Evaluation of the Recipe Function in Popular Dietary Smartphone Applications, with Emphasize on Features Relevant for Nutrition Assessment in Large-Scale Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. App Selection
3.2. Qualitative Recipe Function Assessment
3.3. Accuracy of Energy and Macronutrient Content Estimations
3.4. Accuracy of Micronutrient Content Estimations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cade, J.E. Measuring Diet in the 21st Century: Use of New Technologies. Proc. Nutr. Soc. 2017, 76, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary Assessment Methods in Epidemiologic Studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
- Klesges, R.C.; Eck, L.H.; Ray, J.W. Who Underreports Dietary Intake in a Dietary Recall? Evidence from the Second National Health and Nutrition Examination Survey. J. Consult. Clin. Psychol. 1995, 63, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.B.; Robson, P.J.; Wallace, J.M. Issues in Dietary Intake Assessment of Children and Adolescents. Br. J. Nutr. 2004, 92 (Suppl. 2), S213–S222. [Google Scholar] [CrossRef] [PubMed]
- Schober, M.F. Asking Questions and Influencing Answers. In Questions about Questions: Inquiries into the Cognitive Bases of Surveys; Russell Sage Foundation: New York, NY, USA, 1992; pp. 15–48. [Google Scholar]
- Boushey, C.J.; Spoden, M.; Zhu, F.M.; Delp, E.J.; Kerr, D.A. New Mobile Methods for Dietary Assessment: Review of Image-Assisted and Image-Based Dietary Assessment Methods. Proc. Nutr. Soc. 2017, 76, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, K. Nutrition Monitoring and Surveillance. NFI Bull. 2006, 27, 5. [Google Scholar] [CrossRef]
- Ocke, M.C.; Van Rossum, C.T.M.; de Boer, E.J. Dietary Surveys: National Food Intake. In The Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrà, F., Eds.; Academic Press: Oxford, UK, 2016; Volume 2, pp. 432–438. [Google Scholar]
- Carter, M.C.; Albar, S.A.; Morris, M.A.; Mulla, U.Z.; Hancock, N.; Evans, C.E.; Alwan, N.A.; Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; et al. Development of a UK Online 24-H Dietary Assessment Tool: Myfood24. Nutrients 2015, 7, 4016–4032. [Google Scholar] [CrossRef]
- Boshuizen, H.C.; Viet, A.L.; Picavet, H.S.; Botterweck, A.; van Loon, A.J. Non-Response in a Survey of Cardiovascular Risk Factors in the Dutch Population: Determinants and Resulting Biases. Public Health 2006, 120, 297–308. [Google Scholar] [CrossRef]
- Conrad, J.; Nothlings, U. Innovative Approaches to Estimate Individual Usual Dietary Intake in Large-Scale Epidemiological Studies. Proc. Nutr. Soc. 2017, 76, 213–219. [Google Scholar] [CrossRef]
- Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. ‘My Meal Mate’ (Mmm): Validation of the Diet Measures Captured on a Smartphone Application to Facilitate Weight Loss. Br. J. Nutr. 2013, 109, 539–546. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Y. Mhealthapps: A Repository and Database of Mobile Health Apps. JMIR Mhealth Uhealth 2015, 3, e28. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cade, J.E.; Allman-Farinelli, M. The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment. JMIR Mhealth Uhealth 2015, 3, e104. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Martinez, A.; Sole-Sedeno, J.M.; Mancebo-Moreno, G.; Medina, F.X.; Carreras-Collado, R.; Saigi-Rubio, F. Use of Mobile Phones as a Tool for Weight Loss: A Systematic Review. J. Telemed. Telecare 2014, 20, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Dennison, L.; Morrison, L.; Conway, G.; Yardley, L. Opportunities and Challenges for Smartphone Applications in Supporting Health Behavior Change: Qualitative Study. J. Med. Internet Res. 2013, 15, e86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieffers, J.R.L.; Hanning, R.M. Dietary Assessment and Self-Monitoring: With Nutrition Applications for Mobile Devices. Can. J. Diet. Pract. Res. 2012, 73, e253–e260. [Google Scholar] [CrossRef] [PubMed]
- Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018.
