Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence
Abstract
:1. Introduction
2. Macronutrients in Pregnancy
2.1. Energy
2.2. Protein
2.3. Glycaemic Index, Glycaemic Load and Fibre
2.4. Fatty Acids
3. Micronutrients in Pregnancy
3.1. Folate
3.2. Vitamin A
3.3. Vitamin B1 (Thiamine), Vitamin B2 (Riboflavin), Vitamin B3 (Niacin), Vitamin B6 (Pyridoxine) and Vitamin B12 (Cyanocobalamin)
3.4. Vitamin C and E
3.5. Vitamin D
3.6. Calcium
3.7. Iodine
3.8. Iron
3.9. Zinc
3.10. Alcohol and Caffeine
4. Discussion of Findings and Limitations
4.1. Summary of Evidence
4.2. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baker, H.; De Angelis, B.; Holland, B.; Gittens-Williams, L.; Barrett, T. Vitamin profile of 563 gravidas during trimesters of pregnancy. J. Am. Coll. Nutr. 2002, 21, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.S. Symposium on ‘nutritional adaptation to pregnancy and lactation’. Pregnancy as a time for dietary change? Proc. Nutr. Soc. 2001, 60, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Gernand, A.D.; Schulze, K.J.; Stewart, C.P.; West, K.P., Jr.; Christian, P. Micronutrient deficiencies in pregnancy worldwide: Health effects and prevention. Nat. Rev. Endocrinol. 2016, 12, 274–289. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. A systematic review and meta-analysis of micronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2013, 71, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Clapp, J.F., 3rd. Maternal carbohydrate intake and pregnancy outcome. Proc. Nutr. Soc. 2002, 61, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Lassi, Z.S.; Salam, R.A.; Haider, B.A.; Bhutta, Z.A. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Wagner, C.L. New insights into the vitamin D requirements during pregnancy. Bone Res. 2017, 5, 17030. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Song, J.-M.; Zhang, J.; Tang, Y.-L.; Xin, C.-M. A meta-analysis of risk of pregnancy loss and caffeine and coffee consumption during pregnancy. Int. J. Gynecol. Obstet. 2015, 130, 116–122. [Google Scholar] [CrossRef]
- Lowensohn, R.I.; Stadler, D.D.; Naze, C. Current concepts of maternal nutrition. Obstet. Gynecol. Surv. 2016, 71, 413–426. [Google Scholar] [CrossRef]
- Picciano, M.F. Pregnancy and lactation: Physiological adjustments, nutritional requirements and the role of dietary supplements. J. Nutr. 2003, 133, 1997S–2002S. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee on Nutritional Status During Pregnancy and Lactation. Nutrition during Pregnancy: Part i Weight Gain: Part ii Nutrient Supplements; National Academies Press (US): Washington, DC, USA, 1990. [Google Scholar]
- Williamson, C.S. Nutrition in pregnancy. Nutr. Bull. 2006, 31, 28–59. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2012, 70, 322–336. [Google Scholar] [CrossRef]
- Caulfield, L.E.; Elliot, V. Nutrition of Adolescent Girls and Women of Reproductive Age in Low- and Middle-Income Countries: Current Context and Scientific Basis for Moving Forward; Strengthening Partnerships, Results, and Innovations in Nutrition Globally (SPRING): Arlington, VA, USA, 2015. [Google Scholar]
- Kramer, M.S.; Kakuma, R. Energy and protein intake in pregnancy. Cochrane Database Syst. Rev. 2003. [Google Scholar] [CrossRef]
- Lonnie, M.; Hooker, E.; Brunstrom, J.M.; Corfe, B.M.; Green, M.A.; Watson, A.W.; Williams, E.A.; Stevenson, E.J.; Penson, S.; Johnstone, A.M. Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients 2018, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006; p. 1344. [Google Scholar]
- Elango, R.; Ball, R.O. Protein and amino acid requirements during pregnancy. Adv. Nutr. 2016, 7, 839S–844S. [Google Scholar] [CrossRef] [PubMed]
- CucÓ, G.; Arija, V.; Iranzo, R.; VilÀ, J.; Prieto, M.T.; FernÁNdez-Ballart, J. Association of maternal protein intake before conception and throughout pregnancy with birth weight. Acta Obstet. Gynecol. Scand. 2006, 85, 413–421. [Google Scholar] [CrossRef]
