Associations of Dietary Patterns and Metabolic-Hormone Profiles with Breast Cancer Risk: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design and Sample Characteristics
2.3. Food Frequency Consumption and Polish-Adapted Mediterranean Diet Score
2.4. Blood Sample Collection and Serum Biomarkers Concentration
2.5. Metabolic Syndrome Components
2.6. Confounders
- age;
- BMI;
- socioeconomic status;
- overall physical activity;
- age at menarche;
- menopausal status;
- oral contraceptive use;
- hormone-replacement therapy use;
- number of children;
- smoking status;
- abuse of alcohol;
- vitamin/mineral supplement use;
- family history of breast cancer in first- or second-degree relative; and
- molecular of breast cancer subtypes.
2.7. Identification of Dietary Patterns and Metabolic-Hormone Profiles
2.8. Statistical Analysis
3. Results
3.1. Food Frequency Consumption and Dietary Patterns
3.2. Biomarkers and Metabolic-Hormone Profiles
3.3. Dietary Patterns, Metabolic-Hormone Profiles and Breast Cancer Risk
4. Discussion
4.1. Metabolic-Hormone Profiles and Breast Cancer Risk
4.2. Dietary Patterns and Breast Cancer Risk
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Cancer Report 2014; World Health Organization, International Agency for Research on Cancer, WHO Press: Geneva, Switzerland, 2015; Available online: http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014 (accessed on 15 August 2017).
- Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11; IARC: Lyon, France, 2013; Available online: http://globocan.iarc.fr (accessed on 15 August 2017).
- Krajowy Rejestr Nowotworów, Centrum Onkologii—Instytut im. Marii Skłodowskiej—Curie (Polish National Cancer Registry, Oncology Centre. Institute of M. Sklodowska-Curie). Available online: http://onkologia.org.pl/k/epidemiologia/ (accessed on 20 August 2017).
- World Health Organization—Cancer Country Profiles. 2014. Available online: http://www.who.int/cancer/country-profiles/pol_en.pdf?ua=1 (accessed on 20 August 2017).
- Vineis, P.; Wild, C.P. Global cancer patterns: Causes and prevention. Lancet 2014, 383, 549–557. [Google Scholar] [CrossRef]
- Brennan, S.F.; Cantwell, M.M.; Cardwell, C.R.; Velentzis, L.S.; Woodside, J.V. Dietary patterns and breast cancer risk: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 91, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Buck, K.; Vrieling, A.; Flesch-Janys, D.; Chang-Claude, J. Dietary patterns and the risk of postmenopausal breast cancer in a German case-control study. Cancer Causes Control 2011, 22, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Link, L.B.; Canchola, A.J.; Bernstein, L.; Clarke, C.A.; Stram, D.O.; Ursin, G.; Horn-Ross, P.L. Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am. J. Clin. Nutr. 2013, 98, 1524–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bessaoud, F.; Tretarre, B.; Daures, J.P.; Gerber, M. Identification of dietary patterns using two statistical approaches and their association with breast cancer risk: A case-control study in southern France. Ann. Epidemiol. 2012, 22, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Pot, G.K.; Stephen, A.M.; Dahm, C.C.; Key, T.J.; Cairns, B.J.; Burley, V.J.; Cade, J.E.; Greenwood, D.C.; Keogh, R.H.; Bhaniani, A.; et al. Dietary patterns derived with multiple methods from food diaries and breast cancer risk in the UK Dietary Cohort Consortium. Eur. J. Clin. Nutr. 2014, 68, 1353–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottet, V.; Touvier, M.; Fournier, A.; Touillaud, M.S.; Lafay, L.; Clavel-Chapelon, F.; Boutron-Ruaulty, M. Postmenopausal Breast Cancer Risk and Dietary Patterns in the E3N-EPIC Prospective Cohort Study. Am. J. Epidemiol. 2009, 170, 1257–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglietto, L.; Krishnan, K.; Severi, G.; Hodge, A.; Brinkman, M.; English, D.R.; McLean, C.; Hopper, J.L.; Giles, G.G. Dietary patterns and risk of breast cancer. Br. J. Cancer 2011, 104, 524–531. [Google Scholar] [CrossRef]
- Hirko, K.A.; Willett, W.C.; Hankinson, S.E.; Rosner, B.A.; Beck, A.H.; Tamimi, R.M.; Eliassen, A.H. Healthy dietary patterns and risk of breast cancer by molecular subtype. Breast Cancer Res. Treat. 2016, 155, 579–588. [Google Scholar] [CrossRef]
- World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, Nutrition, Physical Activity, and Breast Cancer; American Institute for Cancer Research: Washington, DC, USA, 2018; Available online: dietandcancerreport.org.
