Supplementation with Hydroxytyrosol and Punicalagin Improves Early Atherosclerosis Markers Involved in the Asymptomatic Phase of Atherosclerosis in the Adult Population: A Randomized, Placebo-Controlled, Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Study Design
2.3. Supplement and Placebo Capsules
2.4. Methods
2.4.1. Diet
2.4.2. Anthropometric Variables
2.4.3. Health Variables
2.4.4. Determination of Vascular Function Variables
2.4.5. Biochemical Data
2.4.6. Compliance and Adverse Events
2.5. Statistical Analysis
3. Results
3.1. Recruitment and Study Population
3.2. Baseline Characteristics
3.3. Dietetic and Anthropometric Variables
3.4. Vascular Function Variables
3.5. Oxidative Status Variables
3.6. Compliance and Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
8-iso-PGF2α | 8-isoprostanes |
ASVD | Atherosclerotic Vascular Disease |
AUC | Area Under the Curve |
CV | Cardiovascular |
CVD | Cardiovascular Disease |
DBP | Diastolic Blood Pressure |
ED | Endothelial Dysfunction |
ELISA | Enzyme-Linked-Immunosorbent-Assay |
FMD | Flow-Mediated Dilatation |
FRAP | Ferric Reducing Antioxidant Power |
HR | Heart Rate |
HT | Hydroxytyrosol |
HULP | University Hospital La Paz |
OS | Oxidative Stress |
oxLDL | oxidized Low Density Lipoprotein Cholesterol |
PC | Punicalagin |
PON-1 | Paraoxonase-1 |
SBP | Systolic Blood Pressure |
sVCAM-1 | soluble Vascular Cell Adhesion Molecule-1 |
TBARS | Thiobarbituric Acid Reactive Substances |
References
- WHO. Global Status Report on Noncommunicable Diseases 2010; The World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- WHO. Global Atlas on Cardiovascular Disease Prevention and Control; The World Health Organization Press in Collaboration with the World Heart Federation and the World Stroke Organization; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2008–2013 Action Plan for the Global Strategy for the Prevention and Control of Noncommunicable Diseases; The World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Salisbury, D.; Bronas, U. Inflammation and immune system contribution to the etiology of atherosclerosis: Mechanisms and methods of assessment. Nurs. Res. 2014, 63, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.I.; Griendling, K.K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ. Res. 2015, 116, 531–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, E.; Flammer, A.J.; Lerman, L.O.; Elizaga, J.; Lerman, A.; Fernandez-Aviles, F. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 2013, 34, 3175–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ras, R.T.; Streppel, M.T.; Draijer, R.; Zock, P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013, 168, 344–351. [Google Scholar] [CrossRef]
- Xu, Y.; Arora, R.C.; Hiebert, B.M.; Lerner, B.; Szwajcer, A.; McDonald, K.; Rigatto, C.; Komenda, P.; Sood, M.M.; Tangri, N. Non-invasive endothelial function testing and the risk of adverse outcomes: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Shechter, M.; Issachar, A.; Marai, I.; Koren-Morag, N.; Freinark, D.; Shahar, Y.; Shechter, A.; Feinberg, M.S. Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int. J. Cardiol. 2009, 134, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Shechter, M.; Shechter, A.; Koren-Morag, N.; Feinberg, M.S.; Hiersch, L. Usefulness of brachial artery flow-mediated dilation to predict long-term cardiovascular events in subjects without heart disease. Am. J. Cardiol. 2014, 113, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Corrado, E.; Rizzo, M.; Coppola, G.; Muratori, I.; Carella, M.; Novo, S. Endothelial dysfunction and carotid lesions are strong predictors of clinical events in patients with early stages of atherosclerosis: A 24-month follow-up study. Coron. Artery Dis. 2008, 19, 139–144. [Google Scholar] [CrossRef]
