjects with 12,655 events | 35–72 | 4 | 1 study from 1 publication [55] | 0.83 (95% CI 0.74, 0.93; p-het = 0.278; I2 = 14.9%) in multivariable-adjusted model without BMI | S | |
total nuts | 2,982,852 subjects with 14,486 events | 35–77 | 4–19.2 | 4 studies from 4 publications [53,54,55,56] | 1.00 (95% CI 0.84, 1.19; p-het = 0.008; I2 = 67.7%) in multivariable-adjusted model with BMI | NS | |||
Dose-response: 1 serving (28 g)/day increase in total nuts | total nuts | 2,982,852 subjects with 14,486 events | 35–77 | 4–19.2 | 4 studies from 4 publications [53,54,55,56] | 0.88 (95% CI 0.84, 0.92; p-het = 0.60; I2 = 0.0%) after adjustment for age | S | ||
total nuts | 116,4248 subjects with 5121 events | 35–77 | 4 | 1 study from 1 publication [55] | 0.80 (95% CI 0.69–0.94; p-het = 0.151; I2 = 51.4%) in multivariable-adjusted model without BMI | S | |||
total nuts | 2,918,625 subjects with 13,878 events | 35–77 | 4–19.2 | 3 studies from 3 publications [53,54,55] | 1.03 (95% CI 0.91, 1.16; p-het = 0.04; I2 = 63.9%) in multivariable-adjusted model with BMI | NS | |||
Total CVD | Aune et al. 2016 [14]/20 prospective studies from 29 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] | High vs. Low | total nuts | 376,228 subjects with 18,655 events | 35–79 | 4–30 | 12 studies from 12 publications [17,18,19,21,22,25,27,28,29,31,35,36] | 0.81 (95% CI 0.74, 0.89; p-het = 0.02; I2 = 52.3%) | S |
peanuts | 265,252 subjects with 12,043 events | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.76 (95% CI 0.70, 0.81; p-het = 0.90; I2 = 0%) | S | |||
tree nuts | 130,987 subjects with 9456 events | 55–61 | 10–30 | 3 studies from 2 publications [17,19] | 0.76 (95% CI 0.69–0.84; p-het = 0.92; I2 = 0%) | S | |||
Dose-response: 28 g/day increase in total nuts, 10 g/day increase in peanuts and tree nuts | total nuts | 376,228 subjects with 18,655 events | 35–89 | 4–30 | 12 studies from 12 publications [17,18,19,21,22,25,27,28,29,31,35,36] | 0.79 (95% CI 0.70, 0.88; p-het = 0.004; I2 = 59.6%) | S | ||
peanuts | 265,252 subjects with 12,043 events | 40–79 | 4–30 | 5 studies from 2 publications [17,18,19] | 0.64 (95% CI 0.50–0.81; p-het = 0.001; I2 = 77%) | S | |||
tree nuts | 130,987 subjects with 9456 events | 40–79 | 4–30 | 3 studies from 2 publications [17,19] | 0.75 (95% CI 0.67–0.84; p-het = 0.84; I2 = 0%) | S | |||
Mayhew et al. 2016 [5]/20 prospective studies from 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High vs. Low | total nuts | 6309 women with diabetes 634 events | 44.3–67.6 | 22 | 1 study from 1 publication [48] | 0.56 (95% CI 0.36–0.88; p-het = 0.54; I2 = 0%) | S | |
Dose-response: 4 servings/week increase | total nuts | 6309 women with diabetes 634 events | 44.3–67.6 | 22 | 1 study from 1 publication [48] | 0.72 (95% CI 0.55–0.96) | S | ||
Luo et al. 2014 [16]/18 prospective studies from 18 publications [19,20,22,24,25,26,38,39,40,42,43,44,48,50,53,54,55,56] | High (≥2 to ≥7 servings/week) vs. Low (0 to ≤1 serving/week) | total nuts | 8862 events | 52–80 | 4.8–30 | 4 studies from 4 publications [19,22,25,48] | 0.70 (95% CI 0.60, 0.81; p-het = 0.274; I2 = 22.8%) | S | |
Dose-response: 1 serving (28 g)/day increase | total nuts | 8862 events | 52–80 | 4.8–30 | 4 studies from 4 publications [19,22,25,48]) | 0.71 (95% CI 0.59, 0.85; p-het = 0.119; I2 = 48.8%) | S | ||
