Almonds and Cardiovascular Health: A Review
Abstract
:1. Introduction
2. Almonds and Dyslipidemia
3. Almonds and LDL-C Levels
4. Almonds and HDL-C Levels
5. Almonds and Other Lipid Parameters
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CVD | Cardiovascular disease |
CAD | Coronary artery disease |
LDL-C | Low density lipoprotein-cholesterol |
HDL-C | High density lipoprotein-cholesterol |
MUFA | Monounsaturated fatty acid |
PUFA | Polyunsaturated fatty acid |
References
- Sharma, M.; Ganguly, N.K. Premature Coronary Artery Disease in Indians and its Associated Risk Factors. Vasc. Health Risk Manag. 2005, 1, 217–225. [Google Scholar] [PubMed]
- Ministry of External Affairs. Source: “Population of Overseas Indians” (PDF); Ministry of External Affairs: New Delhi, India, 2016.
- Office of the Registrar General, New Delhi, India, 2015. Available online: www.censusindia.gov.in/2011-document/mccd_2013.pdf (accessed on 22 December 2016).
- Prabhakaran, D.; Jeemon, P.; Roy, A. Cardiovascular Diseases in India: Current Epidemiology and Future Directions. Circulation 2016, 133, 1605–1620. [Google Scholar] [PubMed]
- Gupta, R.; Joshi, P.P.; Mohan, V.; Reddy, K.S.; Yusuf, S. Epidemiology and causation of coronary heart disease and stroke in India. Heart 2008, 94, 16–26. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Global Report 2005–Preventing Chronic Diseases: A Vital Investment; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Eapen, D.; Kalra, G.L.; Merchant, N.; Arora, A.; Khan, B.V. Metabolic syndrome and cardiovascular disease in South Asians. Vasc. Health Risk Manag. 2009, 5, 731–743. [Google Scholar] [PubMed]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Misra, A.; Singhal, N.; Sivakumar, B.; Bhagat, N.; Jaiswal, A.; Khurana, L. Nutrition transition in India: Secular trends in dietary intake and their relationship to diet-related non-communicable diseases. J. Diabetes 2011, 3, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Mahalle, N.P.; Garg, M.K.; Naik, S.S.; Kulkarni, M.V. Study of pattern of dyslipidemia and its correlation with cardiovascular risk factors in patients with proven coronary artery disease. Indian J. Endocrinol. Metab. 2014, 18, 48–55. [Google Scholar] [PubMed]
- Joshi, S.R.; Anjana, R.M.; Deepa, M.; Pradeepa, R.; Bhansali, A.; Dhandania, V.K.; Joshi, P.P.; Unnikrishnan, R.; Nirmal, E.; Subashini, R.; et al. Prevalence of dyslipidemia in urban and rural India: The ICMR-INDIAB study. PLoS ONE 2014, 9, e96808. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomisedtrials. Lancet 2015, 385, 1397–1405. [Google Scholar] [PubMed]
- Bruckert, E.; Hayem, G.; Dejager, S.; Yau, C.; Bégaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—The PRIMO study. Cardiovasc. Drugs Ther. 2005, 19, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Filipa Macedo, A.; Taylor, F.C.; Casas, J.P.; Adler, A.; Prieto-Merino, D.; Ebrahim, S. Unintended effects of statins from observational studies in the general population: Systematic review and meta-analysis. BMC Med. 2014, 12, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Dyakova, M.; Wilson, N.; Ward, K.; Thorogood, M.; Brunner, E. Dietary advice for reducing cardiovascular risk. Cochrane Database Syst. Rev. 2013, 12, CD002128. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J. Nut consumption and risk of coronary heart disease: A review of epidemiologic evidence. Curr. Atheroscler. Rep. 1999, 1, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.M.; Gaziano, J.; Willett, W.C.; Manson, J.E. Nut consumption and decreased risk of sudden cardiac death in the Physicians’ Health Study. Arch. Intern. Med. 2002, 162, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease study, 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- O’neil, C.E.; Nicklas, T.A.; Fulgoni, V.L., III. Almond Consumption Is Associated with Better Nutrient Intake, Nutrient Adequacy, and Diet Quality in Adults: National Health and Nutrition Examination Survey 2001–2010. Food Nutr. Sci. Natl. Heal Nutr. Exam. Surv. Food Nutr. Sci. 2016, 7, 504–515. [Google Scholar] [CrossRef]
