Changes of Colonic Bacterial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases
Abstract
:1. Introduction
2. Materials and Methods
- -
- subjects in the case groups had a diagnosis for the disease given by an expert.
- -
- human case control studies
- -
- at least one part of the study analysed the gut microbiome in a cross-sectional manner compared to healthy controls
- -
- faeces collection to generate a sample probe
- -
- microbiota analysis by amplification sequencing methods or hybridisation on microarrays: Phylochip G3, YIFscan
- -
- published in peer-reviewed journals
- -
- paper available in English language
3. Results
3.1. Taxonomic Changes
3.1.1. Firmicutes
3.1.2. Actinobacteria
3.1.3. Bacteroidetes
3.1.4. Verrucomicrobia
3.1.5. Proteobacteria
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Phylum and Family | Genus (Species, OTU) | AD | PD | MSA | NMO | MS | ALS | Reference |
---|---|---|---|---|---|---|---|---|
Unclassified bacteria | PD: [39] | |||||||
Firmicutes | ||||||||
Unspecified | AD: [56], PD: [38], MSA: [47], ALS: [45] | |||||||
unclassified | PD: [39], NMO: [58] | |||||||
NMO: [58] | ||||||||
91otu15265 | o1 = one OTU | NMO, o1: [58] | ||||||
Lactobacillaceae | Unspec. | PD: [41], [35], [36] | ||||||
PD: [43] | ||||||||
Lactobacillus (m = mucosae, g = gasseri, c = casei, f = fermentum, re = reuteri, ru = ruminis), r = rogosae | + | + | PD:, [35] +m: [34], +g, c, f, re, ru: [42], MS: [66], r: [57] | |||||
Enterococcaceae | Unspec. | PD: [36], [37] | ||||||
PD: [43] | ||||||||
Enterococcus | PD: [37] | |||||||
Ruminococcaceae | Unspecified O1 = one OTU | + | AD: [55] PD:, o1: [35], [41] MSA: [47], MS: [75] ALS: [46] | |||||
unclassified | ^ | PD: [35], NMO: [58], ALS: [71] detected differences in certain unculturable Ruminococcaceae in ALS patients but did not describe the scale and direction. | ||||||
Ruminococcus b = bromii c = callidus o38 = 38 OTUs | + | PD, b: [34], NMO: [58], MS, o38: [65] | ||||||
+ | PD: [37], c: [34] ALS: [46] | |||||||
Papillibacter cinnamivorans | PD: [34] | |||||||
Faecalibacterium p = prausnitzi o2 = two OTU o57 = 57 OTU | + | + | PD: +o2: [35] [34], [37], p [43] MS, +p: [57], o57: [65]. ALS: [45] | |||||
Lachnospiraceae | Unspec. | PD: [35], MSA: [47] MS: [67], ALS: [45], | ||||||
Unclassified o3= three OTU | + | + | PD, o3: [35], NMO, o1: [58] | |||||
Lachnospira, | ALS: [45] | |||||||
Roseburia o2 = two OTU | + | PD: [38], +o2: [35], MS: [57] | ||||||
Coprococcus, e = eutactus o1 = one OTU | + | PD: [38], e: [34], o1: [35], NMO: [58] | ||||||
Blautia, g = glucerasea, p = producta o1 = one OTU | + | + | AD: [56], PD: [38], [37] +o1: [35], g: [34], MSA: [47] NMO, p,o1: [58], MS: [66] | |||||
Dorea, l = longicatea | + | PD: +l [34], MSA: [47], MS: [66] ALS: [45] | ||||||
Anaerostipes, h = hadrus | + | MS, +h: [57], ALS: [45] | ||||||
Catabacteriaceae | Catabacter, h = honkogenesis | + | PD, +h: [34] | |||||
Clostridiaceae | Unspec. | AD: [56] MSA: [47] | ||||||
SMB53 | AD: [56] | |||||||
Anaerotruncus | PD: [40] | |||||||
Clostridium, p = perfringens s = saccharolyticum | + | + | AD: [56], PD, s: [42], [39], NMO, p: [58], MS: [57] | |||||
Eubacteriaceae | Eubacterium, r = rectale, b = biforme | +^ | + | PD, +b: [39] ^ symbolizes, that Eubacterium is classified as Erysipelotrichoceae in the original publication, MS, r: [57], | ||||
[Candidatus Stoquefichus massiliensis] | PD: [34] | |||||||
Erysipelotrichaceae | Unspec. | PD: [37] | ||||||
cc115 | AD: [56] | |||||||
Christensenellaceae | unspecified | PD: [35] | ||||||
unclassified | PD: [35] | |||||||
Christensenella, m = minuta | + | PD, +m: [34], MS: [67] | ||||||
Gemellaceae | Unspec | AD: [56] | ||||||
Gemella | AD: [56] | |||||||
Mogibacteriaceae | Unspec. | AD: [56] | ||||||
Oscillospiraceae | Oscillospira | PD: [34], [38], | ||||||
Oscillobacter | ALS: [45] | |||||||
Streptococcaceae | Unspec. | PD: [37] | ||||||
Streptococcus t/s = thermophilus/salivarius | + | PD: [37], MS, t/s: [57] | ||||||
Peptococcus | Desulfotomaculum sp. CYP1 | MS: [57] | ||||||
Peptostreptococcaceae | Unspec. | AD: [56] | ||||||
Acidaminococcaceae | Phascolarctobacterium | AD: [56] | ||||||
Acidaminococcus | PD: [37] | |||||||
Veillonellaceae | Unspec. | PD: [37] | ||||||
Megamonas, f = funiformis YIT11815 | PD: [37], | |||||||