- De Marco, M.; de Simone, G.; Roman, M.J.; Chinali, M.; Lee, E.T.; Russell, M.; Howard, B.V.; Devereux, R.B. Cardiovascular and metabolic predictors of progression of prehypertension into hypertension: The strong heart study. Hypertension 2009, 54, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Vasan, R.S.; Larson, M.G.; Leip, E.P.; Kannel, W.B.; Levy, D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham heart study: A cohort study. Lancet 2001, 358, 1682–1686. [Google Scholar] [CrossRef]
- Wang, S.; Wu, H.; Zhang, Q.; Xu, J.; Fan, Y. Impact of baseline prehypertension on cardiovascular events and all-cause mortality in the general population: A meta-analysis of prospective cohort studies. Int. J. Cardiol. 2013, 168, 4857–4860. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The seventh report of the joint National committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Ingelsson, E.; Gona, P.; Larson, M.G.; Lloyd-Jones, D.M.; Kannel, W.B.; Vasan, R.S.; Levy, D. Altered blood pressure progression in the community and its relation to clinical events. Arch. Intern. Med. 2008, 168, 1450–1457. [Google Scholar] [CrossRef]
- Perry, H.M., Jr.; Davis, B.R.; Price, T.R.; Applegate, W.B.; Fields, W.S.; Guralnik, J.M.; Kuller, L.; Pressel, S.; Stamler, J.; Probstfield, J.L. Effect of treating isolated systolic hypertension on the risk of developing various types and subtypes of stroke: The Systolic Hypertension in the Elderly Program (SHEP). JAMA 2000, 284, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; FitzGerald, G.A. Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003, 108, 1912–1916. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; FitzGerald, G.A. Oxidative stress and cardiovascular injury: Part II: Animal and human studies. Circulation 2003, 108, 2034–2040. [Google Scholar] [CrossRef]
- Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci. 2015, 52, 70–85. [Google Scholar] [CrossRef]
- Maiolino, G.; Rossitto, G.; Caielli, P.; Bisogni, V.; Rossi, G.P.; Calo, L.A. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediat. Inflamm. 2013, 2013, 714653. [Google Scholar] [CrossRef]
- Huang, H.; Ma, R.; Liu, D.; Liu, C.; Ma, Y.; Mai, W.; Dong, Y. Oxidized low-density lipoprotein cholesterol and the ratio in the diagnosis and evaluation of therapeutic effect in patients with coronary artery disease. Dis. Mark. 2012, 33, 295–302. [Google Scholar] [CrossRef]
- Koenig, W.; Karakas, M.; Zierer, A.; Herder, C.; Baumert, J.; Meisinger, C.; Thorand, B. Oxidized LDL and the risk of coronary heart disease: Results from the MONICA/KORA Augsburg study. Clin. Chem. 2011, 57, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Toshima, S.; Hasegawa, A.; Kurabayashi, M.; Itabe, H.; Takano, T.; Sugano, J.; Shimamura, K.; Kimura, J.; Michishita, I.; Suzuki, T.; et al. Circulating oxidized low density lipoprotein levels. A biochemical risk marker for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2243–2247. [Google Scholar] [CrossRef]