Hypertension | Schwingshackl et al. 2017 [67]/4 prospective studies from 4 publications [68,69,70,71] | High vs. Low | total nuts | 11,962 events | 20–95 | 3–9 | 4 studies from 4 publications [43,69,70,71] | 0.85 (95% CI 0.78, 0.92; I2 = 0%; p-het = 0.92) | S |
Dose response: 28 g/day increase | total nuts | 11,962 events | 20–95 | 3–9 | 4 studies from 4 publications [43,69,70,71] | 0.70 (95% CI 0.45, 1.08; I2 = 69%; p-het = 0.02) | NS | ||
Guo et al. 2015 [63]/8 prospective studies from 8 publications [53,54,55,56,65,68,70,72] | High vs. Low | total nuts | 30,189 subjects with 9554 | 34.6–87.1 | 4.3–15 | 3 studies from 3 publications [68,70,72] | 0.84 (95% CI: 0.76, 0.93; p-het = 0.831, I2 = 0.0%) | S | |
Dose-response: | ≥1 serving total nuts per week | 30,189 subjects with 9554 | 34.6–87.1 | 4.3–15 | 3 studies from 3 publications [68,70,72] | 0. 97 (95% CI 0.83, 1.13; p-het =69.2, I2= 0.039%) | NS | ||
≥2 servings total nuts per week | 30,189 subjects with 9554 | 34.6–87.1 | 4.3–15 | 3studies from 3 publications [68,70,72] | 0. 92 (95% CI 0.87, 0.97; p-het = 0.590, I2 = 0.0%) | S | |||
Zhou et al. 2014 [64]/23 prospective from 19 publications [22,34,38,40,42,43,48,53,54,55,56,68,70,71,72,86,87,88,89] | High vs. Low | total nuts | 40,102 subjects with 1,2814 events | 18–84 | 4.3–15 | 4 studies from 4 publications [68,70,71,72] | 0.85 (95% CI 0.79, 0.92; p-het = 0.927; I2 = 0.0%) | S | |
Dose-response: 1 serving/day increase | total nuts | 18–84 | 4.3–15 | 4 studies from 4 publications [68,70,71,72] | 0.66 (95% CI 0.44, 1.00; p-het = 0.006; I2 = 75.9%) | NS | |||
Total CHD | Bechthold et al. 2017 [73]/4 prospective studies from 4 publications [37,38,39,40] | High vs. Low | total nuts | 143,934 subjects with 5,480 events | 30–84 | 6–26 | 4 studies from 4 publications [37,38,39,40] | 0.80 (95% CI 0.62, 1.03; I2 = 79%, p-het = 0.002) | NS |
Aune et al. 2016 [14]/20 prospective studies from 29 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] | High vs. Low | total nuts | 315,397 subjects with 12,331 events | 40–80 | 4–30 | 11 studies from 10 publications [17,18,19,22,26,27,28,37,38,39] | 0.76 (95% CI 0.69, 0.84; p-het = 0.04; I2 = 47.5%) | S | |
peanuts | 265,252 subjects with 7025 events | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.76 (95% CI 0.69, 0.82; p-het = 0.65; I2 = 0%) | S | |||
tree nuts | 130,987 subjects with 6394 events | 55–61 | 10–30 | 3 studies from 2 publications [17,19] | 0.79 (95% CI 0.68, 0.92; p-het = 0.25; I2 = 28%) | S | |||
Dose-response: 28 g/day increase in total nuts, 10 g/day increase in peanuts and tree nuts | total nuts | 315,397 subjects with 12,331 events | 40–80 | 2–30 | 11 studies from 10 publications [17,18,19,22,26,27,28,37,38,39] | 0.71 (95% CI 0.63, 0.80; p-het = 0.04; I2 = 47.4%) | S | ||
peanuts | 265,252 subjects with 7025 events | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.69 (95% CI 0.57, 0.84; p-het = 0.12; I2 = 45.1%) | S | |||
tree nuts | 130,987 subjects with 6394 events | 55–61 | 10–30 | 3 studies from 2 publications [17,19] | 0.73 (95% CI 0.63, 0.85; p-het = 0.44; I2 = 0%) | S | |||
Mayhew et al. 2016 [5]/20 prospective studies from 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High vs. Low | total nuts | 123,971 subjects with 4757 events | ≥24 | 10–26 | 3 studies from 3 publications [37,40,90] | 0.66 (95% CI 0.48– 0.91; p-het = 0.0002; I2 = 88%) | S | |