+ | MS, f: [57] | |||||||
Megasphera | PD: [37] | |||||||
Dialister | AD: [56] | |||||||
Tissierellaceae | Tissierella | PD: [35] | ||||||
Turicibacteraceae | unspec. | AD: [56] | ||||||
Turicibacter | AD: [56] | |||||||
Tenericutes | ||||||||
Unclassified | NMO: [58] | |||||||
Acholeplasmataceae | Acholeplasma | NMO: [58] | ||||||
[Candidatus Phytoplasma] | NMO: [58] | |||||||
Melainabacteria | ||||||||
OTU_171 (98.9% identity to MelB1,57) | PD, o1: [40] | |||||||
Actinobacteria | ||||||||
Unspec. | AD: [56], PD: [37], MS: [67] | |||||||
Bifidobacteriaceae | Unspec. | AD: [56], PD: [35] | ||||||
Bifidobacterium | AD: [56], PD: [34], [35], [43], MS: [67] | |||||||
Coriobacteraceae | Unspec. | PD: [37] | ||||||
Adlercreutzia | AD: [56], MS: [66] | |||||||
Collinsella | MS: [66], [64] | |||||||
Slackia | MS: [64] | |||||||
Eggerthella lenta | MS: [57] | |||||||
Corynebacteriaceae | Corynebacterium | NMO: [58] | ||||||
Fibrobacters | ||||||||
unclassified | NMO: [58] | |||||||
Gemmatimonades | ||||||||
91otu1 0683 | o1 = one OTU | NMO, o1: [58] | ||||||
Bacteroidetes | ||||||||
Unspec. | AD: [56] PD: [38] MSA: [47], ALS: [45] | |||||||
PD: [43], [37] | ||||||||
unclassified | NMO: [58] | |||||||
Bacteroidaceae | Unspec. o37= 37 OTUs | + | AD: [56] MS, o37: [65] | |||||
Bacteroides f = fragilis, m = massiliensis, cc = coprocola, cp = coprophilus, d = dorei, p = phlebeus, s = stercoris | + | AD: [56], PD: [38], MSA, f: [70], NMO: [58], MS: [67] | ||||||
+ | PD, +m, c, d, p: [34], f: [42], MS, s, cc, cp: [57], ALS: [45] | |||||||
Flavobacteriaceae | Flavobacterium | NMO: [58] | ||||||
Prevotellaceae | Unspec | PD: [41] | ||||||
Prevotella, co = copri, cl = clara, M = melaninogenica o1 = one OUT, o2 = two OTU | + | + | + | + | PD,+ co: [39], [34] MSA, cl: [70] NMO, co, o2: [58] MS, +co: [57], [64], ALS: [45] | |||
+ | + | PD, o1: [35] NMO, m: [58] | ||||||
Porphyromonadaceae | Unspec. | MSA: [47], | ||||||
Unclass. | NMO: [58] | |||||||
Parabacteroides | MS: [66] | |||||||
PD: [35], MS: [67] | ||||||||
Barnesiella | PD: [36] | |||||||
Butyricimonas | MS: [64] | |||||||
Rikenellaceae | Unspec | AD: [56], MSA: [47] | ||||||
Alistipes, s = shahii | + | AD: [56], PD, s: [39] | ||||||
Sphingobacteriaceae | Pedobacter | MS: [66] | ||||||
Elusimicrobia | ||||||||
91otu12128 | o1 = one OTU | NMO, o1: [58] | ||||||
Plantomycetes | ||||||||
unclassified | NMO: [58] | |||||||
Verrucomicrobia | ||||||||
Unspec | PD: [40], MS: [64] | |||||||
Verrucomicrobiaceae | Unspec. | PD: [35] [41] [38] [40] | ||||||
Akkermansiaceae | Akkermansia, m = muciplila | + | PD: [35], [38], +m: [39] [40], MS: [64], [67] | |||||
[Chthoniobacteraceae] | DA101 = one OTU | NMO, o1: [58] | ||||||
Acidobacteria | ||||||||
91oto412 | One OTU | NMO, o1: [58] | ||||||
Spirochaetes | ||||||||
Spirochaetaceae | Treponema socranskii | NMO: [58] | ||||||
Proteobacteria | ||||||||
unclassified | PD: [38], [37] | |||||||
Alpha-Proteobacteria | ||||||||
Unclassified | NMO: [58] | |||||||
Bradyrhizobiaceae | unspec | PD: [41] | ||||||
Brucellaceae | Mycoplana | MS: [66] | ||||||
OTU_469, o1=one OTU | PD, o1: [40] | |||||||
Beta-Proteobacteria | ||||||||
Sutterellaceae | Sutterella, w = wadsworthensis | + | MS, w: [57] | |||||
Burkholderiacea | Ralstonia | MSA: [47] | ||||||
Oxalobacteraceae | Unspec. | MSA: [47] | ||||||
Gamma-Proteobacteria | ||||||||
Unclassified | NMO: [58] | |||||||
Chromatiaceae | o1 = one OTU. | NMO, o1: [58] | ||||||
Coxiellaceae | o1 = one OTU | NMO, o1: [58] | ||||||
Enterobacteriaceae | Unspec. | PD: [43], [37] | ||||||
Unclassified | NMO: [58] | |||||||
Escherichia | ALS: [45] | |||||||
Escherichia/Shigella | PD: [37] | |||||||
Proteus | PD: [37] | |||||||
Moraxellaceae | Unpec. | PD: [37] | ||||||
Acinetobacter | PD: [37] | |||||||
Pasteurellaceae | Unspec. | PD: [35] | ||||||
Pseudomonadaceae | Pseudomonas | MS: [66] | ||||||
Delta-Proteobacteria | ||||||||
Desulfovibrionaceae | Bilophila | AD: [56] | ||||||
Desulfovibrio | MS: [67] | |||||||
KSB3 | ||||||||
unclassified | NMO: [58] | |||||||
91otu6419 | 97otu28635 = one OTU | NMO, o1: [58] |
References