- Haste, F.M.; Brooke, O.G.; Anderson, H.R.; Bland, J.M. The effect of nutritional intake on outcome of pregnancy in smokers and non-smokers. Br. J. Nutr. 1991, 65, 347–354. [Google Scholar] [CrossRef]
- Ota, E.; Hori, H.; Mori, R.; Tobe-Gai, R.; Farrar, D. Antenatal dietary education and supplementation to increase energy and protein intake. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Rush, D.; Stein, Z.; Susser, M. A randomized controlled trial of prenatal nutritional supplementation in New York City. Pediatrics 1980, 65, 683–697. [Google Scholar]
- Morisaki, N.; Nagata, C.; Yasuo, S.; Morokuma, S.; Kato, K.; Sanefuji, M.; Shibata, E.; Tsuji, M.; Senju, A.; Kawamoto, T.; et al. Optimal protein intake during pregnancy for reducing the risk of fetal growth restriction: The Japan environment and children’s study. Br. J. Nutr. 2018, 120, 1432–1440. [Google Scholar] [CrossRef]
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef]
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Bjorck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An international scientific consensus summit from the international carbohydrate quality consortium (icqc). Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Qiu, C.; Coughlin, K.B.; Frederick, I.O.; Sorensen, T.K.; Williams, M.A. Dietary fiber intake in early pregnancy and risk of subsequent preeclampsia. Am. J. Hypertens. 2008, 21, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Louie, J.C.Y.; Brand-Miller, J.C.; Markovic, T.P.; Ross, G.P.; Moses, R.G. Glycemic index and pregnancy: A systematic literature review. J. Nutr. Metab. 2010, 2010, 282464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, S.; Solomon, C.G.; Hu, F.B. Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006, 29, 2223–2230. [Google Scholar] [CrossRef]
- Markovic, T.P.; Muirhead, R.; Overs, S.; Ross, G.P.; Louie, J.C.; Kizirian, N.; Denyer, G.; Petocz, P.; Hyett, J.; Brand-Miller, J.C. Randomized controlled trial investigating the effects of a low-glycemic index diet on pregnancy outcomes in women at high risk of gestational diabetes mellitus: The gi baby 3 study. Diabetes Care 2016, 39, 31–38. [Google Scholar] [CrossRef]
- Scholl, T.O.; Chen, X.; Khoo, C.S.; Lenders, C. The dietary glycemic index during pregnancy: Influence on infant birth weight, fetal growth, and biomarkers of carbohydrate metabolism. Am. J. Epidemiol. 2004, 159, 467–474. [Google Scholar] [CrossRef]
- Al, M.D.; van Houwelingen, A.C.; Kester, A.D.; Hasaart, T.H.; de Jong, A.E.; Hornstra, G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br. J. Nutr. 1995, 74, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Makrides, M.; Duley, L.; Olsen, S.F. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by pre-eclampsia or intrauterine growth restriction. Cochrane Database Syst. Rev. 2006, 3, CD003402. [Google Scholar] [CrossRef] [PubMed]
- Saccone, G.; Berghella, V. Omega-3 supplementation to prevent recurrent preterm birth: A systematic review and metaanalysis of randomized controlled trials. Am. J. Obs. Gynecol. 2015, 213, 135–140. [Google Scholar] [CrossRef]
- Saccone, G.; Berghella, V.; Maruotti, G.M.; Sarno, L.; Martinelli, P. Omega-3 supplementation during pregnancy to prevent recurrent intrauterine growth restriction: Systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet. Gynecol. 2015, 46, 659–664. [Google Scholar] [CrossRef] [PubMed]
- de Benoist, B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 2008, 29, S238–S244. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.J.; Li, Z.; Erickson, J.D.; Li, S.; Moore, C.A.; Wang, H.; Mulinare, J.; Zhao, P.; Wong, L.Y.; Gindler, J.; et al. Prevention of neural-tube defects with folic acid in china. China-u.S. Collaborative project for neural tube defect prevention. N. Engl. J. Med. 1999, 341, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee on Improving Birth Outcomes. Reducing Birth Defects: Meeting the Challenge in the Developing World; Bale, J.R., Stoll, B.J., Lucas, A.O., Eds.; National Academies Press (US) Copyright 2003 by the National Academy of Sciences: Washington, DC, USA, 2003. [Google Scholar]