- Rehm, C.D.; Drewnowski, A. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: Results of an NHANES modeling study. Nutr. J. 2017, 16, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.M.; Chen, Q.; Chen, C.Y.O. Emerging Functional Foods Derived from Almonds. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R., Morales, P., Barros, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar]
- Puri, A.; Sahai, R.; Singh, K.L.; Saxena, R.P.; Tandon, J.S.; Saxena, K.C. Immunostimulant activity of dry fruits and plant materials used in Indian traditional medical system for mothers after child birth and invalids. J. Ethnopharmacol. 2000, 71, 89–92. [Google Scholar] [CrossRef]
- Yada, S.; Huang, G.; Lapsley, K. Natural variability in the nutrient composition of California-grown almonds. J. Food Compos. Anal. 2013, 30, 80–85. [Google Scholar] [CrossRef]
- Chen, C.Y.; Milbury, P.E.; Lapsley, K.; Blumberg, J.B. Flavonoids from Almond Skins Are Bioavailable and Act Synergistically with Vitamins C and E to Enhance Hamster and Human LDL Resistance to Oxidation. J. Nutr. 2005, 135, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.R.; Kendall, C.W.C.; Ren, Y.; Parker, C.; Pacy, J.F.; Waldron, K.W.; Jenkins, D.J.A. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am. J. Clin. Nutr. 2004, 80, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; Novotny, J.A.; Bornhorst, G.M.; Baer, D.J. Food processing and structure impact the metabolizable energy of almonds. Food Funct. 2016, 7, 4231–4238. [Google Scholar] [CrossRef] [PubMed]
- Phung, O.J.; Makanji, S.S.; White, C.M.; Coleman, C. Almonds have a neutral effect on serum lipid profiles: A meta-analysis of randomized trials. J. Am. Diet. Assoc. 2009, 109, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Spiller, G.A.; Jenkins, D.A.J.; Bosello, O.; Gates, J.E.; Cragen, L.N.; Bruce, B. Clinical and Laboratory Pearl Nuts and Plasma Lipids: An Almond-Based Diet Lowers LDL-C while Preserving HDL-C. J. Am. Coll. Nutr. 1998, 17, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, J.C.; Most, M.M.; Lefevre, M.; Greenway, F.L.; Rood, J.C. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am. J. Clin. Nutr. 2002, 76, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J.; Haddad, E.; Tanzman, J.S.; Jambazian, P.; Rajaram, S. Serum lipid response to the graduated enrichment of a Step I diet with almonds: A randomized feeding trial. Am. J. Clin. Nutr. 2003, 77, 1379–1384. [Google Scholar] [PubMed]
- Musa-Veloso, K.; Paulionis, L.; Poon, T.; Lee, H.Y. The effects of almond consumption on fasting blood lipid levels: A systematic review and meta-analysis of randomised controlled trials. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Spiller, G.A.; Miller, A.M.; Olivera, K.M.; Reynolds, J.R.; Miller, B.R.; Morse, S.J.; Dewell, A.; Farquhar, J.W. Effects of Plant-Based Diets High in Raw or Roasted Almonds, or Roasted Almond Butter on Serum Lipoproteins in Humans. J. Am. Coll. Nutr. 2003, 223, 195–200. [Google Scholar] [CrossRef]