- Illner, A.K.; Freisling, H.; Boeing, H.; Huybrechts, I.; Crispim, S.P.; Slimani, N. Review and Evaluation of Innovative Technologies for Measuring Diet in Nutritional Epidemiology. Int. J. Epidemiol. 2012, 41, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Reinivuo, H.; Bell, S.; Ovaskainen, M.-L. Harmonisation of Recipe Calculation Procedures in European Food Composition Databases. J. Food Compos. Anal. 2009, 22, 410–413. [Google Scholar] [CrossRef]
- Maringer, M.; van’t Veer, P.; Klepacz, N.; Verain, M.C.D.; Normann, A.; Ekman, S.; Timotijevic, L.; Raats, M.M.; Geelen, A. User-Documented Food Consumption Data from Publicly Available Apps: An Analysis of Opportunities and Challenges for Nutrition Research. Nutr. J. 2018, 17, 59. [Google Scholar] [CrossRef]
- Franco, Z.R.; Fallaize, R.; Lovegrove, A.J.; Hwang, F. Popular Nutrition-Related Mobile Apps: A Feature Assessment. JMIR Mhealth Uhealth 2016, 4, e85. [Google Scholar] [CrossRef] [Green Version]
- Severi, S.; Bedogni, G.; Zoboli, G.P.; Manzieri, A.M.; Poli, M.; Gatti, G.; Battistini, N. Effects of Home-Based Food Preparation Practices on the Micronutrient Content of Foods. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. 1998, 7, 331–335. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Charrondiere, R.U.; van Kappel, A.L.; Ocke, M.C.; Welch, A.; Lagiou, A.; van Liere, M.; Agudo, A.; Pala, V.; et al. Structure of the Standardized Computerized 24-H Diet Recall Interview Used as Reference Method in the 22 Centers Participating in the Epic Project. European Prospective Investigation into Cancer and Nutrition. Comput. Methods Programs Biomed. 1999, 58, 251–266. [Google Scholar] [CrossRef]
- Van Rossum, C.T.M.; Fransen, H.P.; Verkaik-Kloosterman, J.; Buurma, E.M.; Ocke, M.C. Dutch National Food Consumption Survey 2007–2010: Diet of Children and Adults Aged 7 to 69 Years; RIVM-report 350070006; RIVM: Bilthoven, The Netherlands, 2011. [Google Scholar]
- RIVM. Nevo-Table. Available online: https://nevo-online.rivm.nl/ (accessed on 23 July 2018).
- Bognár, A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes); BFE Karlsruhe: Karlsruhe, Germany, 2002. [Google Scholar]
- Reference Intake. Available online: https://www.voedingscentrum.nl/encyclopedie/referentie-inname.aspx (accessed on 26 December 2018).
- Barr, S.I.; Murphy, S.P.; Poos, M.I. Interpreting and Using the Dietary References Intakes in Dietary Assessment of Individuals and Groups. J. Am. Diet. Assoc. 2002, 102, 780–788. [Google Scholar] [CrossRef]
- Spriestersbach, A.; Springer, T. Quality Attributes in Mobile Web Application Development. In Product Focused Software Process Improvement; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3009, pp. 120–130. [Google Scholar]
- Maringer, M.; Wisse-Voorwinden, N.; Veer, P.V.; Geelen, A. Food Identification by Barcode Scanning in the Netherlands: A Quality Assessment of Labelled Food Product Databases Underlying Popular Nutrition Applications. Public Health Nutr. 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Slimani, N.; Casagrande, C.; Nicolas, G.; Freisling, H.; Huybrechts, I.; Ocke, M.C.; Niekerk, E.M.; van Rossum, C.; Bellemans, M.; De Maeyer, M.; et al. The Standardized Computerized 24-H Dietary Recall Method Epic-Soft Adapted for Pan-European Dietary Monitoring. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), S5–S15. [Google Scholar] [CrossRef]