- McCauley, M.E.; van den Broek, N.; Dou, L.; Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Stipanuk, M.H.; Caudill, M.A. Biochemical, Physiological and Molecular Aspects of Human Nutrition, 3rd ed.; Saunders: St Louis, MO, USA, 2013. [Google Scholar]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Ang, C.D.; Alviar, M.J.M.; Dans, A.L.; Bautista-Velez, G.G.P.; Villaruz-Sulit, M.V.C.; Tan, J.J.; Co, H.U.; Bautista, M.R.M.; Roxas, A.A. Vitamin B for treating peripheral neuropathy. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, N.; Rafnsson, S.B.; Kandala, N.-B.; Bhopal, R.; Yajnik, C.S.; Saravanan, P. Prevalence of vitamin B-12 insufficiency during pregnancy and its effect on offspring birth weight: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 103, 1232–1251. [Google Scholar] [CrossRef]
- Dias, F.M.; Silva, D.M.; Doyle, F.C.; Ribeiro, A.M. The connection between maternal thiamine shortcoming and offspring cognitive damage and poverty perpetuation in underprivileged communities across the world. Med. Hypotheses 2013, 80, 13–16. [Google Scholar] [CrossRef]
- Heller, S.; Salkeld, R.M.; Körner, W.F. Vitamin B1 status in pregnancy. Am. J. Clin. Nutr. 1974, 27, 1221–1224. [Google Scholar] [CrossRef]
- Shaw, G.M.; Carmichael, S.L.; Yang, W.; Lammer, E.J. Periconceptional nutrient intakes and risks of conotruncal heart defects. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Smedts, H.P.; Rakhshandehroo, M.; Verkleij-Hagoort, A.C.; de Vries, J.H.; Ottenkamp, J.; Steegers, E.A.; Steegers-Theunissen, R.P. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects. Eur. J. Nutr. 2008, 47, 357–365. [Google Scholar] [CrossRef]
- Wacker, J.; Fruhauf, J.; Schulz, M.; Chiwora, F.M.; Volz, J.; Becker, K. Riboflavin deficiency and preeclampsia. Obs. Gynecol 2000, 96, 38–44. [Google Scholar]
- Salam, R.A.; Zuberi, N.F.; Bhutta, Z.A. Pyridoxine (vitamin B6) supplementation during pregnancy or labour for maternal and neonatal outcomes. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Rogne, T.; Tielemans, M.J.; Chong, M.F.-F.; Yajnik, C.S.; Krishnaveni, G.V.; Poston, L.; Jaddoe, V.W.V.; Steegers, E.A.P.; Joshi, S.; Chong, Y.-S.; et al. Maternal vitamin B12 in pregnancy and risk of preterm birth and low birth weight: A systematic review and individual participant data meta-analysis. Am. J. Epidemiol. 2017, 185, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Rumbold, A.; Ota, E.; Hori, H.; Miyazaki, C.; Crowther, C.A. Vitamin E supplementation in pregnancy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Rumbold, A.; Ota, E.; Nagata, C.; Shahrook, S.; Crowther, C.A. Vitamin C supplementation in pregnancy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Roberts, D.C.K. Vitamin, E. In Recommended Nutrient Intakes, Australian Papers; Truswell, A.S., Dreosti, I.E., English, R.M., Palmer, N., Rutihauser, I.H.E., Eds.; Australian Professional Publications: Sydney, Australia, 1990; pp. 158–173. [Google Scholar]
- Kingdom, J.; Huppertz, B.; Seaward, G.; Kaufmann, P. Development of the placental villous tree and its consequences for fetal growth. Eur. J. Obs. Gynecol. Reprod. Biol. 2000, 92, 35–43. [Google Scholar] [CrossRef]
- Woods, J.R., Jr.; Plessinger, M.A.; Miller, R.K. Vitamins C and E: Missing links in preventing preterm premature rupture of membranes? Am. J. Obs. Gynecol. 2001, 185, 5–10. [Google Scholar] [CrossRef]
- Mousa, A.; Naderpoor, N.; Teede, H.J.; De Courten, M.P.; Scragg, R.; De Courten, B. Vitamin D and cardiometabolic risk factors and diseases. Minerva Endocrinol. 2015, 40, 213–230. [Google Scholar] [PubMed]
- De-Regil, L.M.; Palacios, C.; Ansary, A.; Kulier, R.; Pena-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2012, 2, CD008873. [Google Scholar]
- Holick, M.F. Vitamin D: Physiology, Molecular Biology, and Clinical Applications; Humana Press: New York, NY, USA, 2010. [Google Scholar]
