Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Diet Assessment
2.3. Dietary Biomarker Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Leading Causes of Death. Available online: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm (accessed on 16 September 2017).
- Assmann, K.E.; Lassale, C.; Andreeva, V.A.; Jeandel, C.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. A Healthy Dietary Pattern at Midlife, Combined with a Regulated Energy Intake, Is Related to Increased Odds for Healthy Aging. J. Nutr. 2015, 145, 2139–2145. [Google Scholar] [CrossRef] [PubMed]
- Colby, S.; Ortman, J. The Baby Boom Cohort in the United States: 2012 to 2060; Current Population Reports, P25-1141; U.S. Census Bureau: Washington, DC, USA, 2014. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Multiple Chronic Conditions among Adults 45 and Over: Trends over the Past 10 Years. National Center for Health Statistics NCHS Data Brief No. 100. Available online: https://www.cdc.gov/nchs/products/databriefs/db100.htm (accessed on 5 November 2017).
- King, D.E.; Matheson, E.; Chirina, S.; Shankar, A.; Broman-Fulks, J. The status of baby boomers’ health in the United States: The healthiest generation? JAMA Intern. Med. 2013, 173, 385–386. [Google Scholar] [CrossRef] [PubMed]
- West Virginia State Obesity Data, Rates and Trends—The State of Obesity. Available online: https://stateofobesity.org/states/wv (accessed on 21 January 2018).
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129, S102–S138. [Google Scholar] [CrossRef] [PubMed]
- LeFevre, M.L.; U.S. Preventive Services Task Force. Behavioral counseling to promote a healthful diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2014, 161, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Nutrition Evidence Library—Dietary Patterns Systematic Review Project|Center for Nutrition Policy and Promotion. Available online: https://www.cnpp.usda.gov/nutrition-evidence-library-dietary-patterns-systematic-review-project (accessed on 23 January 2018).
- Bailey, R.L.; Miller, P.E.; Mitchell, D.C.; Hartman, T.J.; Lawrence, F.R.; Sempos, C.T.; Smiciklas-Wright, H. Dietary screening tool identifies nutritional risk in older adults. Am. J. Clin. Nutr. 2009, 90, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Mitchell, D.C.; Miller, C.K.; Still, C.D.; Jensen, G.L.; Tucker, K.L.; Smiciklas-Wright, H. A dietary screening questionnaire identifies dietary patterns in older adults. J. Nutr. 2007, 137, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Obesity Education Initiative Electronic Textbook—Treatment Guidelines. Available online: https://www.nhlbi.nih.gov/health-pro/guidelines/current/obesity-guidelines/e_textbook/txgd/4142.htm (accessed on 5 November 2017).
- World Health Organization (WHO). Physical Status: The Use and Interpretation of Anthropometry. Available online: http://www.who.int/childgrowth/publications/physical_status/en/ (accessed on 5 November 2017).
- Schakel, S.F.; Buzzard, I.M.; Gebhardt, S.E. Procedures for Estimating Nutrient Values for Food Composition Databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Diet. Assoc. 1988, 88, 1268–1271. [Google Scholar] [PubMed]
- Nutrition Coordinating Center (NCC), University of Minnesota. Guide to Creating Variables, Needed to Calculate Scores for Each Component of the Healthy Eating Index-2015 (HEI-2015). Available online: http://www.ncc.umn.edu/healthy-eating-index-hei/ (accessed on 7 November 2017).
- Guenther, P.M.; Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Buckman, D.W.; Dodd, K.W.; Casavale, K.O.; Carroll, R.J. The Healthy Eating Index-2010 Is a Valid and Reliable Measure of Diet Quality According to the 2010 Dietary Guidelines for Americans123. J. Nutr. 2014, 144, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; Neuringer, M.; Russell, R.M.; Schalch, W.; Snodderly, D.M. Nutritional manipulation of primate retinas, III: Effects of lutein or zeaxanthin supplementation on adipose tissue and retina of xanthophyll-free monkeys. Investig. Ophthalmol. Vis. Sci. 2005, 46, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine Panel on Dietary Antioxidants Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids, in Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Ford, E.S.; Schleicher, R.L.; Mokdad, A.H.; Ajani, U.A.; Liu, S. Distribution of serum concentrations of α-tocopherol and γ-tocopherol in the US population. Am. J. Clin. Nutr. 2006, 84, 375–383. [Google Scholar] [PubMed]
- Hiza, H.A.B.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Greene, G.W.; Lofgren, I.; Paulin, C.; Greaney, M.L.; Clark, P.G. Differences in Psychosocial and Behavioral Variables by Dietary Screening Tool Risk Category in Older Adults. J. Acad. Nutr. Diet. 2018, 118, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Subar, A.F.; Reedy, J. Examining Dietary Patterns in Relation to Chronic Disease: Matching Measures and Methods to Questions of Interest. Circulation 2015, 132, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census Bureau. QuickFacts: West Virginia. Available online: https://www.census.gov/quickfacts/WV (accessed on 23 January 2018).