- Griffiths, C.; Harnack, L.; Pereira, M.A. Assessment of the Accuracy of Nutrient Calculations of Five Popular Nutrition Tracking Applications. Public Health Nutr. 2018, 21, 1495–1502. [Google Scholar] [CrossRef]
- Rusin, M.; Årsand, E.; Hartvigsen, G. Functionalities and Input Methods for Recording Food Intake: A Systematic Review. Int. J. Med. Inform. 2013, 82, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Marconi, S.; Durazzo, A.; Camilli, E.; Lisciani, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lucarini, M.; Marletta, L. Food Composition Databases: Considerations About Complex Food Matrices. Foods 2018, 7, 2. [Google Scholar] [CrossRef]
- Castanheira, I.; Roe, M.; Westenbrink, S.; Ireland, J.; Møller, A.; Salvini, S.; Beernaert, H.; Oseredczuk, M.; Calhau, M.A. Establishing Quality Management Systems for European Food Composition Databases. Food Chem. 2009, 113, 776–780. [Google Scholar] [CrossRef]
- Westenbrink, S.; Oseredczuk, M.; Castanheira, I.; Roe, M. Food Composition Databases: The Eurofir Approach to Develop Tools to Assure the Quality of the Data Compilation Process. Food Chem. 2009, 113, 759–767. [Google Scholar] [CrossRef]
- Vasquez-Caicedo, A.L.; Bell, S.; Hartmann, B. Report on Collection of Rules on Use of Recipe Calculation Procedures Including the Use of Yield and Retention Factors for Imputing Nutrient Values for Composite Foods; European Food Information Resource: Brussels, Belgium, 2014. [Google Scholar]
Feature | Mark for Feature | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Recipe creation options (name, photo, ingredients, servings) | The user can only create a recipe by adding ingredients and amounts | The user can create a recipe by giving it a name and adding ingredients and amounts | The user can create a recipe by giving it a name, adding ingredients and amounts, and number of servings. | The user can create a recipe by giving it a name, add ingredients and amounts, number of servings, and explanation of preparation. | The user can create a recipe by giving it a name, add ingredients and amounts, number of servings, explanation of preparation, and a photo. |
Ingredients search options within a recipe | Can only search in one way | Can search in 2 or 3 ways | Can search in 4 or 5 ways | Can search in 6 or 7 ways | Can search in 8 or more ways |
Reminders for frequently forgotten ingredients (e.g., olive oil, butter, salt) | App does not give reminders for frequently forgotten ingredients | App gives reminders for frequently forgotten ingredients | |||
Preparation indication of ingredients | It is unclear whether the entered ingredients are prepared or not | The user can only select the prepared or the unprepared ingredient from the food list | The user can select both the prepared and the unprepared ingredients from the food list for some foods | The user can select both the prepared and the unprepared ingredients from the food list for all foods | The user can select an ingredient and indicate the preparation (unprepared, prepared (cooked, grilled, etc.)) |
Entering consumed amount at recipe level | User cannot indicate consumed amount | User can indicate the consumed amount, but the type of indication of the amount is inappropriate | User can indicate the consumed amount, and the appropriate type(s) of indication is given. However, inappropriate amounts are also given | User can indicate consumed amount and the appropriate type(s) of indication are given | User can indicate the consumed amount and the user can choose from a lot of appropriate types of indications (grams, portion in grams, portion as photo, fraction of recipe) OR can manually add amount indications |
