Indole-3-Propionic Acid, a Tryptophan-Derived Bacterial Metabolite, Reduces Weight Gain in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. The Effect of Antibiotic Treatment on Body Weight Gain and Tryptophan-Derived Bacterial Metabolites Level
2.3. The Effect of Tryptophan-Free and Tryptophan-Rich Diet on Body Weight Gain and Bacterial Metabolites Level
2.4. The Effect of Treatment with Indole-3-Propionic Acid on Body Weight Gain
2.5. Dosage Information
2.6. Blood Sampling
2.7. Stool Sample Collection and Preparation
2.8. Tryptophan and Tryptophan-Derived Metabolites Analysis
2.9. Biochemical Blood and Urine Analyses
2.10. ELISA Test
2.11. Statistics
3. Results
3.1. The Effect of Antibiotic Treatment
3.2. The Effect of Tryptophan-Free (TF) and Tryptophan-High (TH) Diets
3.2.1. Weight Gain and Food Intake
3.2.2. Serum Protein and Water-Electrolyte Balance
3.2.3. Concentrations of Tryptophan and Tryptophan Metabolites
3.3. The Effect of Treatment with I3P on Body Weight Gain
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacLean, P.S.; Blundell, J.E.; Mennella, J.A.; Batterham, R.L. Biological control of appetite: A daunting complexity. Obesity (Silver Spring) 2017, 25 (Suppl. 1), 8–16. [Google Scholar] [CrossRef] [PubMed]
- Andermann, M.L.; Lowell, B.B. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017, 95, 757–778. [Google Scholar] [CrossRef] [PubMed]
- Ufnal, M.; Drapala, A.; Sikora, M.; Zera, T. Early high-sodium solid diet does not affect sodium intake, sodium preference, blood volume and blood pressure in adult Wistar-Kyoto rats. Br. J. Nutr. 2011, 106, 292–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broer, S. The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB Life 2009, 61, 591–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, K.N.; Michael, A.F.; Good, R.A. Tryptophan metabolism in a patient with phenylketonuria and scleroderma: A proposed explanation of the indole defect in phenylketonuria. Can. Med. Assoc. J. 1966, 94, 834–838. [Google Scholar] [PubMed]
- Milne, M.D. Hereditary abnormalities of intestinal absorption. Br. Med. Bull. 1967, 23, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Sibilia, V.; Pagani, F.; Lattuada, N.; Greco, A.; Guidobono, F. Linking chronic tryptophan deficiency with impaired bone metabolism and reduced bone accrual in growing rats. J. Cell Biochem. 2009, 107, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Franklin, M.; Bermudez, I.; Murck, H.; Singewald, N.; Gaburro, S. Sub-chronic dietary tryptophan depletion—An animal model of depression with improved face and good construct validity. J. Psychiatr. Res. 2012, 46, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bortolato, M.; Frau, R.; Orru, M.; Collu, M.; Mereu, G.; Carta, M.; Fadda, F.; Stancampiano, R. Effects of tryptophan deficiency on prepulse inhibition of the acoustic startle in rats. Psychopharmacology 2008, 198, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Ayaso, R.; Ghattas, H.; Abiad, M.; Obeid, O. Meal pattern of male rats maintained on amino acid supplemented diets: The effect of tryptophan, lysine, arginine, proline and threonine. Nutrients 2014, 6, 2509–2522. [Google Scholar] [CrossRef] [PubMed]
