Study Protocol for a Randomized, Double-Blind, Community-Based Efficacy Trial of Various Doses of Zinc in Micronutrient Powders or Tablets in Young Bangladeshi Children
Abstract
:1. Introduction
2. Methods
2.1. Study Setting
2.2. Study Participants
2.3. Study Interventions
2.4. Screening and Enrollment
2.5. Consent Procedures
2.6. Follow-Up Procedures
2.7. Study Outcomes
2.8. Participant Recruitment Plans and Study Timeline
2.9. Sample Size Calculations
2.10. Randomization and Double-Blinding
2.11. Data Collection: Sociodemographics, Morbidity, and Anthropometry
2.12. Data Collection: Biochemistry Sub-Group
2.13. Data Collection: Exchangeable Zinc Pool (Ezp) Size Estimation
3. Data Management and Analysis
3.1. Data Management
3.2. Data Analysis Principles
3.3. Monitoring of Data Collection
3.4. Data Analysis Methods
4. Safety and Ethics
4.1. Data Safety Monitoring
4.2. Discontinuation Procedures and Stopping Rules
4.3. Ethical Approval
4.4. Confidentiality
4.5. Declaration of Interests
4.6. Dissemination Policy
Project Status
Acknowledgements
Author Contributions
Conflicts of Interest
Appendix A. Consent Form
Purpose of the Research
Background
Why Invited to Participate in the Study?
Methods and Procedures
- Study group 1: Standard Micronutrient Powder (MNP) (15 micronutrients) will be supplemented daily. Your child will receive Red package on even days and Green package on odd days.
- Study group 2: High Zinc low Iron MNP (10 mg zinc instead of 4.1 mg), and decreased iron (6 mg encapsulated iron instead of 10 mg) supplemented daily. Your child will receive Blue package on odd days and Yellow package on even days.
- Study group 3: MNP with or without iron on alternating days. On alternating days, children will consume (Day 1) the High Zinc low Iron MNP described above (i.e., Group 2) followed by (Day 2) the same MNP composition but without iron. Your child will receive Orange package on odd days and Purple package on even days.
- Study group 4: Daily zinc tablet: Dispersible tablet with 10 mg zinc only will be supplemented daily.
- Study group 5: Intermittent zinc tablets. Dispersible tablet with 10 mg zinc daily for 2 weeks at the beginning and at the 3 month-point of the trial. Placebo dispersible tablets will be given on all other days to ensure study participants are blinded.
- Study group 6: Placebo control group: Placebo powder will be supplemented daily. Your child will receive Brown package on odd days and White package on even days.
Risk and Benefits
Privacy, Anonymity and Confidentiality
Future Use of Information
Right Not to Participate and Withdraw
Principle of Compensation
Answering Your Questions/Contact Persons
- _______________________________________ ____________________
- Signature or left thumb impression of Date
- Parent/ Guardian/ Attendant
- _______________________________________ ____________________
- Signature or left thumb impression of the witness Date
- _______________________________________ ___________________
- Signature of the PI or his/her representative Date
- (NOTE: In case of representative of the PI, she/he shall put her/his full name and designation and then sign)
- (Name and contact phone of IRB Secretariat, RA, M. A. Salam Khan, Phone No: +880-2-988-6498 or PABX: +880-2-982-7001-10 (ext. 3206)
Appendix B. Study Timeline
Year 1 | Year 2 | Year 3 | ||||||||||||||||||||||||||
Months | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | |
Study Activities | ||||||||||||||||||||||||||||
Institutional Review Board IRB Approval | ||||||||||||||||||||||||||||
Staff Recruitment and Training | ||||||||||||||||||||||||||||
Study Preparation | ||||||||||||||||||||||||||||
Participant Enrollment | ||||||||||||||||||||||||||||
Study Procedure/Follow-Up | ||||||||||||||||||||||||||||
Laboratory Analysis | ||||||||||||||||||||||||||||
Sample Shipping | ||||||||||||||||||||||||||||
Data Entry and Analysis | ||||||||||||||||||||||||||||
Report Writing |
References