Weng et al. 2016 [58]/14 studies from 10 publications (13 prospective&1 RCT) [20,25,38,39,40,47,48,91,92,93] | High vs. Low | total nuts | 30–80 | 4.8–26 | 14 studies from 10 publications [20,25,38,39,40,47,48,91,92,93] | 0.681 (95% CI 0.592–0.783; p-het = 0.001; I2 = 62.7%) | S | ||
Dose-response: 1 serving (28 g)/week increase | total nuts | 30–80 | 4.8–26 | 13 studies from 9 publications [20,25,38,39,40,47,48,92,93] | 0.90 (95% CI 0.87–0.94; p-het = 0.000; I2 = 68.2%) | S | |||
Zhou et al. 2014 [64]/23 prospective from 19 publications [22,34,38,40,42,43,48,53,54,55,56,68,70,71,72,86,87,88,89] | High vs. Low | total nuts | 179,885 subjects with 7236 events | 16–86 | 3.8–26 | 9 studies from 7 publications [22,38,40,48,87,88,89] | 0.83 (95% CI 0.74, 0.93; p-het = 0.010; I2 = 59.9%) in risk of CAD | S | |
Dose-response: 1 serving (28 g)/day increase | total nuts | 179,885 subjects with 7236 events | 16–86 | 3.8–26 | 9 studies from 7 publications [22,38,40,48,87,88,89] | 0.81 (95% CI 0.72, 0.91; p-het = 0.018; I2 = 56.8%) in risk of CAD | S | ||
Luo et al. 2014 [16]/18 prospective studies from 18 publications [19,20,22,24,25,26,38,39,40,42,43,44,48,50,53,54,55,56] | High vs. Low | total nuts | 6623 events | 30–84 | 7–26 | 6 studies from 6 publications [22,26,38,39,40,48] | 0.66 (95% CI 0.55, 0.78; p-het = 0.02; I2 = 62.5%) | S | |
Dose-response: 1 serving (28 g)/day increase | total nuts | 6623 events | 30–84 | 7–26 | 6 studies from 6 publications [22,26,38,39,40,48] | 0.72 (95% CI 0.64, 0.81; p-het = 0.644; I2 = 0.0%) | S | ||
Ma et al. 2014 [74] in 13 prospective studies from 9 publications [20,25,38,39,40,47,48,92,93] | High vs. Low | total nuts | 493,081 subjects with 6127 events | 34–84 | 4.8–26 | 13 prospective studies from 9 publications [20,25,38,39,40,47,48,92,93] | 0.660 (95% CI 0.581, 0.748; I2 = 39.6%) in risk of CAD | S | |
Dose response | 1 serving/week of nut intake | 236,008 subjects with 4886 events | 34–80 | 4.8–22 | 7 studies from 4 publications [25,38,47,48] | in risk of CAD: 0.96 (95% CI 0.89, 1.02) | NS | ||
for 2 servings/week of nut intake | 0.91 (95% CI 0.82, 0.99) | S | |||||||
3 servings/week of nut intake | 0.85 (95% CI 0.77, 0.95) | S | |||||||
4 servings/week of nut intake | 0.80 (95% CI 0.72, 0.89) | S | |||||||
5 servings/week of nut intake | 0.75 (95% CI 0.65, 0.85) | S | |||||||
6 servings/week of nut intake | 0.70 (95% CI 0.58, 0.83) | S | |||||||
Non-fatalCHD/fatal CHD | Mayhew et al. 2016 [5]/20 prospective studies from 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High vs. Low | total nuts | 138,678 subjects with 1565 events | 34–84 | 14–17 | 3 studies from 3 publications [38,39,47] | Non-fatal CHD: 0.71 (95% CI 0.49– 1.03; p-het = 0.03; I2 = 72%) | NS |
Dose response: 4 servings/week increase | total nuts | 138,678 subjects with 1565 events | 34–84 | 14–17 | 3 studies from 3 publications [38,39,47] | Non-fatal CHD: 0.81 (95% CI 0.72–0.96) | S | ||
Afshin et al. 2014 [57]/16 studies (14 prospective [2,19,22,38,39,40,42,43,47,53,55,56,65,85,86]&2 RCTs [2,66] | Dose response: 4 servings (28.4 g)/week | total nuts | 141,390 subjects with 2101 events | 34–84 | 14–17 | 4 studies from 4 publications [2,38,39,47] | Non-fatal CHD: 0.78 (95% CI 0.67–0.92; p-het = 0.463; I2 = 0.0%) | S | |