- Gartner, S.N.; Aidney, F.; Klockars, A.; Prosser, C.; Carpenter, E.A.; Isgrove, K.; Levine, A.S.; Olszewski, P.K. Intragastric preloads of l-tryptophan reduce ingestive behavior via oxytocinergic neural mechanisms in male mice. Appetite 2018, 125, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Latham, C.J. Sensitivity of the behavioural assay for measuring the action of drugs on feeding: Effects of tryptophan and 5-hydroxy-tryptophan. Br. J. Pharmacol. 1979, 66, 482. [Google Scholar]
- Latham, C.J.; Blundell, J.E. Evidence for the effect of tryptophan on the pattern of food consumption in free feeding and food deprived rats. Life Sci. 1979, 24, 1971–1978. [Google Scholar] [CrossRef]
- Konopelski, P.; Ufnal, M. Indoles—Gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr. Drug Metab. 2018, 19, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.F.; Drummond, K.N.; Doeden, D.; Anderson, J.A.; Good, R.A. Tryptophan Metabolism in Man. J. Clin. Investig. 1964, 43, 1730–1746. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Kim, Y.J.; Kang, D.H. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin. J. Am. Soc. Nephrol. 2011, 6, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Huc, T.; Nowinski, A.; Drapala, A.; Konopelski, P.; Ufnal, M. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol. Res. 2018, 130, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Karbownik, M.; Reiter, R.J.; Garcia, J.J.; Cabrera, J.; Burkhardt, S.; Osuna, C.; Lewinski, A. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: Relevance to cancer reduction. J. Cell Biochem. 2001, 81, 507–513. [Google Scholar] [CrossRef]
- Huc, T.; Konop, M.; Onyszkiewicz, M.; Podsadni, P.; Szczepanska, A.; Turlo, J.; Ufnal, M. Colonic indole, gut bacteria metabolite of tryptophan, increases portal blood pressure in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, 646–655. [Google Scholar] [CrossRef] [PubMed]
- de Sa Del Fiol, F.; Tardelli Ferreira, A.C.; Marciano, J.J.; Marques, M.C.; Sant’Ana, L.L. Obesity and the use of antibiotics and probiotics in rats. Chemotherapy 2014, 60, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog. 2017, 106, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.M.; Blaser, M.J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 2015, 11, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Pokusa, M.; Hlavacova, N.; Csanova, A.; Franklin, M.; Zorad, S.; Jezova, D. Adipogenesis and aldosterone: A study in lean tryptophan-depleted rats. Gen. Physiol. Biophys. 2016, 35, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, K.; Huc, T.; Gawrys, M.; Onyszkiewicz, M.; Samborowska, E.; Ufnal, M. An In Vivo Method for Evaluating the Gut-Blood Barrier and Liver Metabolism of Microbiota Products. J. Vis. Exp. 2018, 140, e58456. [Google Scholar] [CrossRef] [PubMed]