- Tsutsui, T.; Tsutamoto, T.; Wada, A.; Maeda, K.; Mabuchi, N.; Hayashi, M.; Ohnishi, M.; Kinoshita, M. Plasma oxidized low-density lipoprotein as a prognostic predictor in patients with chronic congestive heart failure. J. Am. Coll. Cardiol. 2002, 39, 957–962. [Google Scholar] [CrossRef] [Green Version]
- Nishi, K.; Itabe, H.; Uno, M.; Kitazato, K.T.; Horiguchi, H.; Shinno, K.; Nagahiro, S. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1649–1654. [Google Scholar] [CrossRef]
- Ehara, S.; Ueda, M.; Naruko, T.; Haze, K.; Itoh, A.; Otsuka, M.; Komatsu, R.; Matsuo, T.; Itabe, H.; Takano, T.; et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 2001, 103, 1955–1960. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Ehara, S.; Yoshiyama, M.; Naruko, T.; Haze, K.; Shirai, N.; Sugama, Y.; Ikura, Y.; Ohsawa, M.; Itabe, H.; et al. Elevated plasma levels of oxidized low-density lipoprotein relate to the presence of angiographically detected complex and thrombotic coronary artery lesion morphology in patients with unstable angina. Circ. J. 2007, 71, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, D.; Borsa, C.; Ionescu, C.; Prada, G.I. Oxidized LDL and NO synthesis—Biomarkers of endothelial dysfunction and ageing. Mech. Ageing Dev. 2015, 151, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.X.; Zhou, B.; Chen, Z.; Ren, Q.; Lu, S.H.; Sawamura, T.; Han, Z.C. Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J. Lipid Res. 2006, 47, 1227–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, T.; Takashima, H.; Ohira, N.; Tarutani, Y.; Yasuda, Y.; Yamane, T.; Matsuo, S.; Horie, M. Plasma level of oxidized low-density lipoprotein is an independent determinant of coronary macrovasomotor and microvasomotor responses induced by bradykinin. J. Am. Coll. Cardiol. 2004, 44, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Bottino, D.A.; Lopes, F.G.; de Oliveira, F.J.; Ade, S.M.; Clapauch, R.; Bouskela, E. Relationship between biomarkers of inflammation, oxidative stress and endothelial/microcirculatory function in successful aging versus healthy youth: A transversal study. BMC Geriatr. 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Meisinger, C.; Baumert, J.; Khuseyinova, N.; Loewel, H.; Koenig, W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 2005, 112, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remon, A.; Martinez-Gonzalez, M.A.; de la Torre, R.; Corella, D.; Salas-Salvado, J.; Gomez-Gracia, E.; Lapetra, J.; Aros, F.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szulińska, M.; Skrypnik, D.; Michałowska, J.; Bogdański, P. Non-pharmacological modification of endothelial function: An important lesson for clinical practice. Postepy. Hig. Med. Dosw. 2018, 72, 89–100. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Caliceti, C.; Fogacci, F.; Giovannini, M.; Calabria, D.; Colletti, A.; Veronesi, M.; Roda, A.; Borghi, C. Effect of apple polyphenols on vascular oxidative stress and endothelium function: A translational study. Mol. Nutr. Food. Res. 2017, 61, 11. [Google Scholar] [CrossRef] [PubMed]