All (n = 87) | At-Risk, Score < 60 (n = 56) | Not-at-Risk/Possible Risk, Score ≥ 60 (n = 31) | P Value 1 | |
---|---|---|---|---|
Age, years (SE) | 54 (4.7) | 53 (4.6) | 57 (3.8) | <0.001 |
Sex, % | ||||
Men | 41 | 48 | 29 | 0.080 |
Women | 59 | 52 | 21 | |
Race/Ethnicity, % | ||||
Non-Hispanic white | 97 | 97 | 97 | 0.932 |
Non-Hispanic Black | 3 | 3 | 3 | |
Education | ||||
High school and above, % | 99 | 98 | 100 | 0.454 |
Income, % 2 | ||||
≤$49,999 | 25 | 22 | 30 | 0.748 |
$50,000–$74,999 | 22 | 22 | 23 | |
$75,000 or more | 47 | 47 | 45 | |
Medical Diagnoses, % | ||||
Diabetes | 7 | 9 | 3 | 0.517 |
Pre-diabetes | 6 | 10 | 0 | 0.123 |
Hypertension | 30 | 32 | 26 | 0.711 |
High cholesterol | 49 | 48 | 52 | 0.313 |
High triglycerides | 28 | 30 | 23 | 0.632 |
Supplement users, % | 59 | 52 | 71 | 0.082 |
Body Composition | ||||
Waist Circumference, cm (SE) | 103 (2) | 104 (2) | 102 (3) | 0.566 |
% at risk waist circumference | 70 | 70 | 71 | 0.897 |
Waist Hip Ratio (SE) | 0.9 (0.01) | 0.9 (0.01) | 0.8 (0.01) | 0.080 |
Body Mass Index, kg/m2, (SE) | 30.8 (0.8) | 30.6 (0.8) | 31.2 (2) | 0.724 |
% Body Fat (SE) | 38 (0.9) | 37 (1) | 41 (2) | 0.090 |
All (n = 87) | At-Risk, Score < 60 (n = 56) | Not-at-Risk/Possible Risk, Score ≥ 60 (n = 31) | P Value | |
---|---|---|---|---|
Mean (SE) | ||||
Dietary Screening Tool Score | 55.0 (1.3) | 47.3 (1.0) | 68.1 (1.1) | <0.001 |
Healthy Eating Index | 54.7 (1.5) | 49.5 (1.6) | 64.2 (2.4) | <0.001 |
Energy (kcal) | 1897.1 (64.3) | 2032.0 (75.7) | 1653.4 (105.7) | <0.001 |
Energy-adjusted Mean (SE) 1 | P value 2 | |||
Protein (g) | 43.7 (1.3) | 39.6 (1.2) | 51.2 (0.9) | <0.001 |
Carbohydrate (g) | 118.9 (2.1) | 118.8 (2.4) | 119.2 (3.8) | 0.936 |
Fat (g) | 39.7 (0.6) | 41.6 (0.7) | 36.2 (0.9) | <0.001 |
Saturated fat (g) | 13.1 (0.3) | 14.1 (0.3) | 10.9 (0.5) | <0.001 |
Omega 3 fatty acid (g) | 0.91 (0.03) | 0.88 (0.04) | 0.98 (0.07) | 0.175 |
PUFA:SFA ratio 3 | 0.46 (0.02) | 0.38 (0.03) | 0.62 (0.05) | 0.001 |
Fiber (g) | 10.5 (0.4) | 9.5 (0.3) | 12.4 (0.9) | 0.003 |
Added sugars (g) | 26.2 (1.6) | 29.2 (2.1) | 20.5 (2.2) | 0.007 |
Vitamins | ||||
Vitamin A (RAE) | 369.5 (20.7) | 314.1 (19.2) | 470.0 (42.1) | 0.001 |
Vitamin D (mcg) | 2.3 (0.2) | 2.1 (0.1) | 2.7 (0.4) | 0.217 |
Vitamin E (mg) | 4.9 (0.3) | 4.5 (0.2) | 5.8 (0.6) | 0.053 |
Vitamin K (mcg) | 69.8 (10.4) | 44.0 (3.7) | 116.5 (26.7) | 0.010 |
Vitamin C (mg) | 39.9 (3.2) | 32.7 (2.9) | 53.0 (6.6) | 0.007 |
Thiamin (mg) | 0.94 (0.03) | 0.91 (0.02) | 1.0 (0.06) | 0.205 |
Riboflavin (mg) | 1.2 (0.04) | 1.1 (0.04) | 1.3 (0.08) | 0.070 |