- Boudah, S.; Olivier, M.F.; Aros-Calt, S.; Oliveira, L.; Fenaille, F.; Tabet, J.C.; Junot, C. Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 966, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Chyan, Y.J.; Poeggeler, B.; Omar, R.A.; Chain, D.G.; Frangione, B.; Ghiso, J.; Pappolla, M.A. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J. Biol. Chem. 1999, 274, 21937–21942. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Li, R.; Liang, Q.; Qi, Q.; Li, Q.; Gu, P. Metabolic engineering for improving L-tryptophan production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2018, 46, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 2006, 69, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Ufnal, M.; Jazwiec, R.; Dadlez, M.; Drapala, A.; Sikora, M.; Skrzypecki, J. Trimethylamine-N-oxide: A carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can. J. Cardiol. 2014, 30, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Huc, T.; Drapala, A.; Gawrys, M.; Konop, M.; Bielinska, K.; Zaorska, E.; Samborowska, E.; Wyczalkowska-Tomasik, A.; Pączek, L.; Dadlez, M.; et al. Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, 1805–1820. [Google Scholar] [CrossRef] [PubMed]
- Skrzypecki, J.; Zera, T.; Ufnal, M. Butyrate, a Gut Bacterial Metabolite, Lowers Intraocular Pressure in Normotensive but not in Hypertensive Rats. J. Glaucoma 2018, 27, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Huc, T.; Jurkowska, H.; Wróbel, M.; Jaworska, K.; Onyszkiewicz, M.; Ufnal, M. Colonic hydrogen sulfide produces portal hypertension and systemic hypotension in rats. Exp. Biol. Med. (Maywood) 2018, 243, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Fenaille, F.; Barbier Saint-Hilaire, P.; Rousseau, K.; Junot, C. Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand? J. Chromatogr. A 2017, 1526, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Junot, C.; Fenaille, F.; Colsch, B.; Bécher, F. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom. Rev. 2014, 33, 471–500. [Google Scholar] [CrossRef] [PubMed]
Diet Composition | TC | TH | TF |
---|---|---|---|
Tryptophan (g/kg) | 2 | 8.5 | 0 |
Metabolizable Energy (MJ) | 11.5 | 13.5 | 16.5 |
Crude protein (%) | 17.4 | 19.1 | 16.4 |
Crude fat (%) | 3.5 | 3.3 | 7 |
Crude fiber (%) | 7 | 4.9 | 5 |
Crude ash (%) | 3.2 | 6.4 | 3.5 |
Starch (%) | 33 | 36.5 | 28.9 |
Group | Controls | Neomycin Group |
---|---|---|
Metabolic Parameters | ||
Body mass at the beginning of the experiment (g) | 279.37 ± 15.81 | 276.07 ± 16.16 |
Weight gain (g) | 36.16 ± 2.17 | 42.56 ± 3.99 * |
Food intake (g) | 22.40 ± 0.61 | 22.16 ± 0.72 |
Caloric intake (kcal) | 61.51 ± 1.56 | 61.24 ± 1.71 |
Water intake (mL) | 33.97 ± 1.61 | 34.80 ± 1.05 |
Urine output (mL) | 17.29 ± 1.23 | 13.20 ± 1.29 * |
Stool output (g) | 9.10 ± 1.00 | 13.30 ± 0.78 * |
Tryptophan and Tryptophan Metabolites Concentration | ||
Tryptophan | ||
Diet (intake mg/24 h) | 44.80 ± 1.23 | 44.60 ± 1.44 |
Diet (intake mg/kg b.w./24 h) | 143.57 ± 6.17 | 141.14 ± 6.00 |
Stools (µg/mL) | 2.15 ± 0.47 | 2.22 ± 0.33 |
Portal blood (µg/mL) | 10.74 ± 1.08 | 9.04 ± 0.97 |
Systemic blood (µg/mL) | 8.09 ± 0.46 | 6.73 ± 0.47 |
Kynurenine | ||
Portal blood (µg/mL) | 0.36 ± 0.04 | 0.41 ± 0.03 |
Systemic blood (µg/mL) | 0.48 ± 0.03 | 0.38 ± 0.01 * |
Serotonin | ||
Portal blood (µg/mL) | 0.74 ± 0.10 | 0.58 ± 0.05 |
Systemic blood (µg/mL) | 0.69 ± 0.02 | 0.63 ± 0.04 |
Indole | ||
Stools (µg/mL) | 63.61 ± 18.74 | 6.63 ± 1.60 * |
Indoxyl Sulfate | ||
Portal blood (µg/mL) | 4.76 ± 0.47 | 1.96 ± 0.44 * |
Systemic blood (µg/mL) | 4.80 ± 0.31 | 3.00 ± 0.44 * |