- Hawkes, C.H.; Del Tredici, K.; Braak, H. A timeline for parkinson’s disease. Parkinsonism Relat. Disord. 2010, 16, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Klingelhoefer, L.; Reichmann, H. Pathogenesis of parkinson disease—The gut-brain axis and environmental factors. Nat. Rev. Neurol. 2015, 11, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Rub, U.; Gai, W.P.; Del Tredici, K. Idiopathic parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm. (Vienna) 2003, 110, 517–536. [Google Scholar] [CrossRef] [PubMed]
- Lionnet, A.; Leclair-Visonneau, L.; Neunlist, M.; Murayama, S.; Takao, M.; Adler, C.H.; Derkinderen, P.; Beach, T.G. Does parkinson’s disease start in the gut? Acta Neuropathol. 2018, 135, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pardo, P.; Hartog, M.; Garssen, J.; Kraneveld, A.D. Microbes tickling your tummy: The importance of the gut-brain axis in parkinson’s disease. Curr. Behav. Neurosci. Rep. 2017, 4, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.M.; Weiner, H.L. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics 2018, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gillilland, M.G.; Young, V.B.; Huffnagle, G.B. Gastrointestinal microbial ecology with perspectives on health and disease. Physiol. Gastrointest. Tract. 2012, 1, 1119–1134. [Google Scholar]
- LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut. Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hug, H.; Mohajeri, M.H.; La Fata, G. Toll-like receptors: Regulators of the immune response in the human gut. Nutrients 2018, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- La Fata, G.; Weber, P.; Mohajeri, M.H. Probiotics and the gut immune system: Indirect regulation. Probiotics Antimicrob. Proteins 2018, 10, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Investig. 2011, 121, 2016–2032. [Google Scholar] [CrossRef] [PubMed]
- Findley, K.; Williams, D.R.; Grice, E.A.; Bonham, V.L. Health disparities and the microbiome. Trends Microbiol. 2016, 24, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut microbiota and extreme longevity. Curr. Biol. 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Rampelli, S.; Candela, M.; Turroni, S.; Biagi, E.; Collino, S.; Franceschi, C.; O’Toole, P.W.; Brigidi, P. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 2013, 5, 902–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulak, A.; Bonaz, B. Brain-gut-microbiota axis in parkinson’s disease. World J. Gastroenterol. 2015, 21, 10609–10620. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, S.; Chutna, O.; Bousset, L.; Aldrin-Kirk, P.; Li, W.; Björklund, T.; Wang, Z.-Y.; Roybon, L.; Melki, R.; Li, J.-Y. Direct evidence of parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014, 128, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fang, F.; Pedersen, N.L.; Tillander, A.; Ludvigsson, J.F.; Ekbom, A.; Svenningsson, P.; Chen, H.; Wirdefeldt, K. Vagotomy and parkinson disease. Neurology 2017, 88, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Clairembault, T.; Leclair-Visonneau, L.; Neunlist, M.; Derkinderen, P. Enteric glial cells: New players in parkinson’s disease? Mov. Disord. 2015, 30, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G.; Wu, S.; Yi, J.; Xia, Y.; Jin, D.; Zhou, J.; Sun, J. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Ther. 2017, 39, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yi, J.; Zhang, Y.G.; Zhou, J.; Sun, J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep. 2015, 3, e12356. [Google Scholar] [CrossRef] [PubMed]
- Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fak, F.; Jucker, M.; Lasser, T.; et al. Reduction of abeta amyloid pathology in appps1 transgenic mice in the absence of gut microbiota. Sci. Rep. 2017, 7, 41802. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.H.; La Fata, G.; Steinert, R.E.; Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, F.; Donato, S.; Di Pardo, A.; Maglione, V.; Filosa, S.; Crispi, S. New therapeutic drugs from bioactive natural molecules: The role of gut microbiota metabolism in neurodegenerative diseases. Curr. Drug. Metab. 2018. [Google Scholar] [CrossRef]
- Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; et al. Aging and parkinson’s disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic. Biol. Med. 2018, 115, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Parashar, A.; Udayabanu, M. Gut microbiota: Implications in parkinson’s disease. Parkinsonism Relat. Disord. 2017, 38, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Felice, V.D.; Quigley, E.M.; Sullivan, A.M.; O’Keeffe, G.W.; O’Mahony, S.M. Microbiota-gut-brain signalling in parkinson’s disease: Implications for non-motor symptoms. Parkinsonism Relat. Disord. 2016, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Scheperjans, F. The prodromal microbiome. Mov. Disord. 2017, 33, 5–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheperjans, F.; Pekkonen, E.; Kaakkola, S.; Auvinen, P. Linking smoking, coffee, urate, and parkinson's disease—A role for gut microbiota? J. Parkinsons Dis. 2015, 5, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.L.A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLoS Med 2009, 6, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Y.B.; Tyakht, A.V.; Kovarsky, B.A.; Alekseev, D.G.; Kostryukova, E.S.; et al. Analysis of gut microbiota in patients with parkinson’s disease. Bull. Exp. Biol. Med. 2017, 162, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P.; et al. Parkinson’s disease and parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 2017, 32, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Hopfner, F.; Künstner, A.; Müller, S.H.; Künzel, S.; Zeuner, K.E.; Margraf, N.G.; Deuschl, G.; Baines, J.F.; Kuhlenbäumer, G. Gut microbiota in parkinson disease in a northern german cohort. Brain Res. 2017, 1667, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, X.; Hu, X.; Wang, T.; Liang, S.; Duan, Y.; Jin, F.; Qin, B. Structural changes of gut microbiota in parkinson’s disease and its correlation with clinical features. Sci. China Life Sci. 2017, 60, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in parkinson’s disease. Mov. Disord. 2015, 30, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Bedarf, J.R.; Hildebrand, F.; Coelho, L.P.; Sunagawa, S.; Bahram, M.; Goeser, F.; Bork, P.; Wüllner, U. Functional implications of microbial and viral gut metagenome changes in early stage l-dopa-naïve parkinson’s disease patients. Genome Med. 2017, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Heintz-Buschart, A.; Pandey, U.; Wicke, T.; Sixel-Döring, F.; Janzen, A.; Sittig-Wiegand, E.; Trenkwalder, C.; Oertel, W.H.; Mollenhauer, B.; Wilmes, P. The nasal and gut microbiome in parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 2017, 33, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; et al. Gut microbiota are related to parkinson’s disease and clinical phenotype. Mov. Disord. 2015, 30, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Goto, S.; Tsuji, H.; Okuno, T.; Asahara, T.; Nomoto, K.; Shibata, A.; Fujisawa, Y.; Minato, T.; Okamoto, A.; et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in parkinson’s disease. PLoS ONE 2015, 10, e0142164. [Google Scholar] [CrossRef] [PubMed]
- Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Burmann, J.; Fassbender, K.; Schwiertz, A.; Schafer, K.H. Short chain fatty acids and gut microbiota differ between patients with parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 2016, 32, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimaraes, V.; Sokol, H.; Dore, J.; Corthier, G.; Furet, J.P. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wang, X.; Yang, S.; Meng, F.; Wei, H.; Chen, T. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 2016, 7, 1479. [Google Scholar] [CrossRef] [PubMed]
- Rowin, J.; Xia, Y.; Jung, B.; Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Engen, P.A.; Dodiya, H.B.; Naqib, A.; Forsyth, C.B.; Green, S.J.; Voigt, R.M.; Kordower, J.H.; Mutlu, E.A.; Shannon, K.M.; Keshavarzian, A. The potential role of gut-derived inflammation in multiple system atrophy. J. Parkinsons Dis. 2017, 7, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Abdallah Ismail, N.; Ragab, S.H.; Abd ElBaky, A.; Shoeib, A.R.S.; Alhosary, Y.; Fekry, D. Frequency of firmicutes and bacteroidetes in gut microbiota in obese and normal weight egyptian children and adults. Arch. Med. Sci. 2011, 7, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and firmicutes/bacteroidetes ratio in an adult ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schafer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and scfa in lean and overweight healthy subjects. Obesity (Silver Spring) 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Barczynska, R.; Kapusniak, J.; Litwin, M.; Slizewska, K.; Szalecki, M. Dextrins from maize starch as substances activating the growth of bacteroidetes and actinobacteria simultaneously inhibiting the growth of firmicutes, responsible for the occurrence of obesity. Plant. Foods Hum. Nutr. 2016, 71, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Lobley, G.E.