- Wirfält, E.; Drake, I.; Wallström, P. What do review papers conclude about food and dietary patterns? Food Nutr. Res. 2013, 57, 20523. [Google Scholar] [CrossRef] [Green Version]
- Demetriou, C.A.; Hadjisavvas, A.; Loizidou, M.A.; Loucaides, G.; Neophytou, I.; Sieri, S.; Kakouri, E.; Middleton, N.; Vineis, P.; Kyriacou, K. The Mediterranean dietary pattern and breast cancer risk in Greek-Cypriot women: A case control study. BMC Cancer 2012, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Couto, E.; Sandin, S.; LÖf, M.; Ursin, G.; Adami, H.O.; Weiderpass, E. Mediterranean dietary pattern and risk of breast cancer. PLoS ONE 2013, 8, e55374. [Google Scholar] [CrossRef] [PubMed]
- Buckland, G.; Travier, N.; Cottet, V.; Gonzalez, C.A.; Lujan-Barroso, L.; Agudo, A.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.; Peeters, P.H.; et al. Adherence to the Mediterranean diet and risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition cohort study. Int. J. Cancer 2013, 132, 2918–2927. [Google Scholar] [CrossRef] [PubMed]
- Voevodina, O.; Billich, C.; Arand, B.; Nagel, G. Association of Mediterranean diet, dietary supplements and alcohol consumption with breast density among women in South Germany: A cross-sectional study. BMC Public Health 2013, 13, 203. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Castello, A.; Polla, M.; Buijsse, B.; Ruiz, A.; Casas, A.M.; Baena-Can, J.M.; Lope, V.; Antoli, S.; Ramos, M.; Mun, M.; et al. Spanish Mediterranean diet and other dietary patterns and breast cancer risk: Case–control EpiGEICAM study. Br. J. Cancer 2014, 111, 1454–1462. [Google Scholar] [CrossRef]
- Haakensen, V.D.; Bjøro, T.; Lüders, T.; Riis, M.; Bukholm, I.K.; Kristensen, V.N.; Troester, M.A.; Homen, M.M.; Ursin, G.; Børresen-Dale, A.L.; Helland, A. Serum oestradiol levels associated with specific gene expression patterns in normal breast tissue and in breast carcinomas. BMC Cancer 2011, 11. [Google Scholar] [CrossRef]
- Yoshimoto, N.; Nishiyama, T.; Toyama, T.; Takahashi, S.; Shiraki, N.; Sugiura, H.; Endo, Y.; Iwasa, M.; Fujii, Y.; Yamashita, H. Genetic and environmental predictors, endogenous hormones and growth factors, and risk of oestrogen receptor-positive breast cancer in Japanese women. Cancer Sci. 2011, 11, 2065–2072. [Google Scholar] [CrossRef]
- Secreto, G.; Venturelli, E.; Meneghini, E.; Carcangiu, M.L.; Paolini, B.; Agresti, R.; Pellitteri, C.; Berrino, F.; Gion, M.; Cogliati, P.; et al. Androgen receptors and serum testosterone levels identify different subsets of postmenopausal breast cancers. BMC Cancer 2012, 12, 599. [Google Scholar] [CrossRef] [Green Version]
- Hvidtfeldt, U.A.; Gunter, M.J.; Lange, T.; Chlebowski, R.T.; Lane, D.; Farhat, G.N.; Freiberg, M.S.; Keiding, N.; Lee, J.S.; Prentice, R.; et al. Quantifying mediating effects of endogenous oestrogen and insulin in the relation between obesity, alcohol consumption, and breast cancer. Cancer Epidemiol. Biomarkers Prev. 2012, 21. [Google Scholar] [CrossRef] [PubMed]
- Kaaks, R.; Tikk, K.; Sookthai, D.; Schock, H.; Johnson, T.; Tjønneland, A.; Olsen, A.; Overvad, K.; Clavel-Chapelon, F.; Dossus, L. Premenopausal serum sex hormone levels in relation to breast cancer risk, overall and by hormone receptor status—results from the EPIC cohort. Int. J. Cancer 2014, 134, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Nyante, S.J.; Faupel-Badger, J.M.; Sherman, M.E.; Pfeiffer, R.M.; Gaudet, M.M.; Falk, R.T.; Andaya, A.A.; Lissowska, J.; Brinton, L.A.; Peplonska, B.; et al. Genetic variation in PRL and PRLR, and relationships with serum prolactin levels and breast cancer risk: results from a population based case-control study in Poland. Breast Cancer Res. 2011, 13. [Google Scholar] [CrossRef] [PubMed]