Indole-3-Acetic Acid | ||
Stools (µg/mL) | 1.51 ± 0.27 | 0.96 ± 0.09 |
Portal blood (µg/mL) | 0.14 ± 0.02 | 0.23 ± 0.07 |
Systemic blood (µg/mL) | 0.08 ± 0.01 | 0.11 ± 0.03 |
Indole-3-Propionic Acid | ||
Stools (µg/mL) | 1.89 ± 0.37 | LQQ |
Portal blood (µg/mL) | 1.10 ± 0.09 | 0.08 ± 0.02 * |
Systemic blood (µg/mL) | 0.96 ± 0.04 | LQQ |
Indole-3-Lactic Acid | ||
Stools (µg/mL) | 0.88 ± 0.41 | 2.34 ± 0.51 * |
Portal blood (µg/mL) | 0.09 ± 0.01 | 0.10 ± 0.01 |
Systemic blood (µg/mL) | 0.07 ± 0.01 | 0.10 ± 0.01 |
Indole-3-Carboxylic Acid | ||
Stools (µg/mL) | LQQ | LQQ |
Group | TC | TH | TF |
---|---|---|---|
Metabolic Parameters | |||
Body mass at the beginning of the experiment (g) | 288.95 ± 16.71 | 288.91 ± 10.01 | 278.43 ± 11.03 |
Weight gain (g) | 36.11 ± 1.88 | 20.30 ± 3.69 *,† | −8.26 ± 1.83 *,# |
Food intake (g) | 22.80 ± 0.66 | 19.98 ± 0.59 *,† | 14.57 ± 0.76 *,# |
Caloric intake (kcal) | 62.60 ± 1.71 | 64.40 ± 1.91 | 57.44 ± 2.80 |
Water intake (mL) | 33.18 ± 1.61 | 33.55 ± 1.33 | 32.07 ± 3.87 |
Urine output (mL) | 17.13 ± 0.99 | 16.50 ± 0.98 | 23.25 ± 3.36 |
Stool output (g) | 9.38 ± 0.91 | 12.39 ± 0.81 *,† | 2.10 ± 0.15 *,# |
Tryptophan and Tryptophan Metabolites Concentration | |||
Tryptophan | |||
Diet (intake mg/24 h) | 45.60 ± 1.33 | 169.79 ± 5.04 * | 0 |
Diet (intake mg/kg b.w./24 h) | 141.96 ± 5.96 | 550.56 ± 13.34 | 0 |
Stools (µg/mL) | 2.36 ± 0.45 | 4.39 ± 0.48 *,† | 1.66 ± 0.37 # |
Portal blood (µg/mL) | 10.65 ± 1.08 | 13.60 ± 1.06 † | 6.58 ± 0.47 *,# |
Systemic blood (µg/mL) | 8.18 ± 0.47 | 9.11 ± 0.27 † | 5.60 ± 0.43 *,# |
Kynurenine | |||
Portal blood (µg/mL) | 0.37 ± 0.04 | 0.73 ± 0.08 *,† | 0.13 ± 0.03 *,# |
Systemic blood (µg/mL) | 0.47 ± 0.03 | 0.59 ± 0.09 † | 0.20 ± 0.02 *,# |
Serotonin | |||
Portal blood (µg/mL) | 0.72 ± 0.10 | 0.86 ± 0.10 † | LQQ |
Systemic blood (µg/mL) | 0.68 ± 0.03 | 0.82 ± 0.07 † | 0.64 ± 0.02 # |
Indole | |||
Stools (µg/mL) | 22.99 ± 15.92 | 59.13 ± 18.07 | 12.46 ± 1.72 |
Indoxyl sulfate | |||
Portal blood (µg/mL) | 4.73 ± 0.47 | 3.08 ± 0.51 * | 1.75 ± 0.17 * |
Systemic blood (µg/mL) | 4.77 ± 0.31 | 2.95 ± 0.18 *,† | 1.79 ± 0.13 *,# |
Indole-3-Acetic Acid | |||
Stools (µg/mL) | 1.46 ± 0.28 | 0.65 ± 0.17 * | 0.31 ± 0.07 * |
Portal blood (µg/mL) | 0.15 ± 0.02 | 0.17 ± 0.07 | 0.04 ± 0.01 |
Systemic blood (µg/mL) | 0.08 ± 0.01 | 0.05 ± 0.01 *,† | 0.023 ± 0.004 *,# |
Indole-3-Propionic Acid | |||
Stools (µg/mL) | 2.13 ± 0.34 | 3.74 ± 0.47 *,† | 0.54 ± 0.09 *,# |
Portal blood (µg/mL) | 1.11 ± 0.08 | 2.04± 0.22 *,† | 0.28 ± 0.01 *,# |
Systemic blood (µg/mL) | 0.95 ± 0.04 | 1.12 ± 0.12 † | 0.29 ± 0.03 *,# |
Indole-3-Lactic Acid | |||
Stools (µg/mL) | 0.79 ± 0.40 | 0.61 ± 0.21 | 0.31 ± 0.06 |
Portal blood (µg/mL) | 0.09 ± 0.02 | 0.24 ± 0.09 † | 0.04 ± 0.01 # |
Systemic blood (µg/mL) | 0.07 ± 0.01 | 0.14 ± 0.02 *,† | 0.039 ± 0.003 # |
Indole-3-Carboxylic Acid | |||
Stools (µg/mL) | LQQ | 0.28 ± 0.03 *,† | LQQ |
Group | TC | TH | TF |
---|---|---|---|
Electrolyte Intake with Food | |||
Sodium (mmol/24 h) | 1.88 ± 0.05 | 2.09 ± 0.06 † | 1.33 ± 0.07 *,# |
Potassium (mmol/24 h) | 4.37 ± 0.12 | 4.70 ± 0.13 † | 1.94 ± 0.09 *,# |
Serum total Protein and Electrolytes | |||