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int J. Obes. 2008, 32, 1720–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, C.J.; Guinane, C.M.; O’Toole, P.W.; Cotter, P.D.; Bahl, M.I.; Bergstrom, A.; Licht, T.R. Freezing fecal samples prior to dna extraction affects the firmicutes to bacteroidetes ratio determined by downstream quantitative pcr analysis. FEMS Microbiol. Lett. 2012, 329, 193–197. [Google Scholar]
- Vebo, H.C.; Karlsson, M.K.; Avershina, E.; Finnby, L.; Rudi, K. Bead-beating artefacts in the bacteroidetes to firmicutes ratio of the human stool metagenome. J. Microbiol. Methods 2016, 129, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in alzheimer’s disease. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Miyake, S.; Kim, S.; Suda, W.; Oshima, K.; Nakamura, M.; Matsuoka, T.; Chihara, N.; Tomita, A.; Sato, W.; Kim, S.W.; et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia xiva and iv clusters. PLoS ONE 2015, 10, e0137429. [Google Scholar] [CrossRef] [PubMed]
- Cree, B.A.; Spencer, C.M.; Varrin-Doyer, M.; Baranzini, S.E.; Zamvil, S.S. Gut microbiome analysis in neuromyelitis optica reveals overabundance of clostridium perfringens. Ann. Neurol. 2016, 80, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Varrin-Doyer, M.; Spencer, C.M.; Schulze-Topphoff, U.; Nelson, P.A.; Stroud, R.M.; Cree, B.A.; Zamvil, S.S. Aquaporin 4-specific t cells in neuromyelitis optica exhibit a th17 bias and recognize clostridium abc transporter. Ann. Neurol. 2012, 72, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Zamvil, S.S.; Spencer, C.M.; Baranzini, S.E.; Cree, B.A.C. The gut microbiome in neuromyelitis optica. Neurotherapeutics 2017, 15, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Freedman, J.C.; McClane, B.A.; Uzal, F.A. New insights into clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe 2016, 41, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.E.; Goldstein, J.; Redondo, L.M.; Cangelosi, A.; Geoghegan, P.; Brocco, M.; Loidl, F.C.; Fernandez-Miyakawa, M.E. Clostridium perfringens epsilon toxin induces permanent neuronal degeneration and behavioral changes. Toxicon 2017, 130, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Linden, J.R.; Ma, Y.; Zhao, B.; Harris, J.M.; Rumah, K.R.; Schaeren-Wiemers, N.; Vartanian, T. Clostridium perfringens epsilon toxin causes selective death of mature oligodendrocytes and central nervous system demyelination. MBio 2015, 6, e02513. [Google Scholar] [CrossRef] [PubMed]
- Jangi, S.; Gandhi, R.; Cox, L.M.; Li, N.; von Glehn, F.; Yan, R.; Patel, B.; Mazzola, M.A.; Liu, S.; Glanz, B.L.; et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 2016, 7, 12015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantarel, B.L.; Waubant, E.; Chehoud, C.; Kuczynski, J.; DeSantis, T.Z.; Warrington, J.; Venkatesan, A.; Fraser, C.M.; Mowry, E.M. Gut microbiota in multiple sclerosis: Possible influence of immunomodulators. J. Investig. Med. 2015, 63, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremlett, H.; Fadrosh, D.W.; Faruqi, A.A.; Zhu, F.; Hart, J.; Roalstad, S.; Graves, J.; Lynch, S.; Waubant, E. Gut microbiota in early pediatric multiple sclerosis: A case-control study. Eur. J. Neurol. 2016, 23, 1308–1321. [Google Scholar] [CrossRef] [PubMed]
- Cases, M.; Llobet, A.; Terni, B.; Gomez de Aranda, I.; Blanch, M.; Doohan, B.; Revill, A.; Brown, A.M.; Blasi, J.; Solsona, C. Acute effect of pore-forming clostridium perfringens epsilon-toxin on compound action potentials of optic nerve of mouse. eNeuro 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Kang, J.; Kang, L.; Gao, S.; Yang, H.; Ji, B.; Li, P.; Liu, J.; Xin, W.; Wang, J. Immunization with a novel clostridium perfringens epsilon toxin mutant retx(y196e)-c confers strong protection in mice. Sci. Rep. 2016, 6, 24162. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.H.; Chong, C.W.; Song, S.L.; Teh, C.S.J.; Yap, I.K.S.; Loke, M.F.; Tan, Y.Q.; Yong, H.S.; Mahadeva, S.; Lang, A.E.; et al. Altered gut microbiome and metabolome in patients with multiple system atrophy. Mov. Disord. 2017, 33, 174–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, D.; Hiergeist, A.; Adis, C.; Mayer, B.; Gessner, A.; Ludolph, A.C.; Weishaupt, J.H. The fecal microbiome of als patients. Neurobiol. Aging 2018, 61, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Malinen, E.; Rinttilä, T.; Kajander, K.; Mättö, J.; Kassinen, A.; Krogius, L.; Saarela, M.; Korpela, R.; Palva, A. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time pcr. Am. J. Gastroenterol. 2005, 100, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Calkwood, J.; Vollmer, T.; Fox, R.J.; Zhang, R.; Novas, M.; Sheikh, S.I.; Viglietta, V. Safety and tolerability of delayed-release dimethyl fumarate administered with interferon beta or glatiramer acetate in relapsing-remitting multiple sclerosis. Int. J. MS Care 2016, 18, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Wicks, P.; Rasouliyan, L.; Katic, B.; Nafees, B.; Flood, E.; Sasané, R. The real-world patient experience of fingolimod and dimethyl fumarate for multiple sclerosis. BMC Res Notes 2016, 9, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, Z.B.; Erion, D.; Beiler, R.; Liu, Z.-W.; Abizaid, A.; Zigman, J.; Elsworth, J.D.; Savitt, J.M.; DiMarchi, R.; Tschöp, M.; et al. Ghrelin promotes and protects nigrostriatal dopamine function via a ucp2-dependent mitochondrial mechanism. J. Neurosci. 2009, 29, 14057–14065. [Google Scholar] [CrossRef] [PubMed]
- Fang, X. Potential role of gut microbiota and tissue barriers in parkinson’s disease and amyotrophic lateral sclerosis. Int. J. Neurosci. 2016, 126, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Miquel, S.; Benevides, L.; Bridonneau, C.; Robert, V.; Hudault, S.; Chain, F.; Berteau, O.; Azevedo, V.; Chatel, J.M.; et al. Functional characterization of novel faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of f. Prausnitzii as a next-generation probiotic. Front. Microbiol. 2017, 8, 1226. [Google Scholar] [CrossRef] [PubMed]
- Maier, E.; Anderson, R.C.; Roy, N.C. Live faecalibacterium prausnitzii does not enhance epithelial barrier integrity in an apical anaerobic co-culture model of the large intestine. Nutrients 2017, 9, 1349. [Google Scholar] [CrossRef] [PubMed]
- Benevides, L.; Burman, S.; Martin, R.; Robert, V.; Thomas, M.; Miquel, S.; Chain, F.; Sokol, H.; Bermudez-Humaran, L.G.; Morrison, M.; et al. New insights into the diversity of the genus faecalibacterium. Front. Microbiol. 2017, 8, 1790. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 2017, 49, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellock, S.J.; Redinbo, M.R. Glucuronides in the gut: Sugar-driven symbioses between microbe and host. J. Biol. Chem. 2017, 292, 8569–8576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Rienzi, S.C.; Sharon, I.; Wrighton, K.C.; Koren, O.; Hug, L.A.; Thomas, B.C.; Goodrich, J.K.; Bell, J.T.; Spector, T.D.; Banfield, J.F.; et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. Elife 2013, 2, e01102. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.A.; Banack, S.A.; Murch, S.J. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the chamorro people of guam. Proc. Natl. Acad. Sci. USA 2003, 100, 13380–13383. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; Sumalla Cano, S.; Elio, I.; Masias Vergara, M.; Giampieri, F.; Battino, M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of alzheimer disease. Nutr. Rev. 2016, 74, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Pablo, J.; Banack, S.A.; Cox, P.A.; Johnson, T.E.; Papapetropoulos, S.; Bradley, W.G.; Buck, A.; Mash, D.C. Cyanobacterial neurotoxin bmaa in als and alzheimer’s disease. Acta Neurol. Scand. 2009, 120, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Lukiw, W.J. Alzheimer’s disease and the microbiome. Front. Cell. Neurosci. 2013, 7, 153. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Hasan, S.S.; Kumar, J.; Raj, I.; Pathan, A.A.; Parmar, A.; Shakil, S.; Gourinath, S.; Madamwar, D. Crystal structure and interaction of phycocyanin with β-secretase: A putative therapy for alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2014, 13, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Sonani, R.R.; Rastogi, R.P.; Singh, N.K.; Thadani, J.; Patel, P.J.; Kumar, J.; Tiwari, A.K.; Devkar, R.V.; Madamwar, D. Phycoerythrin averts intracellular ros generation and physiological functional decline in eukaryotes under oxidative stress. Protoplasma 2017, 254, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Minato, T.; Maeda, T.; Fujisawa, Y.; Tsuji, H.; Nomoto, K.; Ohno, K.; Hirayama, M. Progression of parkinson’s disease is associated with gut dysbiosis: Two-year follow-up study. PLoS ONE 2017, 12, e0187307. [Google Scholar] [CrossRef] [PubMed]