206,114 subjects with 6749 events | 40–84 | 17–30 | 6 studies from 5 publications [2,19,22,38,39] | Fatal CHD: 0.76 (95% CI 0.69–0.84; p-het = 0.227; I2 = 27.7%) | S | ||||
Total stroke | Bechthold et al. 2017 [73]/4 prospective studies from 4 publications [37,38,39,40] | High vs. Low | total nuts | 7490 events | 30–84 | 17–26 | 6 studies from 5 publications [33,41,42,43,44] | 0.94 (95% CI 0.85, 1.05, I2 = 18%, p-het = 0.30) | NS |
Dose response: 28 g/day increase | total nuts | 7490 events | 30–84 | 17–26 | 6 studies from 5 publications [33,41,42,43,44] | 0.99 (95% CI 0.84, 1.17, I2 = 45%, p-het = 0.11) | NS | ||
Aune et al. 2016 [14]/20 prospective studies from 29 publications [17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] | High vs. Low | total nuts | 396,768 subjects with 9272 events | 40–86.7 | 4–26 | 10 studies from 9 publications [17,18,27,28,33,34,41,42,43] | 0.89 (95% CI 0.82, 0.97; p-het = 0.90; I2 = 0%) | S | |
peanuts | 265,252 subjects with 3315 events. | 40–79 | 4–30 | 5 studies from 3 publications [18,19,50] | 0.83 (95% CI 0.69–1.00; p-het = 0.12; I2 = 45.9%) | NS | |||
tree nuts | 130,987 subjects with 2130 events | 55–61 | 10–30 | 3 studies from 2 publications [17,19] | 0.93 (95% CI 0.77, 1.13; p-het = 0.44; I2 = 0%) | NS | |||
Dose response: 28 g/day increase in total nuts, 10 g/day increase in peanuts and tree nuts | total nuts | 396,768 subjects with 9272 events | 30–86.7 | 4–26 | 11 studies from 9 publications [17,18,27,28,33,34,41,42,43] | 0.93 (95% CI 0.83, 1.05; p-het = 0.31; I2 = 13.7%) | NS | ||
peanuts | 265,252 subjects with 3315 events | 40–79 | 4–30 | 5 studies from 3 publications [17,18,19] | 0.63 (95% CI 0.41, 0.95; p-het = 0.001; I2 = 77.6%) | S | |||
tree nuts | 130,987 subjects with 2130 events | 55–69 | 10–30 | 3 studies from 2 publications [19,50] | 0.89 (95% CI 0.69, 1.14; p-het = 0.58; I2 = 0%) | NS | |||
Mayhew et al. 2016 [5]/20 prospective studies from 20 publications [18,19,20,22,23,24,25,26,33,37,38,39,40,42,43,44,47,48,49,50] | High vs. Low | total nuts | 157,826 subjects with 4318 events | 30–75 | 4–26 | 2 studies from 2 publications [33,42] | 1.05 (95% CI 0.69–1.61; p-het = 0.04; I2 = 77%) | NS | |
Afshin et al. 2014 [57]/16 studies (14 prospective [2,19,22,38,39,40,42,43,47,53,55,56,65,85,86]&2 RCTs [2,66] | Dose response: for 4 servings (28.4 g)/week | total nuts | 155,685 subjects with 5544 events | 30–86.7 | 4.8–26 | 4 studies from 3 publications [2,42,43] | 0.89 (95% CI 0.74, 1.05; p-het = 0.012; I2 = 72.7%) | NS | |
Zhou et al. 2014 [64]/23 prospective from 19 publications [22,34,38,40,42,43,48,53,54,55,56,68,70,71,72,86,87,88,89] | High vs. Low | total nuts | 182,730 subjects with 5669 events | 30–86.7 | 9–26 | 4 studies from 3 publications [34,42,43] | 0.87 (95% CI 0.74, 1.03; p-het = 0.317; I2 = 15.0%) | NS | |
Dose response: 28 g/day increase | total nuts | 182,730 subjects with 5669 events | 30–86.7 | 9–26 | 4 studies from 3 publications [34,42,43] | 0.90 (95% CI 0.71, 1.14; p-het = 0.114; I2 = 49.6%) | NS | ||
Luo et al. 2014 [16]/18 prospective studies from 18 publications [19,20,22,24,25,26,38,39,40,42,43,44,48,50,53,54,55,56] | High (≥2 to ≥7 servings/week) vs. Low (0 to ≤1 serving/week) | total nuts | 6487 events | 30–86.7 | 21–26 | 3 studies from 3 publications [42,43,44] | 0.91 (95% CI 0.81, 1.02; p-het = 0.285; I2 = 20.4%) | NS | |