- Flint, M.S.; Bovbjerg, D.H. DNA damage as a result of psychological stress: implications for breast cancer. Breast Cancer Res. 2012, 14, 320. [Google Scholar] [CrossRef] [Green Version]
- Zeitzer, J.M.; Nouriani, B.; Rissling, M.B.; Sledge, G.W.; Kaplan, K.A.; Aasly, L.; Palesh, O.; Jo, B.; Neri, E.; Dhabhar, F.S.; Spiegel, D. Aberrant nocturnal cortisol and disease progression in women with breast cancer. Breast Cancer Res. Treat. 2016, 158, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allott, E.H; Hursting, S.D. Obesity and cancer: mechanistic insights from transdisciplinary studies. Endocr. Relat. Cancer. 2015, 22, R365–R386. [Google Scholar] [CrossRef] [Green Version]
- Baek, A.E.; Nelson, E.R. The Contribution of Cholesterol and its Metabolites to the Pathophysiology of Breast Cancer. Horm. Cancer. 2016, 7, 219–228. [Google Scholar] [CrossRef]
- Agnoli, C.; Grioni, S.; Sieri, S.; Sacerdote, C.; Ricceri, F.; Tumino, R.; Frasca, G.; Pala, V.; Mattiello, A.; Chiodini, P.; Iacoviello, L.; De Curtis, A.; Panico, S.; Krogh, V. Metabolic syndrome and breast cancer risk: a case-cohort study nested in a multicentre Italian cohort. PLoS ONE 2015, 10, e0128891. [Google Scholar] [CrossRef]
- Ni, H.; Liu, H.; Gao, R. Serum lipids and breast cancer risk: a meta-analysis of prospective cohort studies. PLoS ONE 2015, 11, e0142669. [Google Scholar] [CrossRef]
- Touvier, M.; Fassier, P.; His, M.; Norat, T.; Chan, D.S.M.; Blacher, J.; Hercberg, S.; Galan, P.; Druesne-Pecollo, N.; Latino-Martel, P. Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies. Brit. J. Nutr. 2015, 114, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Borgquist, S.; Butt, T.; Almgren, P.; Shiffman, D.; Stocks, T.; Orho-Melander, M.; Manjer, J.; Melander, O. Apolipoproteins, lipids and risk of cancer. Int. J. Cancer 2016, 138, 2648–2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnoli, C.; Berrinob, F.; Abagnatoc, C.A.; Mutid, P.; Panicoe, S.; Crosignanif, P.; Krogha, V. Metabolic syndrome and postmenopausal breast cancer in the ORDET cohort: a nested case-control study. Nutr. Metab. Cardiovasc. Dis. 2010, 20. [Google Scholar] [CrossRef] [PubMed]
- Kabat, G.C.; Kim, M.; Chlebowski, R.T.; Khandekar, J.; Ko, M.G.; McTiernan, A.; Neuhouser, M.L.; Parker, D.R.; Shikany, J.M.; Stefanick, M.L.; et al. A longitudinal study of the metabolic syndrome and risk of postmenopausal breast cancer. Cancer Epidemiol. Biomarkers Prev. 2009, 18. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization, International Agency for Research on Cancer. International Classification of Diseases for Oncology ICD-O-3 online. Available online: http://codes.iarc.fr/topography/C50 (accessed on 20 August 2018).
- Krusinska, B.; Hawrysz, I.; Wadolowska, L.; Slowinska, M.A.; Biernacki, M.; Czerwinska, A.; Golota, J.J. Associations of Mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: a case-control study. Nutrients 2018, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Lidia Wadolowska. Available online: http://codes.iarc.fr/topography/C50 (accessed on 20 August 2018).
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cholesterol Education Program (NCEP) Expert panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 2002, 17, 3143–3421.
- 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016, 252, 207–274. [CrossRef]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research, 4th ed.; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Previdelli, Á.N.; de Andrade, S.C.; Fisberg, R.M.; Marchioni, D.M. Using two different approaches to assess dietary patterns: Hypothesis-driven and data-driven analysis. Nutrients 2016, 8, 593. [Google Scholar] [CrossRef]