- van Schoor, N.M.; Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Kontic-Vucinic, O.; Sulovic, N.; Radunovic, N. Micronutrients in women’s reproductive health: Ii. Minerals and trace elements. Int. J. Fertil. Womens Med. 2006, 51, 116–124. [Google Scholar] [PubMed]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational studies. BMJ 2013, 346, f1169. [Google Scholar] [CrossRef]
- Mousa, A.; Abell, S.K.; Shorakae, S.; Harrison, C.L.; Naderpoor, N.; Hiam, D.; Moreno-Asso, A.; Stepto, N.K.; Teede, H.J.; de Courten, B. Relationship between vitamin D and gestational diabetes in overweight or obese pregnant women may be mediated by adiponectin. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Wei, S.-Q.; Qi, H.-P.; Luo, Z.-C.; Fraser, W.D. Maternal vitamin D status and adverse pregnancy outcomes: A systematic review and meta-analysis. J. Matern. -Fetal Neonatal Med. 2013, 26, 889–899. [Google Scholar] [CrossRef]
- Theodoratou, E.; Tzoulaki, I.; Zgaga, L.; Ioannidis, J.P.A. Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ Br. Med. J. 2014, 348, g2035. [Google Scholar] [CrossRef]
- Harvey, N.C.; Holroyd, C.; Ntani, G.; Javaid, K.; Cooper, P.; Moon, R.; Cole, Z.; Tinati, T.; Godfrey, K.; Dennison, E.; et al. Vitamin D supplementation in pregnancy: A systematic review. Health Technol. Assess. 2014, 18, 1–190. [Google Scholar] [CrossRef]
- Buppasiri, P.; Lumbiganon, P.; Thinkhamrop, J.; Ngamjarus, C.; Laopaiboon, M.; Medley, N. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, Á.N.; Duley, L.; Torloni, M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline: Calcium Supplementation in Pregnant Women; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Harding, K.B.; Peña-Rosas, J.P.; Webster, A.C.; Yap, C.M.Y.; Payne, B.A.; Ota, E.; De-Regil, L.M. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Glinoer, D. The importance of iodine nutrition during pregnancy. Public Health Nutr. 2007, 10, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [PubMed]
- WHO/UNICEF. Reaching Optimal Iodine Nutrition in Pregnant and Lactating Women and Young Children; World Health Organization and United Nations Children’s Fund: Geneva, Switzerland, 2007. [Google Scholar]
- Cairo, G.; Bernuzzi, F.; Recalcati, S. A precious metal: Iron, an essential nutrient for all cells. Genes Nutr. 2006, 1, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Milman, N. Iron and pregnancy—A delicate balance. Ann. Hematol. 2006, 85, 559. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.L. Effectiveness and strategies of iron supplementation during pregnancy. Am. J. Clin. Nutr. 2000, 71, 1288S–1294S. [Google Scholar] [CrossRef]
- Peña-Rosas, J.P.; De-Regil, L.M.; Garcia-Casal, M.N.; Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; Department of Nutrition for Health and Development (NHD), World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- WHO. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience; World Health Organisation: Geneva, Switzerland, 2016. [Google Scholar]
- Goldenberg, R.L.; Tamura, T.; Neggers, Y.; Copper, R.L.; Johnston, K.E.; DuBard, M.B.; Hauth, J.C. The effect of zinc supplementation on pregnancy outcome. JAMA 1995, 274, 463–468. [Google Scholar] [CrossRef]
- Caulfield, L.E.; Zavaleta, N.; Shankar, A.H.; Merialdi, M. Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am. J. Clin. Nutr. 1998, 68, 499s–508s. [Google Scholar] [CrossRef]
- Parr, R. Assessment of Dietary Intakes. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; pp. 265–288. [Google Scholar]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Ota, E.; Mori, R.; Middleton, P.; Tobe-Gai, R.; Mahomed, K.; Miyazaki, C.; Bhutta, Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Chaffee, B.W.; King, J.C. Effect of zinc supplementation on pregnancy and infant outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 118–137. [Google Scholar] [CrossRef] [PubMed]
- Popova, S.; Lange, S.; Probst, C.; Gmel, G.; Rehm, J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e290–e299. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans; US Government Printing Office: Washington, DC, USA, 2010.