- Medina-Remon, A.; Tresserra-Rimbau, A.; Pons, A.; Tur, J.A.; Martorell, M.; Ros, E.; Buil-Cosiales, P.; Sacanella, E.; Covas, M.I.; Corella, D.; et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Covas, M.I.; Nyyssonen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Baumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef]
- Valls, R.M.; Farras, M.; Suarez, M.; Fernandez-Castillejo, S.; Fito, M.; Konstantinidou, V.; Fuentes, F.; Lopez-Miranda, J.; Giralt, M.; Covas, M.I.; et al. Effects of functional olive oil enriched with its own phenolic compounds on endothelial function in hypertensive patients. A randomised controlled trial. Food Chem. 2015, 167, 30–35. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remon, A.; Martinez-Gonzalez, M.A.; Lopez-Sabater, M.C.; Covas, M.I.; Corella, D.; Salas-Salvado, J.; Gomez-Gracia, E.; Lapetra, J.; et al. Polyphenol intake and mortality risk: A re-analysis of the PREDIMED trial. BMC Med. 2014, 12, 77. [Google Scholar] [CrossRef]
- Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. J. Transl. Med. 2014, 12, 219. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the substantiation of health claims related to quercetin and protection of DNA, proteins and lipids from oxidative damage. EFSA J. 2011, 9, 1–25. [Google Scholar] [CrossRef]
- 45 Zrelli, H.; Matsuoka, M.; Kitazaki, S.; Zarrouk, M.; Miyazaki, H. Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK-FOXO3a pathway. Eur. J. Pharmacol. 2011, 660, 275–282. [Google Scholar] [CrossRef]
- de Nigris, F.; Williams-Ignarro, S.; Sica, V.; Lerman, L.O.; D’Armiento, F.P.; Byrns, R.E.; Casamassimi, A.; Carpentiero, D.; Schiano, C.; Sumi, D.; et al. Effects of a pomegranate fruit extract rich in punicalagin on oxidation-sensitive genes and eNOS activity at sites of perturbed shear stress and atherogenesis. Cardiovasc. Res. 2007, 73, 414–423. [Google Scholar] [CrossRef]
- Vilahur, G.; Padro, T.; Casani, L.; Mendieta, G.; Lopez, J.A.; Streitenberger, S.; Badimon, L. Polyphenol-enriched diet prevents coronary endothelial dysfunction by activating the Akt/eNOS pathway. Rev. Esp. Cardiol. (Engl. Ed.) 2015, 68, 216–225. [Google Scholar] [CrossRef]
- Puri, K.S.; Suresh, K.R.; Gogtay, N.J.; Thatte, U.M. Declaration of Helsinki, 2008: Implications for stakeholders in research. J. Postgrad. Med. 2009, 55, 131–134. [Google Scholar] [CrossRef]
- Blekas, G.; Vassilakis, C.; Harizanis, C.; Tsimidou, M.; Boskou, D.G. Biophenols in table olives. J. Agric. Food Chem. 2002, 50, 3688–3692. [Google Scholar] [CrossRef]
- Brenes, M.; Garcia, A.; Garcia, P.; Rios, J.J.; Garrido, A. Phenolic compounds in Spanish olive oils. J. Agric. Food Chem. 1999, 47, 3535–3540. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomas-Barberan, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Ortega, R.M.; Requejo, A.M.; López-Sobaler, A.M. Models of questionnaires for dietary studies, in the assessment of nutritional status. In Nutriguía Manual of Clinical Nu-trition in Primary Care; Ortega, R.M., Requejo, A.M., Eds.; Complutense: Madrid, Spain, 2006; pp. 456–467. [Google Scholar]
- WHO/FAO. Methodology of Nutritional Surveillance. Report of a Joint FAO/UNICEF/WHO Expert Committee; The World Health Organization Technical Report Series; WHO/FAO: Geneva, Switzerland, 1976. [Google Scholar]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International brachial artery reactivity task force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef]