Entering prepared amount at ingredient level | User cannot indicate prepared amount | User can indicate the prepared amount, but the type of indication of the amount is limited (1 or 2 options) OR other types of indications (portion in grams, portion as photo, fraction of recipe) | User can indicate prepared amount from more than 2 options. | User can indicate prepared amount from more than 2 options. AND other types of indications (portion in grams, portion as photo, fraction of recipe) | User can indicate prepared amount from more than 2 options, and other types of indications (grams, portion in grams, portion as photo, fraction of recipe), and can manually add amount indications |
Save and edit function for recipe | The user can create recipe, but cannot save it to use it later | The user can create a recipe and save it to use it later | The user can create a recipe and save it in a categorized way OR the user can create a recipe and edit it; premium only | The user can create a recipe and edit it later | The user can save the created recipe to use it later, edit it later on, and can save it in a categorized way |
Energy and macronutrient information at recipe level | Energy and macronutrient content are not shown | Energy content is shown in kcal (KJ), macronutrient content is not shown | Energy content is shown in kcal (KJ), macronutrient content is shown in grams OR energy is shown in % of Reference Daily Allowance (RDA) *; premium only | Energy content is shown in kcal (KJ) and % of RDA, macronutrient content is shown in grams OR macronutrient content is shown in grams and % of RDA; premium only | Energy content is shown in kcal (KJ) and % of RDA, macronutrient content is shown in grams and % of RDA |
Micronutrient information at recipe level | No micronutrient information available | Micronutrient information exists for only premium account | Information on less than 3 micronutrients | Information on 3–6 micronutrients | Information on more than 6 micronutrients |
App Name (Version) | Platforms | Installs Google Play Store (Million) | Rating Google Play Store (The number of Ratings/1000) | Country | |
---|---|---|---|---|---|
1 | MyFitnessPal (18.6.0) | Android, IOS, Windows Phone | 50–100 | 4.6 (1844) | USA |
2 | FatSecret (7.8.27) | Android, IOS, Windows Phone, Watch OS, Blackberry OS | 10–50 | 4.4 (223) | Australia |
3 | YAZIO (4.0.1) | Android, IOS | 5–10 | 4.6 (109) | Germany |
4 | Lose It! (9.4.5) | Android, IOS | 5–10 | 4.4 (68) | USA |
5 | Lifesum (6.2.4) | Android, IOS, Watch OS, Android Wear | 5–10 | 4.4 (165) | Sweden |
6 | MyPlate (3.2.2) | Android, IOS, Watch OS | 1–5 | 4.6 (22) | USA |
7 | MyNetDiary (6.4.7) | Android, IOS, Watch OS | 1–5 | 4.5 (26) | USA |
8 | Calories! (8.1.6) | Android | 1–5 | 4.3 (10) | Germany |
9 | The Secret of Weight (2.4.24) | Android, IOS | 1–5 | 4.3 (14) | France |
10 | Virtuagym Food (2.4.0) | Android, IOS | 1–5 | 4.5 (28) | The Netherlands |
11 | Health Infinity (HI) (2.0.58) | Android | 0.1–0.5 | 4.2 (9) | India |
12 | Nutracheck (5.0.12) | Android, IOS | 0.1–0.5 | 4.3 (2) | UK |
App Name (Version) | MyFitnessPal (18.6.0) | FatSecret (7.8.27) | YAZIO (4.0.1) | Lose It! (9.4.5) | Lifesum (6.2.4) | MyPlate (3.2.2) | MyNetDiary (6.4.7) | Calories! (8.1.6) | The Secret of Weight (2.4.24) | Virtuagym Food (2.4.0) | Health Infinity (HI) (2.0.58) | Nutracheck (5.0.12) | Mean | SD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria List | |||||||||||||||