- Henderson, J.; Gray, R.; Brocklehurst, P. Systematic review of effects of low–moderate prenatal alcohol exposure on pregnancy outcome. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 243–252. [Google Scholar] [CrossRef] [PubMed]
- DeVido, J.; Bogunovic, O.; Weiss, R.D. Alcohol use disorders in pregnancy. Harv. Rev. Psychiatry 2015, 23, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Flak, A.L.; Su, S.; Bertrand, J.; Denny, C.H.; Kesmodel, U.S.; Cogswell, M.E. The association of mild, moderate, and binge prenatal alcohol exposure and child neuropsychological outcomes: A meta‒analysis. Alcohol. Clin. Exp. Res. 2013, 38, 214–226. [Google Scholar] [CrossRef]
- Testa, M.; Quigley, B.M.; Das Eiden, R. The effects of prenatal alcohol exposure on infant mental development: A meta-analytical review. Alcohol Alcohol 2003, 38, 295–304. [Google Scholar] [CrossRef]
- O’Keeffe, L.M.; Greene, R.A.; Kearney, P.M. The effect of moderate gestational alcohol consumption during pregnancy on speech and language outcomes in children: A systematic review. Syst. Rev. 2014, 3, 1. [Google Scholar] [CrossRef]
- Jahanfar, S.; Jaafar, S.H. Effects of restricted caffeine intake by mother on fetal, neonatal and pregnancy outcomes. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Bech, B.H.; Nohr, E.A.; Vaeth, M.; Henriksen, T.B.; Olsen, J. Coffee and fetal death: A cohort study with prospective data. Am. J. Epidemiol. 2005, 162, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Wu, Y.; Neelakantan, N.; Chong, M.F.; Pan, A.; van Dam, R.M. Maternal caffeine intake during pregnancy is associated with risk of low birth weight: A systematic review and dose-response meta-analysis. BMC Med. 2014, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Wu, Y.; Neelakantan, N.; Chong, M.F.; Pan, A.; van Dam, R.M. Maternal caffeine intake during pregnancy and risk of pregnancy loss: A categorical and dose-response meta-analysis of prospective studies. Public Health Nutr. 2016, 19, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.; Kim, R.; Kim, Y.; Tam, M.; Lai, Y.; Keum, N.; Oldenburg, C.E. Maternal caffeine consumption during pregnancy and risk of low birth weight: A dose-response meta-analysis of observational studies. PLoS ONE 2015, 10, e0132334. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; Quattrocchi, A.; Agrifoglio, O.; Agodi, A. The role of miRNAs as biomarkers for pregnancy outcomes: A comprehensive review. Int. J. Genom. 2017, 2017, 8067972. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; La Rosa, C.M.; Magnano San Lio, R.; Favara, G.; Panella, M.; Cianci, A.; Agodi, A. Single nucleotide polymorphisms in vitamin D receptor gene affect birth weight and the risk of preterm birth: Results from the “mamma & bambino” cohort and a meta-analysis. Nutrients 2018, 10, 1172. [Google Scholar]
- Marquina, C.; Mousa, A.; Scragg, R.; de Courten, B. Vitamin D and cardiometabolic disorders: A review of current evidence, genetic determinants and pathomechanisms. Obes. Rev. 2019, 20, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Coussons-Read, M.E. Effects of prenatal stress on pregnancy and human development: Mechanisms and pathways. Obstet. Med. 2013, 6, 52–57. [Google Scholar] [CrossRef]
- Endres, L.K.; Sharp, L.K.; Haney, E.; Dooley, S.L. Health literacy and pregnancy preparedness in pregestational diabetes. Diabetes Care 2004, 27, 331–334. [Google Scholar] [CrossRef]
- Mund, M.; Louwen, F.; Klingelhoefer, D.; Gerber, A. Smoking and pregnancy—A review on the first major environmental risk factor of the unborn. Int. J. Environ. Res. Public Health 2013, 10, 6485–6499. [Google Scholar] [CrossRef]
- O’Keeffe, L.M.; Kearney, P.M.; Greene, R.A.; Kenny, L.C. Alcohol use during pregnancy. Obstet. Gynaecol. Reprod. Med. 2016, 26, 188–189. [Google Scholar] [CrossRef]
- Olsen, J. Problems in studying fetoxic effects of alcohol. Addiction 2009, 104, 1276–1278; discussion 1279–1280. [Google Scholar]