- Amaral, W.Z.; Lubach, G.R.; Proctor, A.; Lyte, M.; Phillips, G.J.; Coe, C.L. Social influences on prevotella and the gut microbiome of young monkeys. Psychosom. Med. 2017, 79, 888–897. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Pellegrini, N.; Laghi, L.; Gobbetti, M.; Ercolini, D. Unusual sub-genus associations of faecal prevotella and bacteroides with specific dietary patterns. Microbiome 2016, 4, 57. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; Belzer, C.; de Vos, W.M. Akkermansia muciniphila and its role in regulating host functions. Microbial. Pathog. 2017, 106, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; Collado, M.C.; Ben-Amor, K.; Salminen, S.; de Vos, W.M. The mucin degrader akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 2008, 74, 1646–1648. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, C.B.; Shannon, K.M.; Kordower, J.H.; Voigt, R.M.; Shaikh, M.; Jaglin, J.A.; Estes, J.D.; Dodiya, H.B.; Keshavarzian, A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early parkinson’s disease. PLoS ONE 2011, 6, e28032. [Google Scholar] [CrossRef] [PubMed]
- Yoritaka, A.; Takanashi, M.; Hirayama, M.; Nakahara, T.; Ohta, S.; Hattori, N. Pilot study of h(2) therapy in parkinson’s disease: A randomized double-blind placebo-controlled trial. Mov. Disord. 2013, 28, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Ito, M.; Fujita, Y.; Ichihara, M.; Masuda, A.; Suzuki, Y.; Maesawa, S.; Kajita, Y.; Hirayama, M.; Ohsawa, I.; et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of parkinson’s disease. Neurosci. Lett. 2009, 453, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Sunagawa, S.; Mende, D.R.; Zeller, G.; Izquierdo-Carrasco, F.; Berger, S.A.; Kultima, J.R.; Coelho, L.P.; Arumugam, M.; Tap, J.; Nielsen, H.B.; et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 2013, 10, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Hiniker, A.; Kuo, Y.M.; Nussbaum, R.L.; Liddle, R.A. Α-synuclein in gut endocrine cells and its implications for parkinson’s disease. JCI Insight 2017, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- He, Z. Microarrays; Caister Academic Press: Wymondham, UK, 2014. [Google Scholar]
Reference PD/HC | [42] | [43] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] |
---|---|---|---|---|---|---|---|---|---|---|
n | 52/36 | 34/34 | 89/66 | 197/130 | 29/29 | 24/24 | 38/34 | 31/28 | 76/78 | 72/72 |
Gender %male | 40.4/58.3 | 70.6/52.9 | -- | 67.0/39.2 | 79.3/44.8 | 66.7/42.9 | 63.2/52.9 | 100 | 66/59 | 51.4/50.0 |
Mean Age | 68.9/68.4 | 67.7/64.6 | 67/63 | 68.4/70.3 | 69.2/69.4 | 73.8/74.6 | 61.6/45.1 | 64.8/65.6 | 68.0/68.4 | 65.3/64.5 |
Mean BMI * Median BMI | 20.2/22.6 | -- | 26.7/26.1 | 26.4/28.3 | -- | 23/24 | 26.0/27.6 | -- | 28.5/26.6 | 26.3/26.2 * |
Reference | [42] | [43] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] |
---|---|---|---|---|---|---|---|---|---|---|
Indexes/Method | YF | PR | Ill Miseq | Ill Hiseq | Ro | |||||
Faecal bacterial counts | > | n | n | n | n | n | n | n | n | n |
Alpha diversity/Richness on at least one taxonomic level (Chao 1 index, *other indexes) | n | n | > | n | - | - | <* | - | n | - |
Overall Beta diversity (weighted Unifrac, °other indexes) | n | n | sd | sd | sd ° | sd ° | n | ° | sd |
Reference | [42] | [43] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] | |
---|---|---|---|---|---|---|---|---|---|---|---|
Taxa/Method | YF | PR | Ill Miseq | Ill Hiseq | Ro | ||||||
Unclassified Firmicutes (unclass.) | < | ||||||||||
Firmicutes unspecified (unspec.) | > | ||||||||||
Lactobacillaceae unspec. | > | < | < | < | |||||||
Lactobacillus, m = mucosae, g = gassero, c = caseo, f = fermentum, re = reuteri, ru = ruminis, | <(+g, c, f, re, ru) | <(+m) | < | ||||||||