Options (name, photo, ingredients, servings) | 3 | 5 | 5 | 3 | 4 | 2 | 5 | 4 | 5 | 2 | 2 | 3 | 3.6 | 1.2 | |
Options to search ingredients | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 2 | 4 | 2.6 | 0.6 | |
Reminders for frequently forgotten ingredients (e.g., oil, spices, salt) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0 | 0.0 | |
Entering ingredients—preparation indication | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 4 | 2 | 4 | 4 | 3 | 3.3 | 0.6 | |
Consumed amount recipe level | 4 | 4 | 4 | 4 | 4 | 2 | 4 | 4 | 4 | 5 | 1 | 4 | 3.7 | 1.0 | |
Consumed amount ingredient level | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 5 | 2 | 3 | 2 | 3 | 3.0 | 0.7 | |
Save and edit | 4 | 5 | 5 | 4 | 4 | 4 | 3 | 4 | 4 | 4 | 5 | 5 | 4.3 | 0.6 | |
Energy and macronutrient expression at recipe level | 4 | 4 | 3 | 3 | 3 | 2 | 3 | 5 | 2 | 3 | 3 | 3 | 3.2 | 0.8 | |
Micronutrient availability at recipe level | 4 | 3 | 3 | 1 | 2 | 1 | 5 | 5 | 1 | 5 | 1 | 1 | 2.7 | 1.6 | |
Mean | 3.2 | 3.3 | 3.3 | 2.9 | 3.0 | 2.2 | 3.3 | 3.9 | 2.6 | 3.2 | 2.3 | 3.0 | 3.0 | 0.5 | |
SD | 1.0 | 1.2 | 1.2 | 1.1 | 0.9 | 0.9 | 1.2 | 1.2 | 1.3 | 1.3 | 1.3 | 1.2 | 0.9 | - |
Recipes | Macronutrients | NEVO a | MyFitness Pal | FatSecret | YAZIO | Lose It! | Lifesum | MyPlate | MyNet Diary | Calories! | The Secret of Weight | Virtuagym Food | Nutra Check | HI | Mean | SD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Boerenkool stamppot | Energy (kcal) | 472 | 4 | −42 | 10 | −16 | −69 | −28 | −53 | −93 | −116 * | −62 | 59 | −44 | −38 | 46 |
Fat (g) | 10.9 | −0.2 | −5.1 * | −0.4 | −3.7 * | −1.0 | −0.6 | −0.2 | −0.9 | - | 0.9 | 6.6 * | −2.9 | −0.7 | 2.9 | |
Protein (g) | 17.0 | 0.1 | 0.4 | 0.8 | 0.9 | −5.2 * | −1.7 | −0.2 | −5.3 * | - | −1.9 | −11.1 * | −17.0 * | −3.6 * | 5.4 | |
Carbohydrate (g) | 70.4 | −0.1 | 0.3 | 11.8 | 1.2 | −2.9 | 10.2 | −15.1 * | −14.1 * | - | −11.4 | −9.0 | −6.1 | −3.2 | 8.6 | |
Pizza with salami, tomato, and mushroom | Energy (kcal) | 483 | −36 | −5 | −2 | −42 | −5 | −35 | 0 | −24 | −7 | −8 | −47 | −41 | −21 | 17 |
Fat (g) | 25.9 | −2.6 | −0.3 | 0.3 | −2.9 | −0.3 | −4.4 * | −0.7 | −1.6 | - | −0.1 | −5.4 * | −2.9 | −1.9 | 1.8 | |
Protein (g) | 22.1 | −2.3 | −1.2 | −0.2 | −2.7 * | −0.8 | −2.6 * | −5.1 * | −1.0 | - | −0.9 | −2.6 * | −3.8 * | −2.1 | 1.4 | |
Carbohydrate (g) | 38.8 | 0.1 | 0.6 | 0.3 | 1.9 | 1.9 | 11.8 | −0.8 | −2.8 | - | −0.4 | 4.2 | −2.8 | 1.3 | 3.9 | |
Hachee | Energy (kcal) | 316 | 15 | −43 | −47 | −119 * | 7 | 12 | 75 | 32 | 58 | −46 | 142 * | 19 | 9 | 65 |
Fat (g) | 17.9 | 2.2 | −4.3 * | −4.5 * | −8.8 * | 2.5 | 1.7 | 8.4 * | −0.3 | - | −5.1 * | 10.8 * | 2.4 | 0.4 | 5.6 | |
Protein (g) | 23.3 | −0.9 | −0.6 | −1.0 | −11.2 * | −0.8 | −21.3 * | −1.3 | 12.5 * | - | 1.3 | 9.0 * | −0.1 | −1.3 | 8.5 | |
Carbohydrate (g) | 13.7 | 1.7 | 3.8 | 3.7 | 3.8 | −0.9 | 2.3 | −4.7 | −4.1 | - | −0.5 | 3.1 | −1.7 | 0.6 | 3.0 |
MyNetDiary | Calories! | Virtuagym | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Recipes | Micronutrients | NEVO a | R b | NEVO-R | App | App-NEVO | App-R | App | App-NEVO | App-R | App | App-NEVO | App-R |
Boerenkool stamppot | Calcium(mg) | 494 | 494 | 0 | 431 | –63 * | –63 * | 573 | 80 * | 80 * | 391 | –102 * | –102 * |
Vitamin C(mg) | 294 | 187 | 107 * | 327 | 33 * | 140 * | 327 | 33 * | 140 * | 362 | 68 * | 174 * | |