- Kuvin, J.T.; Patel, A.R.; Sliney, K.A.; Pandian, N.G.; Rand, W.M.; Udelson, J.E.; Karas, R.H. Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease. J. Am. Coll. Cardiol. 2001, 38, 1843–1849. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol. Biol. 1998, 108, 101–106. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ricart-Jane, D.; Llobera, M.; Lopez-Tejero, M.D. Anticoagulants and other preanalytical factors interfere in plasma nitrate/nitrite quantification by the Griess method. Nitric Oxide 2002, 6, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, K.E.; Celermajer, D.S.; Spiegelhalter, D.J.; Georgakopoulos, D.; Robinson, J.; Thomas, O.; Deanfield, J.E. Non-invasive measurement of human endothelium dependent arterial responses: Accuracy and reproducibility. Br. Heart J. 1995, 74, 247–253. [Google Scholar] [CrossRef]
- de Bock, M.; Derraik, J.G.; Brennan, C.M.; Biggs, J.B.; Morgan, P.E.; Hodgkinson, S.C.; Hofman, P.L.; Cutfield, W.S. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: A randomized, placebo-controlled, crossover trial. PLoS ONE 2013, 8, e57622. [Google Scholar] [CrossRef]
- Achmon, Y.; Fishman, A. The antioxidant hydroxytyrosol: Biotechnological production challenges and opportunities. Appl. Microbiol. Biotechnol. 2015, 99, 1119–1130. [Google Scholar] [CrossRef]
- Stockton, A.; Farhat, G.; McDougall, G.J.; Al-Dujaili, E.A.S. Effect of pomegranate extract on blood pressure and anthropometry in adults: A double-blind placebo-controlled randomised clinical trial. J. Nutr. Sci. 2017, 6, e39. [Google Scholar] [CrossRef]
- Graham, I.; Atar, D.; Borch-Johnsen, K.; Boysen, G.; Burell, G.; Cifkova, R.; Dallongeville, J.; De Backer, G.; Ebrahim, S.; Gjelsvik, B.; et al. European guidelines on cardiovascular disease prevention in clinical practice: Executive summary. Fourth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14 (Suppl. 2), E1–E40. [Google Scholar] [CrossRef]
- Moreno-Luna, R.; Munoz-Hernandez, R.; Miranda, M.L.; Costa, A.F.; Jimenez-Jimenez, L.; Vallejo-Vaz, A.J.; Muriana, F.J.; Villar, J.; Stiefel, P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens. 2012, 25, 1299–1304. [Google Scholar] [CrossRef]
- Whitworth, J.A. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J. Hypertens. 2003, 21, 1983–1992. [Google Scholar] [CrossRef]
- Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood-pressure-lowering treatment in hypertension: 9. Discontinuations for adverse events attributed to different classes of antihypertensive drugs: Meta-analyses of randomized trials. J. Hypertens. 2016, 34, 1921–1932. [Google Scholar] [CrossRef] [PubMed]
- Aviram, M.; Rosenblat, M.; Gaitini, D.; Nitecki, S.; Hoffman, A.; Dornfeld, L.; Volkova, N.; Presser, D.; Attias, J.; Liker, H.; et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 2004, 23, 423–433. [Google Scholar] [CrossRef] [PubMed]
- EMA. Assessment Report on Olea Europaea L., Folium; The European Medicines Agency Science Medicines Health: London, UK, 2011. [Google Scholar]