- Falk, R.T.; Gentzschein, E.; Stanczyk, F.Z.; Garcia-Closas, M.; Figueroa, J.D.; Ioffe, O.B.; Lissowska, J.; Brinton, L.A.; Sherman, M.E. Sex steroid hormone levels in breast adipose tissue and serum in postmenopausal women. Breast. Cancer Res. Treat. 2012, 131, 287–294. [Google Scholar] [CrossRef]
- Widschwendter, M.; Rosenthal, A.N.; Philpott, S.; Rizzuto, I.; Fraser, L.; Hayward, J.; Intermaggio, M.P.; Edlund, Ch.K.; Ramus, S.J.; Gayther, S.A.; et al. The sex hormone system in carriers of BRCA1/2 mutations: A case-control study. Lancet Oncol. 2013, 14, 1126–1132. [Google Scholar] [CrossRef]
- Tworoger, S.S.; Hankinson, S.E. Prolactin and breast cancer etiology: an epidemiologic perspective. J. Mammary Gland. Biol. Neoplasia 2008, 13, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, X.; Chai, F.; Zhang, Y.; Jiang, J. Plasma prolactin and breast cancer risk: A meta- analysis. Sci. Rep. 2016, 6, 25998. [Google Scholar] [CrossRef] [PubMed]
- Sprague, B.L.; Trentham-Dietz, A.; Gangnon, R.E.; Buist, D.S.M.; Burnside, E.S.; Bowles, E.J.A.; Stanczyk, F.Z.; Sisney, G.S. Circulating sex hormones and mammographic breast density among postmenopausal women. Horm. Cancer 2011, 1, 62–72. [Google Scholar] [CrossRef] [PubMed]
- McHale, K.; Tomaszewski, J.E.; Puthiyaveettil, R.; LiVolsi, V.A.; Clevenger, Ch.V. Altered expression of prolactin receptor associated signalling proteins in human breast carcinoma. Mod. Pathol. 2008, 21, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Chiodini, P.; Capuano, A.; Bellastella, G.; Maiorino, M.; Rafaniello, C.; Giugliano, D. Metabolic syndrome and postmenopausal breast cancer: systematic review and meta-analysis. Menopause 2013, 12, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Alokail, M.S.; Al-Daghri, N.; Abdulkareem, A.; Draz, H.M.; Yakout, S.M.; Alnaami, A.M.; Sabico, S.; Alenad, A.M.; Chrousos, G.P. Metabolic syndrome biomarkers and early breast cancer in Saudi women: Evidence for the presence of a systemic stress response and/or a pre-existing metabolic syndrome-related neoplasia risk? BMC Cancer 2013, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Melvin, J.C.; Garmo, H.; Holmberg, L.; Hammar, N.; Walldius, G.; Jungner, I.; Lambe, M.; Van Hemelrijck, M. Glucose and lipoprotein biomarkers and breast cancer severity using data from the Swedish AMORIS cohort. BMC Cancer 2017, 17, 246. [Google Scholar] [CrossRef]
- Nelson, E.R.; Chang, Ch.; McDonnell, D.P. Cholesterol and breast cancer pathophysiology. Trends Endocrinol. MeTable 2014, 25, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Kabat, G.C.; Kim, M.; Caan, B.J.; Chlebowski, R.T.; Gunter, M.J.; Ho, G.Y.F.; Rodriguez, B.L.; Shikany, J.M.; Strickler, H.D.; Vitolins, M.Z.; et al. Repeated measures of serum glucose and insulin in relation to postmenopausal breast cancer. Int. J. Cancer 2009, 125, 2704–2710. [Google Scholar] [CrossRef] [Green Version]
- Sieri, S.; Agnoli, C.; Pala, V.; Mattiello, A.; Panico, S.; Masala, G.; Assedi, M.; Tumino, R.; Frasca, G.; Sacerdote, C.; Vineis, P.; Krogh, V. Dietary habits and cancer: the experience of EPIC-Italy. Epidemiol. Prev. 2015, 39, 333–338. [Google Scholar]
- Norat, T.; Scoccianti, C.; Boutron-Ruault, M.C.; Anderson, A.; Berrino, F.; Cecchini, M.; Espina, C.; Key, T.; Leitzmann, M.; Powers, H.; et al. European Code against Cancer 4th Edition: Diet and cancer. Cancer Epidemiol. 2015, 39 (Suppl. 