Vitamin A(µg) | 1774 | 1606 | 168 * | 2557 | 783 * | 951 * | 2320 | 546 * | 714 * | 74 | –1701 * | –1532 * | |
Vitamin B1(mg) | 0.66 | 0.60 | 0.06 * | 0.32 | –0.34 * | –0.28 * | 0.57 | –0.09 * | –0.03 | 0.49 | –0.17 * | –0.11 * | |
Vitamin B2(mg) | 0.43 | 0.41 | 0.02 | 0.56 | 0.13 * | 0.15 * | 0.79 | 0.36 * | 0.38 * | 0.48 | 0.05 | 0.07 | |
Vitamin B6(mg) | 1.49 | 1.34 | 0.15 * | 1.38 | –0.11 * | 0.04 | 1.70 | 0.21 * | 0.36 * | 1.30 | –0.19 * | –0.04 | |
Vitamin B12(µg) | 0.11 | 0.11 | 0.00 | 0.43 | 0.32 * | 0.32 * | - | - | - | 0.19 | 0.08 | 0.08 | |
Folate(µg) | 198 | 142 | 56 * | 407 | 208 * | 265 * | 94 | –104 * | –48 * | - | - | - | |
Pizza | Calcium(mg) | 339 | 339 | 0 | 293 | –46 | –46 | 290 | –48 | –48 | 293 | –46 | –46 |
Vitamin C(mg) | 6 | 5 | 1 | 5 | –1 | 3 | 8 | 2 | 3 | 5 | –1 | 0 | |
Vitamin A(µg) | 188 | 183 | 5 | 205 | 17 | 22 | 204 | 17 | 22 | 97 | –91 * | –86 * | |
Vitamin B1(mg) | 0.21 | 0.18 | 0.03 | 0.75 | 0.54 * | 0.57 * | 0.29 | 0.08 * | 0.11 * | 0.77 | 0.56 * | 0.59 * | |
Vitamin B2(mg) | 0.31 | 0.30 | 0.01 | 0.62 | 0.31 * | 0.32 * | 0.38 | 0.07 | 0.08 * | 0.62 | 0.31 * | 0.32 * | |
Vitamin B6(mg) | 0.26 | 0.24 | 0.02 | 0.27 | 0.01 | 0.03 | 0.31 | 0.05 | 0.07 | 0.26 | 0.00 | 0.02 | |
Vitamin B12(µg) | 1.10 | 1.01 | 0.09 | 1.00 | –0.10 | –0.01 | - | - | - | 1.02 | –0.08 | 0.01 | |
Folate(µg) | 92 | 67 | 24 * | 129 | 38 * | 62 * | 45 | –47 * | –23 * | 77 | –15 | 10 | |
Hachee | Calcium(mg) | 51 | 51 | 0 | 66 | 15 | 15 | 48 | –3 | –3 | 67 | 16 | 16 |
Vitamin C(mg) | 6 | 5 | 1 | 8 | 2 | 3 | 7 | 1 | 3 | 9 | 3 | 4 | |
Vitamin A(µg) | 136 | 129 | 7 | 108 | –28 | –21 | 123 | –13 | –6 | 94 | –42 * | –34 | |
Vitamin B1(mg) | 0.10 | 0.06 | 0.04 | 0.19 | 0.09 * | 0.13 * | 0.16 | 0.06 * | 0.10 * | 0.19 | 0.09 * | 0.13 * | |
Vitamin B2(mg) | 0.19 | 0.19 | 0.00 | 0.21 | 0.02 | 0.02 | 0.24 | 0.05 | 0.05 | 0.25 | 0.06 | 0.06 | |
Vitamin B6(mg) | 0.39 | 0.20 | 0.19 * | 0.73 | 0.34 * | 0.53 * | 0.34 | –0.05 | 0.14 * | 0.73 | 0.34 * | 0.53 * | |
Vitamin B12(µg) | 2.95 | 1.46 | 1.49 * | 2.70 | –0.25 * | 1.24 * | - | - | - | 2.69 | –0.26 * | 1.23 * | |
Folate(µg) | 28 | 15 | 13 | 57 | 29 * | 42 * | 29 | 1 | 14 | 13 | –15 | –2 | |
The number of differences >5% DRI | 8 | 15 | 14 | 10 | 11 | 12 | 10 | ||||||
The number of positive differences | 8 | 11 | 12 | 7 | 9 | 5 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Nawijn, E.; Boshuizen, H.; Ocké, M. Evaluation of the Recipe Function in Popular Dietary Smartphone Applications, with Emphasize on Features Relevant for Nutrition Assessment in Large-Scale Studies. Nutrients 2019, 11, 200. https://doi.org/10.3390/nu11010200
Zhang L, Nawijn E, Boshuizen H, Ocké M. Evaluation of the Recipe Function in Popular Dietary Smartphone Applications, with Emphasize on Features Relevant for Nutrition Assessment in Large-Scale Studies. Nutrients. 2019; 11(1):200. https://doi.org/10.3390/nu11010200
Chicago/Turabian StyleZhang, Liangzi, Eline Nawijn, Hendriek Boshuizen, and Marga Ocké. 2019. "Evaluation of the Recipe Function in Popular Dietary Smartphone Applications, with Emphasize on Features Relevant for Nutrition Assessment in Large-Scale Studies" Nutrients 11, no. 1: 200. https://doi.org/10.3390/nu11010200
APA StyleZhang, L., Nawijn, E., Boshuizen, H., & Ocké, M. (2019). Evaluation of the Recipe Function in Popular Dietary Smartphone Applications, with Emphasize on Features Relevant for Nutrition Assessment in Large-Scale Studies. Nutrients, 11(1), 200. https://doi.org/10.3390/nu11010200