Shi et al. 2014 [75] in 4 prospective studies from 3 publications [34,42,43] | High vs. Low | total nuts | 468,887 subjects with 10,493 events | 30–75 | 9–26 | 3 publications [34,42,43] | 0.90 (95% CI 0.81, 0.99; p-het = 0.527, I2 = 0) | S |
References Comparison | ||||||
---|---|---|---|---|---|---|
Variables | Li et al. 2018 [77]: nuts vs. controls | Guasch-Ferre et al. 2018 [94]: walnuts vs. controls | Perna et al. 2016 [108]: Bayesian meta-analysis of hazelnuts | Mejia et al. 2014 [144]: ~50 g/day of tree nuts over ~8 weeks vs. controls | Flores-Mateo et al. 2013 [120]: nuts vs. controls | Banel et al. 2009 [112]: walnuts vs. controls |
BW | WMD = −0.22 kg (95% CI −0.40, −0.04) From 56 RCTs (55 publications) [95,96,99,100,101,102,103,104,105,110,111,121,122,124,125,126,127,128,129,132,133,134,135,136,137,138,139,140,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175] | WMD = −0.12 kg (95% CI −2.12, 1.88; p overall effect = 0.90) From 10 RCTs [95,96,97,98,99,100,101,102,103,104] | WMD = –0.47 kg (95% CI −1.17, 0.22; I2 = 7%; p overall effect = NS) From 26 RCTs [96,97,101,102,103,104,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140] | WMD = −0.05 kg (p overall effect = 0.97) No 95% CI reported. From 13 RCTs [96,97,101,102,103,104,113,114,115,116,117,118,119] | ||
WC | WMD = −0.51 cm (95% CI −0.95, −0.07) From 23 RCTs (22 publications) [95,99,105,107,125,132,137,138,146,147,151,153,154,156,159,161,163,164,169,172,173,176] | MD = −0.62 cm (95% CI −1.54, 0.30; I2= 67%; p-het < 0.0001; p overall effect = 0.19) From 15 RCTs [95,99,105,107,109,122,125,132,137,145,146,147,148,149,150] | WMD = –1.25 cm (95% CI −2.82, 0.31; I2 = 28%; p overall effect = NS) From 5 RCTs [95,107,125,131,132] | |||
BMI | WMD = −0.16 kg/m2 (95% CI −0.31, −0.01) From 39 RCTs (38 publications) [95,96,105,107,110,111,114,121,125,127,136,137,138,140,141,142,143,146,151,152,153,154,155,156,158,162,163,164,165,166,169,171,172,173,174,175,176,177] | WMD = −0.11 kg/m2 (95% CI −1.15, 0.92; p overall effect = 0.82) From 6 RCTs [95,96,97,105,107,114] | MDΔ = 0.062 kg/m2 (95% HPD −0.293, 0.469) From 3 RTCs [109,110,111] | WMD = −0.40 kg/m2 (95% CI −0.97, 0.17; I2 = 49%; p overall effect = NS) From 15 RCTs [95,96,97,107,114,121,125,127,131,136,137,140,141,142,143] | WMD = −0.4 kg/m2 (p overall effect = 0.5) No 95% CI reported. From 13 RCTs [96,97,101,102,103,104,113,114,115,116,117,118,119] |
References Comparison | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Guasch-Ferre et al. 2018 [94]: walnuts vs. controls | Mazidi et al. 2016 [178]: nuts vs. controls | Musa-Veloso et al. 2016 [179]: almonds vs. controls | Perna et al. 2016 [108]: Bayesian meta-analysis of hazelnuts | Gobbo et al. 2015 [180]: per 1 serving/day of tree nuts vs. controls | Mohammadifard et al. 2015 [181]: nuts vs. controls | Mejia et al. 2014 [144]: ~50 g/day of tree nuts over ~8 weeks vs. controls | Viguiliouk et al. 2014 [3]: tree nuts vs. controls in subjects with T2DM | Sabate et al 2010 [182]: 67 g/day of nuts vs. controls | Phung et al. 2009 [183]: almonds (25–169 g/day) vs. controls | Banel et al. 2009 [112]: walnuts vs. controls |
FBG | −1.45 mg/dL (95% CI −2.20, 0.70; p overall effect < 0.05) =−0.08 mmol/L (95% CI −0.12, 0.039 mmol/L) | −0.08 mmol/L (95% CI −0.16, −0.01; I2 = 41%; p-het = 0.02; p overall effect = 0.03) | −0.15 mmol/L (95% CI −0.27, −0.02; I2 = 35%; p-het = 0.12; p overall effect = 0.03) | ||||||||