- Marrugat, J.; Covas, M.I.; Fito, M.; Schroder, H.; Miro-Casas, E.; Gimeno, E.; Lopez-Sabater, M.C.; de la Torre, R.; Farre, M. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation—A randomized controlled trial. Eur. J. Nutr. 2004, 43, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Aviram, M.; Dornfeld, L.; Kaplan, M.; Coleman, R.; Gaitini, D.; Nitecki, S.; Hofman, A.; Rosenblat, M.; Volkova, N.; Presser, D.; et al. Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: Studies in atherosclerotic mice and in humans. Drugs Exp. Clin. Res. 2002, 28, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, M.; Hayek, T.; Aviram, M. Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis 2006, 187, 363–371. [Google Scholar] [CrossRef]
- Castaner, O.; Covas, M.I.; Khymenets, O.; Nyyssonen, K.; Konstantinidou, V.; Zunft, H.F.; de la Torre, R.; Munoz-Aguayo, D.; Vila, J.; Fito, M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am. J. Clin. Nutr. 2012, 95, 1238–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuzura, S.; Ikeda, Y.; Suehiro, T.; Ota, K.; Osaki, F.; Arii, K.; Kumon, Y.; Hashimoto, K. Correlation of plasma oxidized low-density lipoprotein levels to vascular complications and human serum paraoxonase in patients with type 2 diabetes. Metabolism 2004, 53, 297–302. [Google Scholar] [CrossRef]
- Kopprasch, S.; Pietzsch, J.; Kuhlisch, E.; Graessler, J. Lack of association between serum paraoxonase 1 activities and increased oxidized low-density lipoprotein levels in impaired glucose tolerance and newly diagnosed diabetes mellitus. J. Clin. Endocrinol. Metab. 2003, 88, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
Placebo/SAx (n = 33) | SAx/Placebo (n = 34) | ||
---|---|---|---|
Gender | (Female %, n) | 78.79 (26) | 79.41 (27) |
Age | (years) | 53.21 ± 4.2 | 52.79 ± 4.8 |
Smoking | (Smokers %, n) | 18.18 (6) | 26.47 (9) |
Weight | (kg) | 66.26 ± 11.8 | 64.08 ± 10.9 |
BMI | (kg/m2) | 24.64 ± 2.9 | 24.56 ± 3.2 |
Waist circumference | (cm) | 80.51 ± 9.2 | 82.58 ± 9.8 |
FM | (%) | 29.18 ± 6.7 | 28.76 ± 6.4 |
FFM | (%) | 70.82 ± 6.7 | 71.24 ± 6.4 |
MM | (%) | 48.03 ± 7.7 | 47.87 ± 5.5 |
SBP | (mmHg) | 110.3 ± 13.1 | 110.9 ± 12.9 |
DBP | (mmHg) | 74.06 ± 10.8 | 73.75 ± 9.5 |
HR | (bpm) | 67.36 ± 8.9 | 70.41 ± 7.5 |
FMD | (%) | 8.464 ± 4.0 | 7.962 ± 3.8 |
sVCAM-1 | (pg/mL) | 679.9 ± 191.8 | 661.5 ± 183.1 |
oxLDL | (ng/mL) | 118.2 ± 144.4 | 103.4 ± 113.9 |
TBARS | (µmol MDA eq/mL) | 0.622 ± 0.8 | 0.572 ± 0.7 |
FRAP | (µmol Trolox eq/mL) | 0.410 ± 0.1 | 0.425 ± 0.1 |
8-iso-PGF2α | (ng/mL) | 58.55 ± 12.6 | 56.95 ± 10.3 |
PON-1 | (ng/mL) | 5.777 ± 6.5 | 4.383 ± 3.9 |
NOx | (µM) | 23.28 ± 9.0 | 27.16 ± 19.9 |
SAx | Placebo | |||
---|---|---|---|---|
(n = 67) | (n = 67) | |||
Energy | (kcal/day) | Start | 1923 ± 513.6 | 1864 ± 471.9 |
End | 1891 ± 549.4 | 1881 ± 569.5 | ||
Change | −31.88 ± 463.2 | 17.07 ± 355.5 | ||
Carbohydrates | (%) | Start | 38.06 ± 6.5 | 38.46 ± 8.9 |
End | 37.62 ± 6.3 | 39.06 ± 6.5 | ||
Change | −0.439 ± 5.7 | 0.598 ± 8.1 | ||
Proteins | (%) | Start | 17.24 ± 3.7 | 17.44 ± 2.9 |
End | 17.43 ± 3.6 | 17.60 ± 3.1 | ||
Change | 0.193 ± 4.4 | 0.164 ± 3.5 | ||
Lipids | (%) | Start | 41.42 ± 6.3 | 40.48 ± 8.8 |
End | 41.36 ± 5.7 | 40.19 ± 5.9 | ||
Change | −0.067 ± 5.3 | −0.287 ± 8.0 | ||
Weight | (kg) | Start | 65.10 ± 11.3 | 65.10 ± 11.2 |
End | 64.93 ± 11.2 | 64.85 ± 11.3 | ||
Change | −0.173 ± 1.3 | −0.249 ± 1.0 | ||
BMI | (kg/m2) | Start | 24.58 ± 3.0 | 24.63 ± 3.0 |
End | 24.51 ± 3.0 | 24.48 ± 3.0 | ||
Change | −0.068 ± 0.5 | −0.151 ± 0.6 | ||