1), S56–S66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourouti, N.; Papavagelis, C.; Plytzanopoulou, P.; Kontogianni, M.; Vassilakou, T.; Malamos, N.; Linos, A.; Panagiotakos, D. Dietary patterns and breast cancer: a case-control study in women. Eur. J. Nutr. 2015, 54, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Van den Brandt, P.A.; Schulpen, M. Mediterranean diet adherence and risk of postmenopausal breast cancer: Results of a cohort study and meta-analysis. Int. J. Cancer 2017, 140, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Carioli, G.; Bravi, F.; Ferraroni, M.; Serraino, D.; Montella, M.; Giacosa, A.; Toffolutti, F.; Negri, E.; Levi, F.; La Vecchia, C. Mediterranean diet and breast cancer risk. Nutrients 2018, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Penniecook-Sawyers, J.A.; Jaceldo-Siegl, K.; Fan, J.; Beeson, L.; Knutsen, S.; Herring, P.; Fraser, G.E. Vegetarian dietary patterns and the risk of breast cancer in a low-risk population. Br. J. Nutr. 2016, 10, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Chung, K.C. Observational studies: cohort and case-control studies. Plast. Reconstr. Surg. 2010, 6, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
Variable | Cancer Sub-Sample |
---|---|
Sample size | 140 |
N (%) | |
Breast | |
right | 71 (50.7) |
left | 69 (49.3) |
Histologic BC subtypes | |
ductal carcinoma | 114 (81.4) |
lobular carcinoma | 15 (10.7) |
mixed carcinoma | 11 (7.9) |
Molecular BC subtypes—hormone receptor status | |
ER-negative tumours | 25 (17.9) |
ER-positive tumours | 115 (82.1) |
PR-negative tumours | 43 (30.7) |
PR-positive tumours | 97 (69.3) |
HER2-negative tumours | 115 (82.1) |
HER2-positive tumours | 25 (17.9) |
ER−, PR− | 22 (15.7) |
ER−, PR+ | 3 (2.1) |
ER+, PR− | 21 (15.0) |
ER+, PR+ | 94 (67.1) |
Triple negative (ER−, PR−, HER2−) | 17 (12.1) |
ER−, PR−, HER2+ subtype | 5 (3.6) |
Luminal A (ER+ and or PR+, HER2−) | 98 (70.0) |
Luminal B (ER+ and or PR+, HER2+) | 20 (14.3) |
Variable | Cancer-Control Sample | Cancer Sample | Control Sample | p-Value |
---|---|---|---|---|
Sample size | 420 | 190 | 230 | |
Age (years *) | 59.9 (8.6) | 60.9 (9.7) | 59.1 (7.4) | 0.0210 |
40.0–49.9 | 15.5 | 18.4 | 13.0 | |
50.0–59.9 | 30.0 | 23.7 a | 35.2 a | 0.0119 |
60.0–69.9 | 42.6 | 42.1 | 43.0 | |
70.0–79.9 | 11.9 | 15.8 b | 8.7 b | |
BMI (kg/m2 *) | 27.9 (5.0) | 28.3 (4.8) | 27.6 (5.0) | ns |
<18.5 | 0.7 | 0.5 | 0.9 | |
18.5–24.9 | 29.2 | 25.0 | 32.6 | ns |
25.0–29.9 | 39.0 | 40.4 | 37.8 | |
≥30.0 | 31.1 | 34.0 | 28.7 | |
Place of residence | ||||
village | 28.1 | 31.1 | 25.7 | |
town (<20,000 inhabitants) | 15.2 | 24.2 a | 7.8 a | <0.0001 |
town (20–100,000 inhabitants) | 20.5 | 19.5 | 21.3 | |
city (>100,000 inhabitants) | 36.2 | 25.3 b | 45.2 b | |
Education level | ||||
primary | 13.6 | 22.1 a | 6.5 a | |
secondary | 58.3 | 61.6 | 55.7 | <0.0001 |
higher | 28.1 | 16.3 b | 37.8 b | |
Economic situation | ||||
below the average | 16.0 | 18.9 | 13.5 | |
average | 71.2 | 70.5 | 71.7 | ns |
above average | 12.9 | 10.5 | 14.8 | |
Household situation | ||||
we live poorly | 0.2 | 0.5 | 0.0 | |
we live very thriftily | 16.9 | 19.5 | 14.8 | |
we live thriftily | 56.0 | 58.4 | 53.9 | ns |
we live well | 24.8 | 20.0 a | 28.7 a | |
we live very well | 2.1 | 1.6 | 2.6 | |
Socioeconomic status (SES Index *) | 9.9 (2.1) | 9.3 (2.1) | 10.4 (2.0) | <0.0001 |
low | 41.0 | 53.2 a | 30.9 a | |
average | 36.7 | 33.2 | 39.6 | <0.0001 |
high | 22.4 | 13.7 b | 29.6 b | |
Physical activity at work | ||||
low | 54.0 | 66.3 a | 43.9 a | |
moderate | 32.6 | 23.2 b | 40.4 b | <0.0001 |
high | 13.3 | 10.5 | 15.7 | |
Physical activity at leisure time | ||||
low | 22.6 | 30.0 a | 16.5 a | |
moderate | 64.3 | 63.2 | 65.2 | <0.0001 |
high | 13.1 | 6.8 b | 18.3 b | |
Overall physical activity | ||||
low | 52.9 | 67.9 a | 40.4 a | |
moderate | 44.0 | 30.5 b | 55.2 b | <0.0001 |
high | 3.1 | 1.6 | 4.3 | |
Sleep (h) | ||||
<6 | 19.0 | 20.0 | 18.3 | |
6–8 | 69.0 | 67.4 | 70.4 | ns |
>8 | 11.9 | 12.6 | 11.3 | |
Smokers | 53.1 | 57.9 | 49.1 | ns |
Current smokers | 21.0 | 26.8 | 16.1 | 0.0070 |
Number of cigarettes smoked/day (current smokers) | ||||