- Hyson, D.A.; Schneeman, B.O.; Davis, P.A. Human Nutrition and Metabolism Almonds and Almond Oil Have Similar Effects on Plasma Lipids and LDL Oxidation in Healthy Men and Women 1,2. J. Nutr. 2002, 132, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Kendall, C.W.C.; Marchie, A.; Parker, T.L.; Connelly, P.W.; Qian, W.; Haight, J.S.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; et al. Dose response of almonds on coronary heart disease risk factors: Blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: A randomized, controlled, crossover trial. Circulation 2002, 106, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Wien, M.; Bleich, D.; Raghuwanshi, M.; Gould-Forgerite, S.; Gomes, J.; Monahan-Couch, L.; Oda, K. Almond consumption and cardiovascular risk factors in adults with prediabetes. J. Am. Coll. Nutr. 2010, 29, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Lamarche, B.; Desroches, S.; Jenkins, D.J.A.; Kendall, C.W.C.; Marchie, A.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; Trautwein, E.A.; Parker, T.L.; et al. Combined effects of a dietary portfolio of plant sterols, vegetable protein, viscous fibre and almonds on LDL particle size. Br. J. Nutr. 2004, 92, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Jambazian, P.R.; Haddad, E.; Rajaram, S.; Tanzman, J.; Sabaté, J. Almonds in the diet simultaneously improve plasma α-tocopherol concentrations and reduce plasma lipids. J. Am. Diet. Assoc. 2005, 105, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Berryman, C.E.; Preston, A.G.; Karmally, W.; Deckelbaum, R.J.; Kris-Etherton, P.M. Effects of almond consumption on the reduction of LDL-cholesterol: A discussion of potential mechanisms and future research directions. Nutr. Rev. 2011, 69, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Berryman, C.E.; West, S.G.; Fleming, J.A.; Bordi, P.L.; Kris-Etherton, P.M. Effects of Daily Almond Consumption on Cardiometabolic Risk and Abdominal Adiposity in Healthy Adults with Elevated LDL-Cholesterol: A Randomized Controlled Trial. J. Am. Heart Assoc. 2015, 4, e000993. [Google Scholar] [CrossRef] [PubMed]
- Beatrice, D.A.; Shivaji, G. Effect of almond supplementation on the anthropometric measurements, biochemical parameters and blood pressure levels of men with metabolic syndrome. Ind. J. Nutr. Diet. 2015, 52, 184–191. [Google Scholar]
- Gulati, S.; Misra, A.; Pandey, R.M. Effect of Almond Supplementation on Glycemia and Cardiovascular Risk Factors in Asian Indians in North India with Type 2 Diabetes Mellitus: A 24-Week Study. Metab. Syndr. Relat. Disord. 2017, 15, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, R.M.; Garcia, S.; Kim, A.D. Is almond consumption more effective than reduced dietary saturated fat at decreasing plasma total cholesterol and LDL-c levels? A theoretical approach. J. Nutr. Metabol. 2012, 2012, 265712. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R., Jr.; Mebane, I.L.; Bangdiwala, S.I.; Criqui, M.H.; Tyroler, H.A. High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: The follow-up study of the Lipid Research Clinics Prevalence Study. Am. J. Epidemiol. 1990, 131, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Robins, S.J. Targeting Low High-Density Lipoprotein Cholesterol for Therapy: Lessons from the Veterans Affairs High-Density Lipoprotein Intervention Trial. Am. J. Cardiol. 2001, 88, 19N–23N. [Google Scholar] [CrossRef]
- Robins, S.J.; Bloomfield Rubins, H.; Faas, F.H.; Schaefer, E.J.; Elam, M.B.; Anderson, J.W.; Collins, D. Veterans Affairs HDL Intervention Trial (VA-HIT). Insulin Resistance and Cardiovascular Events with Low HDL Cholesterol the Veterans Affairs HDL Intervention Trial (VA-HIT) on behalf of the VA-HIT study group. Diabetes Care 2003, 26, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- IHA, 2015. Available online: http://indianheartassociation.org/cholesterol-and-south-asians/ (accessed on 20 January 2017).