Fasting Insulin | −3.42 pmol/L (95% CI −10.06, 3.21; I2 = 72%; p-het = 0.0004; p overall effect = 0.031) | ||||||||||
HOMA-IR | −0.24 (95% CI −0.51, 0.04; I2 = 87%; p-het = 0.0005; p overall effect = 0.10) | ||||||||||
HbA1c | −0.07% (−95% CI 0.10, −0.03; I2 = 37%; p-het = 0.13; p overall effect = 0.0003) | ||||||||||
TC | −6.99 mg/dL; (95% CI −9.39, −4.58 mg/dL; p overall effect < 0.001; I2 = 0.0%; p-het = 0.64) =−0.18 mmol/L (95% CI −0.24, −0.118 mmol/L) | −0.82 mg/dL (95% CI −1.53 mg/dL, −0.11; p overall effect < 0.05) = −0.021 mmol/L (95% CI −0.04, −0.003 mmol/L) | −0.153 mmol/L (95% CI −0.235, −0.070 mmol/L; p overall effect < 0.001) | MDΔ = −0.127 mmol/L (95% HPD −0.284, 0.014 mmol/L) | −4.7 mg/dL (95% CI −5.3, −4.0 mg/dL; I2 > 30%; p-het = 0.001; p overall effect < 0.05) = −0.12 mmol/L (95% CI −0.14, −0.1 mmol/L) | −10.9 mg/dL (95% CI −14.1, −7.8 mg/dL) (5.1% change; p < 0.001) = −0.28 mmol/L (95% CI −0.36, −0.2 mmol/L) | −0.18 mmol/L (95% CI −0.34, −0.02 mmol/L; I2 = 0.0%; p-het = NS; p overall effect = 0.030) | −10.3 mg/dL (95% CI −14.76, −5.83 mg/dL; I2 = 0.0%; p-het = 0.63; p overall effect < 0.001) = −0.26 mmol/L (95% CI −0.38, −0.15 mmol/L) | |||
LDL-C | −5.51 mg/dL (95% CI −7.72, −3.29 mg/dL; p overall effect < 0.001; I2 = 0.0%; p-het = 0.49) =−0.14 mmol/L (95% CI −0.2, −0.085 mmol/L) | −0.69 mg/dL (95% CI −1.32, −0.07; p overall effect < 0.05) = −0.017 mmol/L (95% CI −0.03, −0.002 mmol/L) | −0.124 mmol/L (95% CI −0.196, −0.051 mmol/L; p overall effect = 0.001) | MDΔ = −0.150 mmol/L (95% HPD −0.308, −0.003) | −4.8 mg/dL (95% CI −5.5, −4.2 mg/dL; I2> 30%; p-het = 0.01; p overall effect < 0.05) = −0.12 mmol/L (95% CI −0.14 −0.11 mmol/L) | −10.2 mg/dL (95% CI −13.1, −7.4 mg/dL; 7.4% change; p overall effect < 0.001) = −0.26 mmol/L (95% CI −0.34, −0.19 mmol/L) | −0.15 mmol/L (95% CI −0.29, 0.0001 mmol/L; I2 = 0.0%; p-het = NS; p overall effect = 0.05) | −9.2 mg/dL (95% CI −13.1, −5.36 mg/dL; I2 = 0.0%; p-het = 0.65; p overall effect < 0.001) = −0.24 mmol/L (95% CI −0.34, −0.138 mmol/L) | |||
HDL-C | 0.10 mg/dL (95% CI −0.78, 0.97 mg/dL; p overall effect = 0.83; I2 = 0.0%; p-het = 0.85) = 0.003 mmol/L (95% CI −0.02, 0.025 mmol/L) | 0.54 mg/dL (95% CI 0.17, 0.90; p overall effect < 0.05) 0.014 mmol/L (95% CI 0.004, 0.023 mmol/L) | −0.017 mmol/L (95% CI −0.043 mmol/L, 0.009; p overall effect = 0.207) | MDΔ = 0.002 mmol/L (95% HPD −0.140, 0.147 mmol/L) | −0.3 mg/dL (95% CI −0.9, 0.4; I2> 30%; p-het = 0.33; p overall effect = NS) −0.007 mmol/L (95% CI −0.02, 0.01 mmol/L) | 0.00 mmol/L (95% CI −0.01, 0.01 mmol/L; I2 = 86%; p-het < 0.00001; p overall effect = 0.93). | 0.09 mg/dL (95% CI −1.00, 1.19 mg/dL; p overall effect = NS) = 0.002 mmol/L (95% CI −0.026, 0.03 mmol/L) | −0.05 mmol/L (95% CI −0.10, 0.01 mmol/L; I2 = 0.0%; p-het = NS; p overall effect= 0.08) | −0.2 mg/dL (95% CI −1.79, 1.38 mg/dL; I2 = 0.0%; p-het = 0.8; p overall effect = 0.8) =−0.005 mmol/L (95% CI −0.05, 0.036 mmol/L) | ||