<10 | 47.2 | 40.4 a | 56.8 a | |
11–20 | 38.2 | 40.4 | 35.1 | ns |
21–40 | 13.5 | 17.3 b | 8.1 b | |
>40 | 1.1 | 1.9 c | 0.0 c | |
Former smokers (years) | 51.0 | 56.3 | 46.5 | 0.0457 |
<5 | 18.7 | 17.8 | 19.6 | |
5–10 | 13.6 | 12.1 | 15.0 | ns |
>10 | 67.8 | 70.1 | 65.4 | |
Number of cigarettes smoked/day (former smokers) | ||||
<10 | 42.5 | 36.4 a | 48.6 a | |
11–20 | 42.1 | 42.1 | 42.1 | ns |
21–40 | 14.5 | 20.6 b | 8.4 b | |
>40 | 0.9 | 0.9 | 0.9 | |
Passive smokers | 56.4 | 54.7 | 57.8 | ns |
Current passive-smokers | 16.4 | 16.8 | 16.1 | ns |
(h/day *) | 3.3 (3.3) | 2.8 (1.9) | 3.6 (4.1) | ns |
Former passive-smokers | 52.6 | 51.6 | 53.5 | ns |
(years *) | 19.2 (11.8) | 19.4 (12.1) | 19.1 (11.6) | ns |
(h/day *) | 4.5 (2.8) | 4.4 (3.0) | 4.5 (2.6) | ns |
Abuse of alcohol | 4.0 | 7.4 | 1.3 | 0.0017 |
Age at menarche (years) | ||||
<12 | 12.1 | 16.3 a | 8.7 a | |
12–14.9 | 63.3 | 63.2 | 63.5 | 0.0268 |
≥15 | 24.5 | 20.5 | 27.8 | |
Menopausal status | ||||
pre-menopausal | 14.8 | 15.3 | 14.3 | ns |
post-menopausal | 85.2 | 84.7 | 85.7 | |
Age at menopause (years) | ||||
<50 | 40.8 | 47.2 a | 35.5 a | 0.0254 |
≥50 | 59.2 | 52.8 b | 64.5 b | |
Number of full-term pregnancies | ||||
0 | 12.1 | 7.9 a | 15.7 a | |
1–2 | 61.7 | 61.6 | 61.7 | 0.0219 |
≥3 | 26.2 | 30.5 | 22.6 | |
Age at first full-term pregnancy (years) | ||||
<20.0 | 14.1 | 16.6 | 11.9 | |
20.0–29.9 | 78.9 | 77.7 | 79.9 | ns |
≥30.0 | 7.0 | 5.7 | 8.2 | |
Age at last full-term pregnancy (years) | ||||
<20.0 | 1.5 | 2.5 | 0.6 | |
20.0–29.9 | 57.4 | 60.5 | 54.5 | ns |
≥30.0 | 41.0 | 37.0 | 44.9 | |
Vitamin/mineral supplements use | 38.6 | 31.1 | 44.8 | 0.0040 |
Oral contraceptive use (ever) | 20.2 | 17.9 | 22.2 | ns |
(years *) | 4.1 (4.3) | 4.7 (4.9) | 3.7 (3.8) | ns |
Hormone-replacement therapy use (ever) | 16.7 | 15.3 | 17.8 | ns |
(years *) | 4.8 (4.7) | 5.4 (5.6) | 4.4 (3.9) | ns |
Breastfeeding# (months) | ||||
≤6 | 52.2 | 55.4 | 49.2 | |
7–12 | 24.5 | 20.0 a | 28.5 a | ns |
13–24 | 15.8 | 17.7 | 14.0 | |
>24 | 7.6 | 6.9 | 8.3 | |
Family history of BC$ | 19.3 | 24.7 | 14.8 | 0.0349 |
Diagnosed chronic diseases | 56.9 | 53.7 | 59.6 | ns |
Surgical interventions | 61.0 | 64.2 | 58.3 | ns |
Food Groups | PCA-Derived Dietary Patterns | ‘Polish-aMED’ Score | ||
---|---|---|---|---|
‘Non-Healthy’ | ‘Prudent’ | ‘Margarine and Sweetened Dairy’ | ||
Refined cereals | 0.67 | −0.25 | 0.12 | −0.41 * |
Red and processed meats | 0.63 | 0.06 | 0.07 | −0.34 * |
Sugar, honey and sweets | 0.57 | 0.13 | 0.04 | −0.14 * |
Potatoes | 0.55 | −0.04 | −0.02 | −0.20 * |
Animal fats | 0.49 | 0.12 | −0.66 | −0.31 * |
Vegetable oils (including olive oil) | 0.34 | 0.36 | 0.02 | 0.14 * |
Sweetened beverages and energy drinks | 0.32 | 0.13 | 0.18 | 0.01 |
Fruit | −0.06 | 0.55 | −0.05 | 0.38 * |
Fish | −0.07 | 0.49 | 0.09 | 0.33 * |
Legumes | 0.00 | 0.48 | 0.19 | 0.36 * |
Milk, fermented milk drinks and cheese curd | −0.05 | 0.48 | 0.13 | 0.22 * |
Wholemeal cereals | −0.45 | 0.47 | −0.01 | 0.43 * |
Fruit, vegetable, vegetable-fruit juices | 0.16 | 0.45 | 0.00 | 0.11 * |
Eggs | 0.20 | 0.44 | −0.10 | 0.10 * |
Vegetables | 0.00 | 0.42 | −0.17 | 0.34 * |
Nuts and seeds | −0.39 | 0.42 | −0.12 | 0.46 * |
Breakfast cereals | 0.04 | 0.35 | 0.31 | 0.14 * |
Cheese | 0.23 | 0.34 | 0.10 | 0.02 |
Other fats (margarine, mayonnaise, dressings) | 0.17 | −0.12 | 0.80 | −0.05 |
Sweetened milk beverages and flavoured cheese | 0.29 | 0.28 | 0.36 | −0.06 |
White meat | 0.22 | 0.08 | 0.31 | −0.03 |
Ratio of vegetable oils to animal fat | NA | NA | NA | 0.38 * |
Share in explaining the variance (%) | 13 | 12 | 7 | NA |
Biomarkers | Metabolic-Hormone Profiles | |
---|---|---|
‘Metabolic-Syndrome’ | ‘High-Hormone’ | |
HDL-cholesterol | −0.76 | −0.27 |