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Zinc Review. J. Nutr. 2016, 146, 858S–885S. [Google Scholar] [CrossRef] [PubMed]
- International Zinc Nutrition Consultative Group. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S94–S203. [Google Scholar]
- Brown, K.H.; Peerson, J.M.; Baker, S.K.; Hess, S.Y. Preventive zinc supplementation among infants, preschoolers, and older prepubertal children. Food Nutr. Bull. 2009, 30 (Suppl. 1), S12–S40. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.H.; Peerson, J.M.; Rivera, J.; Allen, L.H. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2002, 75, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Black, R.E.; Brown, K.H.; Gardner, J.M.; Gore, S.; Hidayat, A.; Khatun, F.; Martorell, R.; Ninh, N.X.; Penny, M.E.; et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: Pooled analysis of randomized controlled trials. Zinc Investigators’ Collaborative Group. J. Pediatr. 1999, 135, 689–697. [Google Scholar] [CrossRef]
- Brown, K.H.; Hess, S.Y.; Vosti, S.A.; Baker, S.K. Comparison of the estimated cost-effectiveness of preventive and therapeutic zinc supplementation strategies for reducing child morbidity and mortality in sub-Saharan Africa. Food Nutr. Bull. 2013, 34, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Zlotkin, S.H.; Schauer, C.; Christofides, A.; Sharieff, W.; Tondeur, M.C.; Hyder, S.M. Micronutrient sprinkles to control childhood anaemia. PLoS Med. 2005, 2, e1. [Google Scholar] [CrossRef] [PubMed]
- Ward, E. Addressing nutritional gaps with multivitamin and mineral supplements. Nutr. J. 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Reerink, I.; Namaste, S.M.; Poonawala, A.; Nyhus Dhillon, C.; Aburto, N.; Chaudhery, D.; Kroeun, H.; Griffiths, M.; Haque, M.R.; Bonvecchio, A.; et al. Experiences and lessons learned for delivery of micronutrient powders interventions. Matern. Child Nutr. 2017, 13 (Suppl. 1). [Google Scholar] [CrossRef] [PubMed]
- Soofi, S.; Cousens, S.; Iqbal, S.P.; Akhund, T.; Khan, J.; Ahmed, I.; Zaidi, A.K.; Bhutta, Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet 2013, 6, 29–40. [Google Scholar] [CrossRef]
- Salam, R.A.; MacPhail, C.; Das, J.K.; Bhutta, Z.A. Effectiveness of Micronutrient Powders (MNP) in women and children. BMC Public Health 2013, 13 (Suppl. 3), S22. [Google Scholar]
- Adu-Afarwuah, S.; Lartey, A.; Brown, K.H.; Zlotkin, S.; Briend, A.; Dewey, K.G. Randomized comparison of 3 types of micronutrient supplements for home fortification of complementary foods in Ghana: Effects on growth and motor development. Am. J. Clin. Nutr. 2007, 86, 412–420. [Google Scholar] [PubMed]
- Zlotkin, S.; Arthur, P.; Schauer, C.; Antwi, K.Y.; Yeung, G.; Piekarz, A. Home-fortification with iron and zinc sprinkles or iron sprinkles alone successfully treats anemia in infants and young children. J. Nutr. 2003, 133, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Jack, S.J.; Ou, K.; Chea, M.; Chhin, L.; Devenish, R.; Dunbar, M.; Eang, C.; Hou, K.; Ly, S.; Khin, M.; et al. Effect of micronutrient sprinkles on reducing anemia: A cluster-randomized effectiveness trial. Arch. Pediatr. Adolesc. Med. 2012, 166, 842–850. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Suchdev, P.S.; Vist, G.E.; Walleser, S.; Peña-Rosas, J.P. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age (Review). Evid. Based Child Health 2013, 8, 112–201. [Google Scholar] [CrossRef] [PubMed]
- Esamai, F.; Liechty, E.; Ikemeri, J.; Westcott, J.; Kemp, J.; Culbertson, D.; Miller, L.V.; Hambidge, K.M.; Krebs, N.F. Zinc absorption from micronutrient powder is low but is not affected by iron in Kenyan infants. Nutrients 2014, 6, 5636–5651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Implementing the New Recommendations on the Clinical Management of Diarrhoea: Guidelines for Policy Makers and Programme Managers. Geneva. 2006. Available online: http://apps.who.int/iris/bitstream/10665/44651/1/9789241502047_eng.pdf (accessed on 19 November 2017).