TG | −4.69 mg/dL (95% CI −8.93, −0.45 mg/dL; p overall effect = 0.03; I2 = 0.0%; p-het = 0.99) =−0.052 mmol/L (95% CI −0.1, −0.005 mmol/L) | −0.66 mg/dL (95% CI −1.34, 0.01; p overall effect = NS) =−0.007 mmol/L (95% CI −0.015, 0.00 mmol/L) | −0.067 mmol/L (95% CI −0.132, −0.002 mmol/L; p overall effect = 0·042) | MDΔ = 0.045 mmol/L (95% HPD −0.195, 0.269) | −2.2 mg/dL (95% CI −3.8, −0.5mg/dL; I2> 30%; p-het = 0.16; p overall effect < 0.05) =0.02 mmol/L (95% CI −0.04, −0.006 mmol/L) | −0.06 mmol/L (95% CI −0.09, −0.03; I2 = 34%; p-het = 0.02; p overall effect < 0.0001) | −20.6 mg/dL (10.2% change; (95% CI −30.7, −9.9 mg/dL; p overall effect < 0.05) in subjects with TG of 150 mg/dL. = −0.23 mmol/L (95% CI −0.3, −0.1 mmol/L) | −0.04 mmol/L (95% CI −0.20, 0.11 mmol/L; I2 = 0.0%; p-het = NS; p overall effect = 0.58) | −3.9 mg/dL (95% CI −11.92, 4.20 mg/dL; I2 =0.0%; p-het = 0.99; p overall effect = 0.3), =−0.04 mmol/L (95% CI −0.13, 0.05 mmol/L) | ||
ApoA1 | −2.91 mg/dL (95% CI −5.98, 0.08 mg/dL; p overall effect = 0.057; I2 = 0.0%; p-het = 0.822) | 1.38 mg/dL (95% CI 0.15, 2.61 mg/dL; p overall effect < 0.05) | −0.6 mg/dL (95% CI −1.9, 0.7 mg/dL; I2> 30%; p-het = 0.38; p overall effect = NS) | ||||||||
TC: HDL-C | −0.207 (95% CI −0·362, −0.052; p overall effect = 0.009) | −0.24 (5.6% change; p overall effect = 0.001) | |||||||||
LDL-C: HDL-C | −0.089 (95% CI −0·209, 0.031; p overall effect = 0.145) | −0.22 (8.3% change; p overall effect = 0.001) | −0.04 (95% CI −0.21, 0.14; I2 = 0.0%; p-het = NS; p overall effect = 0.670) | ||||||||
ApoB | −3.74 mg/dL; 95% CI −6.51, −0.97 mg/dL; p overall effect = 0.008; I2 = 0.0%; p-het = 0.793) | −3.7 mg/dL (95% CI −5.2, −2.3 mg/dL; I2 > 30%; p-het = 0.17; p overall effect < 0.05) | |||||||||
ApoB100 | −1.50 mg/dL (95% CI −2.43, 0.57; p overall effect = NS) | −2.8 mg/dL (95% CI −6.2, 0.7 mg/dL; I2> 30%; p-het = 0.31; p overall effect = NS) | |||||||||
SBP | −0.72 mmHg (95% CI −2.75, 1.30 mmHg; p overall effect = NS) | −0.69 mmHg (95% CI −1.34 mmHg, 0.03; p overall effect = NS) | 0.3 mmHg (95% CI −0.8, 1.4 mmHg; I2 > 30%; p-het = 0.001; p overall effect = NS) | −0.91 mmHg (95% CI −2.18, 0.36 mmHg; I2 = 73.8% p-het < 0.001; p overall effect = NS) for all type nuts. −1.29 mmHg (−2.35, −0.22; I2 = 53.3%; p-het = 0.002; p overall effect = 0.02) for all type nuts #. −1.82 mmHg (−2.97, −0.67; p-het: NS p overall effect = 0.002) for pistachios | 0.07 mmHg (95% CI −1.54, 1.69 mmHg; I2 = 64%; p-het < 0.0001; p overall effect = NS) | ||||||
DBP | 0.10 mmHg (95% CI −1.49, 1.30 mmHg; p overall effect= NS) | −0.14 mmHg (95% CI −0.54, 0.25 mmHg; p overall effect = NS) | 0.4 mmHg (95% CI −0.8, 1.6 mmHg; I2> 30%; p-het = 0.32; p overall effect = NS) | 0.21 mmHg (95% CI −0.54, 0.97 mmHg; I2 = 69.6%; p-het < 0.001; p overall effect = NS) for all type nuts. −1.19 mmHg (95% CI −2.35, −0.03; p overall effect = 0.04; p-het = NS) for mixed nuts. −0.80 mmHg (95% CI −1.43, −0.17; p-het = 0.44; I2 = 0.0%; p overall effect = 0.04) for pistachios # | 0.23 mmHg (95% CI −0.38, 0.83 mmHg; I2 = 34%; p-het = 0.07; p overall effect = NS) |
References Comparisons | ||||
---|---|---|---|---|
Variables | Xiao et al. 2018 [184] nuts vs. controls | Neal et al. 2017 [185] nuts vs. controls | Mazidi et al. 2016 [178]: nuts vs. controls | Gobbo et al. 2015 [180]: per 1 serving/day of tree nuts vs. controls |
Leptin | WMD = −0.71 mg/dL (95% CI −1.11, −0.30, I2 = 6.3%; p overall effect < 0.05) | |||
Adiponectin | WMD = 0.29 μg/mL (95% CI −0.63, 1.21; I2 = 79% p-het < 0.0001; p overall effect = NS) WMD = 0.029 mg/dL (95% CI −0.063, 0.121 mg/dL) | WMD = −0.60 mg/dL (95% CI −1.88, 0.68 mg/dL, I2 = 5.6%; p overall effect = NS) | ||