Waist circumference | 0.72 | −0.05 |
Hypertension | 0.58 | 0.05 |
Triglycerides | 0.56 | 0.01 |
Insulin | 0.54 | −0.13 |
Glucose | 0.38 | −0.11 |
Progesterone | −0.17 | 0.83 |
Oestradiol | −0.07 | 0.77 |
Testosterone | 0.13 | 0.58 |
Cortisol | −0.15 | 0.44 |
Prolactin | 0.09 | 0.38 |
Share in explaining the variance (%) | 21 | 19 |
Variable | Cancer-Control Sample | Cancer Sample | Control Sample | p-Value |
---|---|---|---|---|
Sample size | 420 | 190 | 230 | |
‘Polish-aMED’ score (points) * | 4.7 (1.8) | 4.4 (1.8) | 4.9 (1.7) | 0.0081 |
levels (points) | ||||
low (0–2) | 12.1 | 15.8 a | 9.1 a | |
average (3–5) | 53.3 | 54.7 | 52.2 | 0.0390 |
high (6–8) | 34.5 | 29.5 b | 38.7 b | |
‘Non-Healthy’ DP | ||||
score * | 3.5 (1.8) | 4.1 (1.9) | 3.1 (1.6) | <0.0001 |
tertiles | ||||
bottom | 33.1 | 22.6 a | 41.7 a | |
middle | 33.6 | 31.1 | 35.7 | <0.0001 |
upper | 33.3 | 46.3 b | 22.6 b | |
‘Prudent’ DP | ||||
score * | 3.4 (1.2) | 3.3 (1.2) | 3.5 (1.3) | ns |
tertiles | ||||
bottom | 33.1 | 33.2 | 33.0 | |
middle | 33.3 | 33.7 | 33.0 | ns |
upper | 33.6 | 33.2 | 33.9 | |
‘Margarine and Sweetened Dairy’ DP | ||||
score * | 0.1 (1.0) | 0.2 (1.0) | 0.1 (1.0) | ns |
tertiles | ||||
bottom | 33.3 | 33.7 | 33.0 | |
middle | 33.1 | 29.5 | 36.1 | ns |
upper | 33.6 | 36.8 | 30.9 | |
Sample size | 129 | 47 | 82 | |
‘Metabolic-Syndrome’ Profile | ||||
score * | 111.4 (42.0) | 125.6 (49.0) | 103.1 (35.1) | 0.0032 |
tertiles | ||||
bottom | 40.7 | 21.3 a | 33.6 a | |
middle | 33.3 | 34.0 | 33.6 | 0.0379 |
upper | 25.9 | 44.7 b | 32.8 b | |
‘High-Hormone’ Profile | ||||
score * | −10.2 (33.5) | 2.0 (52.1) | −17.3 (9.4) | 0.0015 |
tertiles | ||||
bottom | 39.5 | 21.3 a | 32.8 a | |
middle | 42.0 | 21.3 b | 34.4 b | <0.0001 |
upper | 18.5 | 57.4 c | 32.8 c | |
Hormones | ||||
oestradiol (pg/mL) * | 13.9 (39.9) | 22.6 (63.8) | 8.8 (11.1) | 0.0399 |
progesterone (ng/mL) * | 0.16 (0.42) | 0.29 (0.68) | 0.09 (0.04) | 0.0032 |
prolactin (ng/mL) * | 14.5 (20.5) | 21.3 (32.7) | 10.5 (3.6) | 0.0303 |
testosterone (ng/mL) * | 0.20 (0.12) | 0.25 (0.14) | 0.17 (0.10) | 0.0088 |
Sample size | 132 | 50 | 82 | |
cortisol (μg/dL) * | 15.6 (7.0) | 16.9 (9.1) | 14.8 (5.1) | ns |
insulin (μU/mL) * | 10.2 (7.4) | 11.2 (9.7) | 9.6 (5.5) | ns |
Metabolic Syndrome Biomarkers | ||||
triglycerides (mg/dL) * | 105.0 (50.0) | 122.0 (65.0) | 94.6 (34.4) | 0.0040 |
<150 | 87.8 | 80.0 a | 92.6 a | 0.0325 |
≥150 | 12.2 | 20.0 b | 7.4 b | |
HDL-cholesterol (mg/dL) * | 67.0 (17.6) | 59.6 (15.8) | 71.6 (17.2) | <0.0001 |
≥50 | 84.0 | 74.0 a | 90.1 a | 0.0145 |
<50 | 16.0 | 26.0 b | 9.9 b | |
glucose (mg/dL) * | 95.9 (11.1) | 92.4 (13.7) | 98.0 (8.5) | 0.0012 |
<100 | 67.2 | 76.0 a | 61.7 a | ns |
≥100 | 32.8 | 24.0 b | 38.3 b | |
hypertension (self-reported) c | 27.1 | 31.1 | 23.9 | ns |
waist circumference (cm) *d | 92.0 (13.2) | 94.0 (13.7) | 90.4 (12.6) | 0.0062 |
<88 | 41.1 | 34.1 a | 46.5 a | 0.0112 |
≥88 | 58.9 | 65.9 b | 53.5 b | |
Metabolic Syndrome Score * | 1.4 (1.3) | 1.6 (1.3) | 1.3 (1.3) | ns |
No. of Metabolic Syndrome Biomarkers | ||||
0 | 29.8 | 22.0 a | 34.6 a | |
1–2 | 51.1 | 56.0 | 48.1 | ns |
3–5 | 19.1 | 22.0 | 17.3 | |
without metabolic syndrome (0–2) | 80.9 | 78.0 | 82.7 | ns |
metabolic syndrome (3–5) | 19.1 | 22.0 | 17.3 | |
total cholesterol (mg/dL) * | 213.8 (41.6) | 205.1 (46.4) | 219.1 (37.6) | 0.0397 |
LDL-cholesterol (mg/dL) * | 126.8 (36.7) | 121.8 (40.9) | 129.8 (33.7) | ns |
log TG/HDL * | 1.8 (1.4) | 2.4 (1.9) | 1.5 (0.8) | 0.0001 |
<0.50 | 89.3 | 82.0 a | 93.8 a | 0.0333 |
≥0.50 | 10.7 | 18.0 b | 6.2 b | |
LDL/HDL * | 2.0 (0.9) | 2.2 (1.1) | 1.9 (0.6) | ns |
<3.50 | 93.9 | 88.0 a | 97.5 a | 0.0269 |
≥3.50 | 6.1 | 12.0 b | 2.5 b | |
non-HDL (mg/dL) * | 146.8 (38.6) | 145.5 (46.2) | 147.5 (33.3) | ns |