- Expert Panel on Detection, Evaluation; Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar]
- Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Shepherd, M.; Seibel, J. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of atherosclerosis. Endocr. Pract. 2017, 23 (Suppl. 2), 1–78. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, H.; Sultan, F.A.; Iqbal, R.; Gilani, A.H. Dietary Almonds Increase Serum HDL Cholesterol in Coronary Artery Disease Patients in a Randomized Controlled Trial. J. Nutr. 2015, 145, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- Tey, S.L.; Delahunty, C.; Gray, A.; Chisholm, A.; Brown, R.C. Effects of regular consumption of different forms of almonds and hazelnuts on acceptance and blood lipids. Eur. J. Nutr. 2015, 54, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Camont, L.; Chapman, M.J.; Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med. 2011, 17, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Berryman, C.E.; Fleming, J.A.; Kris-Etherton, P.M. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol. J. Nutr. 2017, 147, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Talayero, B.G.; Sacks, F.M. The Role of Triglycerides in Atherosclerosis. Curr. Cardiol. Rep. 2011, 13, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Sandhu, M.S.; Ricketts, S.L.; Butterworth, A.S.; Di Angelantonio, E.; Matthijs Boekholdt, S.; Ouwehand, W.; Watkins, H.; Samani, N.J.; Saleheen, D.; et al. Triglyceride-mediated pathways and coronary disease: Collaborative analysis of 101 studies. Lancet 2010, 375, 1634–1639. [Google Scholar] [PubMed]
- Bilen, O.; Kamal, A.; Virani, S.S. Lipoprotein abnormalities in South Asians and its association with cardiovascular disease: Current state and future directions. World J. Cardiol. 2016, 8, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.S.; Yusuf, S.; Vuksan, V.; Devanesen, S.; Teo, K.K.; Montague, P.A.; Kelemen, L.; Yi, C.; Lonn, E.; Gerstein, H.; et al. Differences in risk factors, atherosclerosis and cardiovascular disease between ethnic groups in Canada: The study of health assessment and risk in ethnic groups. Indian Heart J. 2000, 52 (Suppl. 7), S35–S43. [Google Scholar] [CrossRef]
- Cromwell, W.C.; Otvos, J.D.; Keyes, M.J.; Pencina, M.J.; Sullivan, L.; Vasan, R.S.; Wilson, P.W.; D’Agostino, R.B. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study-Implications for LDL management. J. Clin. Lipidol. 2007, 1, 583–592. [Google Scholar] [CrossRef] [PubMed]
Nutrients | Units | Value per 100 g Whole Almonds |
---|---|---|
Proximates | ||
Calories | kcal | 579 |
Water | g | 4.41 |
Protein | g | 21.15 |
Lipids (total) | g | 49.93 |
Dietary fiber (Total) | g | 12.5 |
Sugars (Total) | g | 4.35 |
Ash | g | 2.97 |
Minerals | ||
Calcium | mg | 269 |
Iron | mg | 3.71 |
Magnesium | mg | 270 |
Phosphorus | mg | 481 |
Potassium | mg | 733 |
Sodium | mg | 1 |
Zinc | mg | 3.12 |
Copper | mg | 1.03 |
Manganese | mg | 2.18 |
Vitamins | ||
Vitamin E (alpha-tocopherol) | mg | 25.63 |
Thiamin | mg | 0.21 |
Riboflavin | mg | 1.14 |
Niacin | mg | 3.62 |
Pantothenic acid | mg | 0.47 |
Vitamin B6 | mg | 0.14 |
Folate, food | mcg | 44 |
Fatty Acids | ||
Saturated (TOTAL) | g | 3.80 |
16:0 Palmitic | g | 3.08 |
18:0 Stearic | g | 0.70 |
Monounsaturated (total) | g | 31.55 |
16:1 Palmitoleic | g | 0.23 |
18:1 Oleic | g | 31.29 |
Polyunsaturated (total) | g | 12.33 |
18:2 Linoleic | g | 12.32 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalita, S.; Khandelwal, S.; Madan, J.; Pandya, H.; Sesikeran, B.; Krishnaswamy, K. Almonds and Cardiovascular Health: A Review. Nutrients 2018, 10, 468. https://doi.org/10.3390/nu10040468
Kalita S, Khandelwal S, Madan J, Pandya H, Sesikeran B, Krishnaswamy K. Almonds and Cardiovascular Health: A Review. Nutrients. 2018; 10(4):468. https://doi.org/10.3390/nu10040468
Chicago/Turabian StyleKalita, Soumik, Shweta Khandelwal, Jagmeet Madan, Himanshu Pandya, Boindala Sesikeran, and Kamala Krishnaswamy. 2018. "Almonds and Cardiovascular Health: A Review" Nutrients 10, no. 4: 468. https://doi.org/10.3390/nu10040468
APA StyleKalita, S., Khandelwal, S., Madan, J., Pandya, H., Sesikeran, B., & Krishnaswamy, K. (2018). Almonds and Cardiovascular Health: A Review. Nutrients, 10(4), 468. https://doi.org/10.3390/nu10040468