Niacin (mg) | 13.5 (0.4) | 12.5 (0.4) | 15.2 (0.9) | 0.007 |
Vitamin B6 (mg) | 1.04 (0.04) | 0.95 (0.03) | 1.21 (0.09) | 0.010 |
Vitamin B12 (mcg) | 2.4 (0.2) | 2.2 (0.1) | 2.8 (0.4) | 0.113 |
Minerals | ||||
Calcium (mg) | 518.5 (19.6) | 497.8 (19.4) | 556.2 (42.1) | 0.213 |
Magnesium (mg) | 160.9 (5.4) | 143.8 (4.4) | 192.0 (11.4) | <0.001 |
Phosphorus (mg) | 659.8 (14.9) | 613.4 (13.2) | 745.0 (28.9) | <0.001 |
Iron (mg) | 7.9 (0.3) | 7.7 (0.3) | 8.6 (0.7) | 0.206 |
Zinc (mg) | 6.0 (0.2) | 5.8 (0.2) | 6.4 (0.4) | 0.085 |
Copper (mg) | 0.6 (0.02) | 0.6 (0.02) | 0.7 (0.04) | 0.002 |
Selenium (mcg) | 61.34 (1.6) | 56.4 (1.5) | 70.3 (2.9) | <0.001 |
Sodium (mg) | 1751.0 (38.6) | 1760.5 (44.6) | 1734.7 (75.6) | 0.759 |
Potassium (mg) | 1351.9 (38.3) | 1231.2 (34.4) | 1569.9 (75.7) | <0.001 |
Biochemical Marker | At-Risk, Score < 60 (n = 56) | Not-at-Risk/Possible Risk, Score ≥ 60 (n = 31) | P Value 1 |
---|---|---|---|
α-carotene (nmol/L) | 150 (113–187) | 202 (151–252) | 0.008 |
β-carotene (nmol/L) | 444 (332–553) | 774 (625–923) | <0.001 |
Cryptoxanthin (nmol/L) | 148 (116–179) | 222 (179–264) | 0.017 |
Lycopene (nmol/L) | 1668 (1446–1890) | 1756 (1456–2056) | 0.558 |
trans-Zeaxanthin (nmol/L) | 98 (82–113) | 129 (108–150) | 0.013 |
Lutein (nmol/L) | 373 (301–444) | 576 (480–673) | 0.001 |
Lutein + Zeaxanthin (nmol/L) | 471 (385–556) | 705 (590–821) | 0.002 |
Retinol (nmol/L) | 4485 (4104–4866) | 4466 (3950–4982) | 0.944 |
α-tocopherol (nmol/L) | 52,449 (46,833–58,065) | 52,360 (44,755–59,966) | 0.985 |
γ-tocopherol (nmol/L) | 11,477 (9461–11,477) | 8798 (6074–11,521) | 0.122 |
Methylmalonic acid (nmol/L) | 185 (172–199) | 171 (153–189) | 0.166 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventura Marra, M.; Thuppal, S.V.; Johnson, E.J.; Bailey, R.L. Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population. Nutrients 2018, 10, 345. https://doi.org/10.3390/nu10030345
Ventura Marra M, Thuppal SV, Johnson EJ, Bailey RL. Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population. Nutrients. 2018; 10(3):345. https://doi.org/10.3390/nu10030345
Chicago/Turabian StyleVentura Marra, Melissa, Sowmyanarayanan V. Thuppal, Elizabeth J. Johnson, and Regan L. Bailey. 2018. "Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population" Nutrients 10, no. 3: 345. https://doi.org/10.3390/nu10030345
APA StyleVentura Marra, M., Thuppal, S. V., Johnson, E. J., & Bailey, R. L. (2018). Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population. Nutrients, 10(3), 345. https://doi.org/10.3390/nu10030345