<145 | 48.1 | 48.0 | 48.1 | ns |
≥145 | 51.9 | 52.0 | 51.9 |
Dietary Patterns/Metabolic-Hormone Profiles | Tertiles/Levels | Sample Size | Breast Cancer | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Unadjusted Model | Model 1 | Model 2 | Model 3 | |||||||
ORs | 95% CI | ORs | 95% CI | ORs | 95% CI | ORs | 95% CI | |||
‘Polish-aMED’ | low (0–2 points; ref.) | 51 | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | ||||
average (3–5 points) | 224 | 0.61 | 0.33; 1.13 | 0.52 | 0.26; 1.01 | 0.53 | 0.27; 1.05 | NA | ||
high (6–8 points) | 145 | 0.44 * | 0.23; 0.85 | 0.54 | 0.26; 1.10 | 0.52 | 0.25; 1.07 | NA | ||
1-point increase # | 0.86 ** | 0.77; 0.96 | 0.93 | 0.82; 1.05 | 0.92 | 0.81; 1.05 | NA | |||
‘Non-Healthy’ | bottom (ref.) | 139 | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | ||||
middle | 141 | 1.61 | 0.98; 2.63 | 1.23 | 0.72; 2.11 | 1.13 | 0.65; 1.95 | NA | ||
upper | 140 | 3.78 **** | 2.29; 6.22 | 3.08 *** | 1.74; 5.46 | 2.90 *** | 1.62; 5.21 | NA | ||
1-point increase # | 1.40 **** | 1.24; 1.57 | 1.34 **** | 1.17; 1.53 | 1.32 **** | 1.15; 1.51 | NA | |||
‘Prudent’ | bottom (ref.) | 139 | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | ||||
middle | 140 | 1.02 | 0.61; 1.68 | 1.23 | 0.73; 2.08 | 1.27 | 0.74; 2.17 | NA | ||
upper | 141 | 0.97 | 0.61; 1.55 | 1.47 | 0.85; 2.57 | 1.46 | 0.83; 2.58 | NA | ||
1-point increase # | 0.93 | 0.80; 1.09 | 1.05 | 0.87; 1.26 | 1.04 | 0.86; 1.26 | NA | |||
‘Margarine and Sweetened Dairy’ | bottom (ref.) | 140 | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | ||||
middle | 139 | 0.80 | 0.50; 1.30 | 0.98 | 0.57; 1.70 | 0.93 | 0.53; 1.61 | NA | ||
upper | 141 | 1.17 | 0.73; 1.88 | 1.29 | 0.76; 2.20 | 1.15 | 0.64; 2.06 | NA | ||
1-point increase # | 1.07 | 0.88; 1.30 | 1.05 | 0.84; 1.30 | 0.99 | 0.79; 1.24 | NA | |||
‘Metabolic-Syndrome’ | bottom (ref.) | 43 | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | ||||
middle | 43 | 1.96 | 0.75; 5.07 | 1.65 | 0.60; 4.53 | NA | 1.59 | 0.55; 4.54 | ||
upper | 43 | 3.30 * | 1.28; 8.49 | 1.97 | 0.68; 5.75 | NA | 1.61 | 0.53; 4.89 | ||
1-point increase # | 1.01 ** | 1.00; 1.02 | 1.01 | 1.00; 1.02 | NA | 1.01 | 1.00; 1.02 | |||
‘High-Hormone’ | bottom (ref.) | 42 | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | 1.00 (referent) | ||||
middle | 44 | 0.94 | 0.34; 2.60 | 1.05 | 0.39; 2.79 | NA | 0.98 | 0.34; 2.79 | ||
upper | 43 | 5.76 *** | 2.20; 15.11 | 5.05 ** | 1.80; 14.19 | NA | 5.34 ** | 1.84; 15.48 | ||
1-point increase # | 1.06 ** | 1.02; 1.10 | 1.07 ** | 1.03; 1.11 | NA | 1.07 ** | 1.02; 1.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krusinska, B.; Wadolowska, L.; Slowinska, M.A.; Biernacki, M.; Drozdowski, M.; Chadzynski, T. Associations of Dietary Patterns and Metabolic-Hormone Profiles with Breast Cancer Risk: A Case-Control Study. Nutrients 2018, 10, 2013. https://doi.org/10.3390/nu10122013
Krusinska B, Wadolowska L, Slowinska MA, Biernacki M, Drozdowski M, Chadzynski T. Associations of Dietary Patterns and Metabolic-Hormone Profiles with Breast Cancer Risk: A Case-Control Study. Nutrients. 2018; 10(12):2013. https://doi.org/10.3390/nu10122013
Chicago/Turabian StyleKrusinska, Beata, Lidia Wadolowska, Malgorzata Anna Slowinska, Maciej Biernacki, Marek Drozdowski, and Tomasz Chadzynski. 2018. "Associations of Dietary Patterns and Metabolic-Hormone Profiles with Breast Cancer Risk: A Case-Control Study" Nutrients 10, no. 12: 2013. https://doi.org/10.3390/nu10122013
APA StyleKrusinska, B., Wadolowska, L., Slowinska, M. A., Biernacki, M., Drozdowski, M., & Chadzynski, T. (2018). Associations of Dietary Patterns and Metabolic-Hormone Profiles with Breast Cancer Risk: A Case-Control Study. Nutrients, 10(12), 2013. https://doi.org/10.3390/nu10122013