- National Micronutrient Survey, 2011–2012. Available online: http://www.icddrb.org/publications/cat_view/52-publications/10043-icddrb-documents/10058-icddrb-reports-and-working-papers/14275-survey-reports (accessed on 19 November 2017).
- De Onis, M.; Onyango, A.W.; Van den Broeck, J.; Chumlea, W.C.; Martorell, R. Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr. Bull. 2004, 25 (Suppl. 1), S27–S36. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.E.; Yakes, E.A.; Islam, M.M.; Hossain, M.B.; Ahmed, T.; Hotz, C.; Lewis, B.; Rahman, A.S.; Jamil, K.M.; Brown, K.H. Very low adequacy of micronutrient intakes by young children and women in rural Bangladesh is primarily explained by low food intake and limited diversity. J. Nutr. 2013, 143, 197–203. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guideline: Use of Multiple Micronutrient Powders for Home Fortification of Foods Consumed by Infants and Children 6–23 Months of Age; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Ariff, S.; Krebs, N.F.; Soofi, S.; Westcott, J.; Bhatti, Z.; Tabassum, F.; Bhutta, Z.A. Absorbed zinc and exchangeable zinc pool size are greater in Pakistani infants receiving traditional complementary foods with zinc-fortified micronutrient powder. J. Nutr. 2014, 144, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Penny, M.E. Zinc supplementation in public health. Ann. Nutr. Metab. 2013, 62 (Suppl. 1), 31–42. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 20, 209–222. [Google Scholar] [CrossRef]
- Chang, S.; El Arifeen, S.; Bari, S.; Wahed, M.A.; Rahman, K.M.; Rahman, M.T.; Mahmud, A.B.; Begum, N.; Zaman, K.; Baqui, A.H.; et al. Supplementing iron and zinc: Double blind, randomized evaluation of separate or combined delivery. Eur. J. Clin. Nutr. 2010, 64, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Chisti, M.J.; Salam, M.A.; Bardhan, P.K.; Sharifuzzaman; Ahad, R.; La Vincente, S.; Duke, T. Influences of dehydration on clinical features of radiological pneumonia in children attending an urban diarrhoea treatment centre in Bangladesh. Ann. Trop. Paediatr. 2010, 30, 311–316. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Revised WHO Classification and Treatment of Pneumonia in Children at Health Facilities: Evidence Summaries. 2014. Available online: http://apps.who.int/iris/bitstream/10665/137319/1/9789241507813_eng.pdf (accessed on 19 November 2017).