Total Protein (g/dL) | 5.28 ± 0.07 | 5.45 ± 0.03 † | 4.95 ± 0.15 # |
Sodium (mmol/L) | 140.17 ± 1.30 | 141.00 ± 0.45 | 138.83 ± 1.62 |
Potassium (mmol/L) | 4.82 ± 0.30 | 4.41 ± 0.14 | 4.40 ± 0.22 |
Creatinine (mg/dL) | 0.78 ± 0.08 | 0.68 ± 0.03 | 0.72 ± 0.07 |
Urea (mg/dL) | 54.17 ± 2.32 | 73.5 ± 1.52 *,† | 50.67± 3.77 # |
Urinalysis | |||
Specific gravity (g/L) | 1.036 ± 0.002 | 1.039 ± 0.002 † | 1.026 ± 0.004 # |
Creatinine (mg/dL) | 61.69 ± 5.71 | 64.11 ± 3.77 † | 40.82 ± 6.21 *,# |
Sodium (mmol/L) | 64.50 ± 6.66 | 110.63 ± 9.13 *,† | 62.75 ± 12.67 # |
Sodium excretion (mmol/24 h) | 1.08 ± 0.09 | 1.78 ± 0.10 *,† | 1.23 ± 0.14 # |
Potassium (mmol/L) | 247.58 ± 18.79 | 260.44 ± 16.33 † | 98.26 ± 17.30 *,# |
Potassium excretion (mmol/24 h) | 4.14 ± 0.20 | 4.20 ± 0.12 † | 2.28 ± 0.16 *,# |
Plasma Vasopressin an Aldosterone | |||
Vasopressin (pg/mL) | 1500.2 ± 140.9 | 1304.6 ± 125.1 | 1171.1 ± 86.5 |
Aldosterone (ng/mL) | 9.627 ± 1.620 | 8.706 ± 0.472 | 8.392 ± 0.649 |
Group | Controls | I3P | ||
---|---|---|---|---|
Before the treatment | At the end of treatment | Before the treatment | At the end of treatment | |
Food intake (g) | 20.79 ± 0.49 | 18.77 ± 0.55 * | 21.11 ± 0.50 | 19.89 ± 0.71 |
Caloric intake (kcal) | 57.08 ± 1.36 | 51.55 ± 1.50 * | 57.98 ± 1.37 | 54.61 ± 1.96 |
Water intake (mL) | 28.86 ± 1.57 | 27.71 ± 2.17 | 29.26 ± 2.14 | 27.57 ± 2.77 |
Urine output (mL) | 14.43 ± 1.21 | 15.86 ± 1.16 | 13.43 ± 1.07 | 14.29 ± 1.13 |
Stool output (g) | 8.9 ± 0.72 | 8.01 ± 0.70 | 8.56 ± 0.52 | 7.43 ± 0.60 |
Serum Electrolytes and Total Protein | ||||
Sodium (mmol/L) | 143.14 ± 0.88 | 142.71 ± 1.06 | ||
Potassium (mmol/L) | 4.47 ± 0.11 | 4.54 ± 0.05 | ||
Creatinine (mg/dL) | 0.50 ± 0.02 | 0.54 ± 0.06 | ||
Urea (mg/dL) | 51.57 ± 2.35 | 53.71 ± 3.56 | ||
Total Protein (g/dL) | 5.30 ± 0.03 | 5.24 ± 0.07 | ||
Urinalysis | ||||
Specific gravity (g/L) | 1.039 ± 0.001 | 1.035 ± 0.001 * | 1.043 ± 0.003 | 1.038 ± 0.001 |
Daily sodium excretion (mmol) | 1.07 ± 0.08 | 1.01 ± 0.04 | 0.89 ± 0.08 | 0.91 ± 0.04 |
Daily potassium excretion (mmol) | 3.25 ± 0.17 | 3.11 ± 0.12 | 3.38 ± 0.09 | 3.03 ± 0.08 # |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konopelski, P.; Konop, M.; Gawrys-Kopczynska, M.; Podsadni, P.; Szczepanska, A.; Ufnal, M. Indole-3-Propionic Acid, a Tryptophan-Derived Bacterial Metabolite, Reduces Weight Gain in Rats. Nutrients 2019, 11, 591. https://doi.org/10.3390/nu11030591
Konopelski P, Konop M, Gawrys-Kopczynska M, Podsadni P, Szczepanska A, Ufnal M. Indole-3-Propionic Acid, a Tryptophan-Derived Bacterial Metabolite, Reduces Weight Gain in Rats. Nutrients. 2019; 11(3):591. https://doi.org/10.3390/nu11030591
Chicago/Turabian StyleKonopelski, Piotr, Marek Konop, Marta Gawrys-Kopczynska, Piotr Podsadni, Agnieszka Szczepanska, and Marcin Ufnal. 2019. "Indole-3-Propionic Acid, a Tryptophan-Derived Bacterial Metabolite, Reduces Weight Gain in Rats" Nutrients 11, no. 3: 591. https://doi.org/10.3390/nu11030591
APA StyleKonopelski, P., Konop, M., Gawrys-Kopczynska, M., Podsadni, P., Szczepanska, A., & Ufnal, M. (2019). Indole-3-Propionic Acid, a Tryptophan-Derived Bacterial Metabolite, Reduces Weight Gain in Rats. Nutrients, 11(3), 591. https://doi.org/10.3390/nu11030591