Enterococcaceae unspec | > | < | < | ||||||||
Enterococcus | < | ||||||||||
Ruminococcaceae unclassified | < | ||||||||||
Ruminococcaceae OTU 4439469 | <(o1) | < | |||||||||
Ruminococcus, b = bromii, c = callidus | <(b) | >(c) | > | ||||||||
Papillibacter c = cinnamivorans | <(c) | ||||||||||
Faecalibacterium, p = prausnitzi | >(p) | > | >(o2) | > | |||||||
Lachnospiraceae unclassified | >(o3) | ||||||||||
Lachnospiraceae unspec | > | ||||||||||
Roseburia | >(+o2) | > | |||||||||
Coprococcus, e = eutactus | >(e) | >(o1) | > | ||||||||
Blautia, g = glucerasea | >(g) | >(+o1) | > | > | |||||||
Dorea, l = longicatea | >(+l) | ||||||||||
Catabacteriaceae Catabacter, h = honkongenesis | <(+h) | ||||||||||
Clostridiaceae Anaerotruncus | < | ||||||||||
Clostridium, c = coccoides, s = saccharolyticum | >(c) | >(s) | |||||||||
Eubacteriaceae, [candidatus stoquefichus massiliensis] | > | ||||||||||
Erysipeltrichoceae unspec. | < | ||||||||||
Eubacterium, b = biforme | >(b) | ||||||||||
Christensenellaceae unclass. | < | ||||||||||
unspec | < | ||||||||||
Christensenella, m = minuta | <(+m) | ||||||||||
Oscillospiraceae, oscillospira | < | < | |||||||||
Streptococcaceae, unspec | < | ||||||||||
Streptococcus | < | ||||||||||
Acidaminococcaceae, Acidaminococcus | < | ||||||||||
Veillonellaceae unspec | < | ||||||||||
Veillonellaceae, Megamonas | < | ||||||||||
Veillonellaceae Megasphera | < | ||||||||||
[Tissierellaceae] unspec. | < |
Reference | [42] | [43] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] |
---|---|---|---|---|---|---|---|---|---|---|
Taxa/Method | YF | PR | Ill Miseq | Ill Hiseq | Ro | |||||
Unspec | < | |||||||||
Bifidobacteriaceae, Unspec. | < | |||||||||
Bifidobacteriaceae, Bifidobacterium | < | < | < | |||||||
Coriobacteriaceae, Unspec | < |
Reference | [42] | [43] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] |
---|---|---|---|---|---|---|---|---|---|---|
Taxa/Method | YF | PR | Ill Miseq | Ill Hiseq | Ro | |||||
Unspec | > | > | < | |||||||
Bacteroidaceae, Bacteroides c = coprocola, d = dorei, f = frgailis, p = phlebeus, m = massiliensis | >(f) | >(+m, c, d, p) | < | |||||||
Prevotellaceae, Unspec | > | |||||||||
Prevotellaceae, Prevotella, co = copri | > (+co) | <(o1) | >(+co) | |||||||
Porphyromonadaceae, Parabacteroides | < | |||||||||
Porphyromonadaceae, Barnesiella (in the original article classified as Barnesiellaceae) | < | |||||||||
Rickenellaceae, Alistipes, s = shahii | <(s) |
Reference | [42] | [43] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] |
---|---|---|---|---|---|---|---|---|---|---|
Taxa/Method | YF | PR | Ill Miseq | Ill Hiseq | Ro | |||||
Unspec | < | |||||||||
Verrucomicrobiaceae, Unspec | < | < | < | < | ||||||
Akkermansiaceae, Akkermansia, m = muciphila | < | < | < (+m) | < |
Reference | [42] | [43] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] |
---|---|---|---|---|---|---|---|---|---|---|
Taxa/Method | YF | PR | Ill Miseq | Ill Hiseq | Ro | |||||
Unclassified | < | |||||||||
Alpha-proteobacteria, Bradyrhizobiaceae, unspec | < | |||||||||
OTU 469 (o1 = one OTU) | > | |||||||||
Gamma-Proteobacteria, Enterobacteriaceae, Unspec | < | < | ||||||||
Gamma-Proteobacteria, Enterobacteriaceae, Escherichia/Shigella | < | |||||||||
Gamma-Proteobacteria, Enterobacteriaceae, Proteus | < | |||||||||
Gamma-Proteobacteria, Moraxellaceae, Unspec | < | |||||||||
Gamma-Proteobacteria, Moraxellaceae, Acinetobacter | < | |||||||||
Gamma-Proteobacteria, Pasteurellaceae, unspec. | > |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerhardt, S.; Mohajeri, M.H. Changes of Colonic Bacterial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases. Nutrients 2018, 10, 708. https://doi.org/10.3390/nu10060708
Gerhardt S, Mohajeri MH. Changes of Colonic Bacterial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases. Nutrients. 2018; 10(6):708. https://doi.org/10.3390/nu10060708
Chicago/Turabian StyleGerhardt, Sara, and M. Hasan Mohajeri. 2018. "Changes of Colonic Bacterial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases" Nutrients 10, no. 6: 708. https://doi.org/10.3390/nu10060708
APA StyleGerhardt, S., & Mohajeri, M. H. (2018). Changes of Colonic Bacterial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases. Nutrients, 10(6), 708. https://doi.org/10.3390/nu10060708