- Cogill, B. Anthropometric Indicators Measurement Guide. Food and Nutrition Technical Assistance Project; Academy for Educational Development: Washington, DC, USA, 2003. [Google Scholar]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F.; Westcott, J.E.; Culbertson, D.L.; Sian, L.; Miller, L.V.; Hambidge, K.M. Comparison of complementary feeding strategies to meet zinc requirements of older breastfed infants. Am. J. Clin. Nutr. 2012, 96, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.V.; Hambidge, K.M.; Naake, V.L.; Hong, Z.; Westcott, J.L.; Fennessey, P.V. Size of the zinc pools that exchange rapidly with plasma zinc in humans: Alternative techniques for measuring and relation to dietary zinc intake. J. Nutr. 1994, 124, 268–276. [Google Scholar] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c332. [Google Scholar] [CrossRef] [PubMed]
- Kosek, M.; Guerrant, R.L.; Kang, G.; Bhutta, Z.; Yori, P.P.; Gratz, J.; Gottlieb, M.; Lang, D.; Lee, G.; Haque, R. Assessment of environmental enteropathy in the MAL-ED cohort study: Theoretical and analytic framework. Clin. Infect. Dis. 2014, 59 (Suppl. 4), S239–S247. [Google Scholar] [CrossRef] [PubMed]
Study Group | Description | Form | Micronutrient Content | Frequency of Supplementation |
---|---|---|---|---|
1 | Standard Micronutrient Powder (MNP) | Powder | Vitamin A: 400 µg Vitamin D: 5 µg Vitamin E: 5 mg Vitamin C: 30 mg Thiamine: 0.5 mg Riboflavin: 0.5 mg Niacin: 6 mg Pyridoxine: 0.5 mg Vitamin B12: 0.9 mg Folate: 150 µg Iron: 10 mg Zinc: 4.1 mg Copper: 0.56 mg Selenium: 17.0 µg Iodine: 90 µg | Daily for 24 weeks |
2 | High zinc, low iron MNP | Powder | Same as study group 1, except with 10 mg zinc and 6 mg iron | Daily for 24 weeks |
3 | High zinc, low iron MNP; high-zinc, no-iron MNP on alternating days | Powder | Same as study group 1, except with 10 mg zinc, and 6 mg iron and no iron on alternating days | Daily for 24 weeks |
4 | Dispersible zinc supplement | Dispersible tablet | 10 mg zinc | Daily for 24 weeks |
5 | Intermittent zinc supplement | Dispersible tablet | 10 mg zinc | Daily for 14 days at baseline and 3 months, placebo tablet on all other days |
6 | Placebo powder | Powder | None | Daily for 24 weeks |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.M.; McDonald, C.M.; Krebs, N.F.; Westcott, J.; Rahman, A.E.; El Arifeen, S.; Ahmed, T.; King, J.C.; Black, R.E. Study Protocol for a Randomized, Double-Blind, Community-Based Efficacy Trial of Various Doses of Zinc in Micronutrient Powders or Tablets in Young Bangladeshi Children. Nutrients 2018, 10, 132. https://doi.org/10.3390/nu10020132
Islam MM, McDonald CM, Krebs NF, Westcott J, Rahman AE, El Arifeen S, Ahmed T, King JC, Black RE. Study Protocol for a Randomized, Double-Blind, Community-Based Efficacy Trial of Various Doses of Zinc in Micronutrient Powders or Tablets in Young Bangladeshi Children. Nutrients. 2018; 10(2):132. https://doi.org/10.3390/nu10020132
Chicago/Turabian StyleIslam, M. Munirul, Christine M. McDonald, Nancy F. Krebs, Jamie Westcott, Ahmed Ehsanur Rahman, Shams El Arifeen, Tahmeed Ahmed, Janet C. King, and Robert E. Black. 2018. "Study Protocol for a Randomized, Double-Blind, Community-Based Efficacy Trial of Various Doses of Zinc in Micronutrient Powders or Tablets in Young Bangladeshi Children" Nutrients 10, no. 2: 132. https://doi.org/10.3390/nu10020132
APA StyleIslam, M. M., McDonald, C. M., Krebs, N. F., Westcott, J., Rahman, A. E., El Arifeen, S., Ahmed, T., King, J. C., & Black, R. E. (2018). Study Protocol for a Randomized, Double-Blind, Community-Based Efficacy Trial of Various Doses of Zinc in Micronutrient Powders or Tablets in Young Bangladeshi Children. Nutrients, 10(2), 132. https://doi.org/10.3390/nu10020132