CRP | WMD = −0.09 mg/L (95% CI −0.21, 0.02 mg/L; I2 < 50%; p-het = NS; p overall effect = NS) | WMD = −0.01 mg/L (95% CI −0.06,0.03 mg/L; I2 = 20%; p-het = 0.18; p overall effect = NS) | WMD = 0.17 mg/L (95% CI −0.67, 0.33 mg/L; I2 = 52.1%; p overall effect = NS) | WMD = 0.1 mg/dL (95% CI −1.6, 1.8; I2 > 30%; p-het = 0.84; p overall effect = NS) WMD = 1 mg/L (95% CI −16, 18 mg/L) |
IL-6 | WMD = −0.09 pg/mL (95% CI −0.24, 0.04; I2 < 50%; p-het = NS; p overall effect = NS) | WMD = −0.02 pg/mL (95% CI −0.12, 0.08; I2 = 10% p-het = 0.34; p overall effect = NS) | WMD = −0.06 ng/dL (95% CI −0.69, 0.56, I2 = 9.6%; p overall effect = NS) WMD = −0.6 pg/mL (95% CI −6.9, 5.6 pg/mL) | |
IL-10 | WMD = −0.18 mg/dL (95% CI −1.24, 0.88, I2 = 9.3%; p overall effect = NS) | |||
TNF-α | WMD = −0.19 ng/L (95% CI −0.41, 0.03; I2 < 50%; p-het = NS; p overall effect = NS) WMD = −0.19 pg/mL (95% CI −0.41, 0.03 pg/mL) | WMD = −0.05 pg/mL (95% CI −0.13, 0.002; I2 = 2% p-het = 0.42; p overall effect = NS) | WMD = −0.37 pg/mL (95% CI −0.90, 0.16, I2 = 7.9%; p overall effect = NS) | |
ICAM-1 | WMD = −0.17 ng/mL (95% CI −0.32, −0.03 ng/mL; I2 < 50%; p-het = NS; p overall effect = 0.01) | WMD = 0.68 ng/mL (95% CI −0.53, 1.89 ng/mL; I2 = 0% p-het = 0.82; p overall effect = NS) | WMD = −0.12 ng/L (95% CI −0.43, 0.18 ng/L; p overall effect = NS) WMD = −0.00012 ng/mL (95% CI −0.00043, 0.00018 ng/mL; p overall effect = NS) | |
VCAM-1 | WMD = −0.12 ng/mL (95% CI −0.26, 0.02 ng/mL; I2 < 50%; p-het = NS; p overall effect = NS) | WMD = 2.83 ng/mL (95% CI −8.85, 14.51 ng/mL; I2 = 0% p-het = 0.70; p overall effect = NS) | WMD = −0.02 ng/L (95% CI −0.33, 0.29 ng/L; p overall effect = NS) WMD = −0.00002 ng/mL (95% CI −0.00033, 0.00029 ng/mL) | |
Fibrinogen | WMD = −0.13 pg/mL (95% CI −1.43, 1.70; p overall effect = NS) | |||
E-selectin | WMD = −0.18 ng/mL (95% CI −0.38, 0.01; I2 < 50%; p-het = NS; p overall effect = NS) | WMD = −1.17 ng/L (95% CI −2.40, 0.06; p overall effect = NS) WMD = −0.00117 ng/mL (95% CI −0.0024, 0.00006 ng/mL) |
References Comparisons | ||||
---|---|---|---|---|
Variables | Huang et al. 2018 [186] | Xiao et al. 2018 [187] | Fogacci et al. 2017 [188] | Neale et al. 2017 [185] nuts vs. controls |
FMD | 1.03% (95% CI 0.26, 1.79; p overall effect = 0.008) | 0.41% (95% CI 0.18, 0.63; p overall effect = 0.001; I2 = 39.5%, p-het = 0.094) | +0.28% (95% CI −0.58, 1.13; p overall effect = 0.525) | 0.79% (95% CI 0.35, 1.23; I2 = 0%; p-het = 0.45; p overall effect = 0.0004) |
BAD | +0.04% (95% CI 0.03, 0.06; p overall effect < 0.001) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Keogh, J.; Clifton, P.M. Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses. Nutrients 2018, 10, 1935. https://doi.org/10.3390/nu10121935
Kim Y, Keogh J, Clifton PM. Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses. Nutrients. 2018; 10(12):1935. https://doi.org/10.3390/nu10121935
Chicago/Turabian StyleKim, Yoona, Jennifer Keogh, and Peter M. Clifton. 2018. "Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses" Nutrients 10, no. 12: 1935. https://doi.org/10.3390/nu10121935
APA StyleKim, Y., Keogh, J., & Clifton, P. M. (2018). Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses. Nutrients, 10(12), 1935. https://doi.org/10.3390/nu10121935