- Heaney, R.P. Nutrients, endpoints, and the problem of proof. J. Nutr. 2008, 138, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Recommendations for Interventions/Supplement Use 1 | Non Pregnant Adult Females (19–50 years) 2 | Pregnant Adult Females (19–50 years) 2 |
---|---|---|---|
Macronutrients | |||
Energy | Energy restriction reduces GWG but could adversely affect birthweight and is currently not recommended in pregnancy | EER (kcal/day) 3 = 354 − (6.91 × age [year]) + PA × [(9.36 × weight [kg]) + (726 × height [m])] | Non pregnant EER + 340 and 452 kcal/day in 2nd and 3rd trimesters |
Protein | Balanced energy/protein supplements (≤ 25% total energy from protein) are recommended only in undernourished women to prevent stillbirth and SGA | 0.8 g/kg/day (46 g/day) | 0.8 increasing to 1.1 g/kg/day in 2nd half of pregnancy (71 g/day) |
Total fibre 4 | Fibre-rich diet may reduce preeclampsia and GDM but no specific recommendations are currently available; fibre supplements can be used to relieve constipation if diet modification is unsuccessful | 14 g/1000 kcal (or 25 g/day) | 14 g/1000 kcal or (or ~28 g/day to account for GWG) |
Carbohydrates (GI and GL) | Low GL or GI diets may be beneficial for women at risk of GDM or LGA but can increase risk of SGA. No specific recommendations are currently available | 130 g/day of carbohydrates | 175 g/day of carbohydrates |
Essential fatty acids 4 (linoleic acid [n-6] and α-linoleic acid [n-3]) | n-3 PUFAs may prevent preterm birth but can increase post-term birth and LGA. No specific recommendations are currently available | 12 g/day (linoleic) 1.1 g/day (α-linoleic) | 13 g/day (linoleic) 1.4 g/day (α-linoleic) |
Micronutrients | |||
Folate/folic acid | Recommended (400 µg/day) from preconception until at least 12 weeks to prevent NTDs | 400 µg/day | 600 µg/day |
Vitamin A | Not recommended except in areas with severe deficiency/night blindness | 700 µg/day | 770 µg/day |
Thiamine (B1) | B-complex vitamins are not recommended to improve pregnancy outcomes until further evidence is available | 1.1 mg/day | 1.4 mg/day |
Niacin (B2) | 14 mg/day | 18 mg/day | |
Riboflavin (B3) | 1.1 mg/day | 1.4 mg/day | |
Pyridoxine (B6) | 1.3 mg/day | 1.9 mg/day | |
Cyanocobalamin (B12) | 2.4 µg/day | 2.6 µg/day | |
Vitamin C | Not recommended until further evidence relating to safety and PROM is available | 75 mg/day | 85 mg/day |
Vitamin E | 15 mg/day | 15 mg/day | |
Vitamin D 4 | Not recommended for improving pregnancy outcomes but should be given to women with deficiency (200 IU/day) | 5 µg/day | 5 µg/day |
Calcium 4 | Recommended (1.5–2.0 g/day) to prevent hypertensive disorders in women with low dietary calcium intake or who are at high risk of hypertension | 1 g/day | 1 g/day |
Iodine | Recommended only in women at high risk to prevent IDDs (i.e., in countries where < 20% of households have access to iodized salt) | 150 µg/day | 220–250 µg/day |
Iron | Recommended (30–60 mg/day) to prevent maternal anaemia, puerperal sepsis, LBW and preterm birth | 18 mg/day | 27–60 mg/day |
Zinc | Not recommended for improving pregnancy outcomes until more rigorous research is available | 8 mg/day | 11 mg/day |
Alcohol | Not recommended during pregnancy until safe upper limits are established | NA | None |
Caffeine | Reducing intake is recommended in women with high caffeine intake (> 300 mg/day) to prevent pregnancy loss and LBW infants | NA | <200 mg/day |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. https://doi.org/10.3390/nu11020443
Mousa A, Naqash A, Lim S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients. 2019; 11(2):443. https://doi.org/10.3390/nu11020443
Chicago/Turabian StyleMousa, Aya, Amreen Naqash, and Siew Lim. 2019. "Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence" Nutrients 11, no. 2: 443. https://doi.org/10.3390/nu11020443
APA StyleMousa, A., Naqash, A., & Lim, S. (2019). Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients, 11(2), 443. https://doi.org/10.3390/nu11020443