Waist | (cm) | Start | 81.85 ± 9.0 | 81.24 ± 9.8 |
circumference | End | 81.82 ± 9.6 | 81.25 ± 9.6 | |
Change | −0.034 ± 2.9 | 0.008 ± 3.7 | ||
FM | (%) | Start | 29.16 ± 6.6 | 28.90 ± 6.5 |
End | 29.56 ± 6.8 | 29.79 ± 7.2 | ||
Change | 0.400 ± 2.8 | 0.891 ± 3.7 | ||
FFM | (%) | Start | 70.84 ± 6.6 | 71.10 ± 6.5 |
End | 70.44 ± 6.8 | 70.21 ± 7.2 | ||
Change | −0.400 ± 2.8 | −0.891 ± 3.7 | ||
MM | (%) | Start | 47.63 ± 6.2 | 47.52 ± 6.5 |
End | 46.67 ± 5.7 | 46.44 ± 5.8 | ||
Change | −0.970 ± 5.1 | −1.082 ± 5.8 |
SAx | Placebo | |||
---|---|---|---|---|
(n = 67) | (n = 67) | |||
SBP | (mmHg) | Start | 111.3 ± 12.9 | 110.2 ± 13.3 |
End | 101.9 ± 12.0 *** | 107.4 ± 14.8 | ||
Change | −9.419 ± 10.3 # | −2.792 ± 11.2 | ||
DBP | (mmHg) | Start | 74.34 ± 10.1 | 72.68 ± 10.1 |
End | 71.60 ± 10.4 *** | 71.42 ± 9.7 | ||
Change | −2.742 ± 8.4 | −1.258 ± 8.1 | ||
HR | (bpm) | Start | 68.63 ± 10.7 | 69.13 ± 9.4 |
End | 67.67 ± 9.8 | 67.88 ± 8.4 | ||
Change | −0.962 ± 8.3 | −1.250 ± 9.1 | ||
FMD | (%) | Start | 8.036 ± 4.0 | 8.077 ± 3.3 |
End | 9.462 ± 4.0 * | 8.619 ± 4.0 | ||
Change | 1.427 ± 3.7 | 0.542 ± 3.4 | ||
sVCAM-1 | (pg/mL) | Start | 650.8 ± 192.9 | 635.3 ± 174.9 |
End | 625.0 ± 163.9 | 588.7 ± 136.7 | ||
Change | −25.84 ± 175.1 | −46.66 ± 126.6 |
SAx | Placebo | |||
---|---|---|---|---|
(n = 67) | (n = 67) | |||
oxLDL | (ng/mL) | Start | 108.9 ± 126.2 | 98.86 ± 128.1 |
End | 97.44 ± 121.7 * | 105.9 ± 139.9 | ||
Change | −11.46 ± 28.1 # | 7.05 ± 55.6 | ||
TBARS | (µmol MDA eq/mL) | Start | 0.696 ± 0.9 | 0.673 ± 0.9 |
End | 0.635 ± 0.9 | 0.574 ± 0.8 | ||
Change | −0.061 ± 1.2 | −0.099 ± 1.1 | ||
FRAP | (µmol Trolox eq/mL) | Start | 0.421 ± 0.1 | 0.422 ± 0.1 |
End | 0.425 ± 0.1 | 0.433 ± 0.1 | ||
Change | 0.005 ± 0.1 | 0.011 ± 0.0 | ||
8-iso-PGF2α | (ng/mL) | Start | 52.54 ± 11.7 | 54.06 ± 13.6 |
End | 50.68 ± 14.0 | 50.55 ± 11.7 | ||
Change | −1.858 ± 13.7 | −3.507 ± 14.9 | ||
PON-1 | (ng/mL) | Start | 4.187 ± 4.4 | 4.130 ± 5.5 |
End | 3.567 ± 5.1 | 4.514 ± 7.0 | ||
Change | −0.619 ± 6.5 | 0.384 ± 7.7 | ||
NOx | (µM) | Start | 25.34 ± 16.2 | 23.57 ± 13.5 |
End | 26.39 ± 16.9 | 22.52 ± 9.7 | ||
Change | 1.053 ± 14.4 | −1.055 ± 13.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quirós-Fernández, R.; López-Plaza, B.; Bermejo, L.M.; Palma-Milla, S.; Gómez-Candela, C. Supplementation with Hydroxytyrosol and Punicalagin Improves Early Atherosclerosis Markers Involved in the Asymptomatic Phase of Atherosclerosis in the Adult Population: A Randomized, Placebo-Controlled, Crossover Trial. Nutrients 2019, 11, 640. https://doi.org/10.3390/nu11030640
Quirós-Fernández R, López-Plaza B, Bermejo LM, Palma-Milla S, Gómez-Candela C. Supplementation with Hydroxytyrosol and Punicalagin Improves Early Atherosclerosis Markers Involved in the Asymptomatic Phase of Atherosclerosis in the Adult Population: A Randomized, Placebo-Controlled, Crossover Trial. Nutrients. 2019; 11(3):640. https://doi.org/10.3390/nu11030640
Chicago/Turabian StyleQuirós-Fernández, Rebeca, Bricia López-Plaza, Laura M. Bermejo, Samara Palma-Milla, and Carmen Gómez-Candela. 2019. "Supplementation with Hydroxytyrosol and Punicalagin Improves Early Atherosclerosis Markers Involved in the Asymptomatic Phase of Atherosclerosis in the Adult Population: A Randomized, Placebo-Controlled, Crossover Trial" Nutrients 11, no. 3: 640. https://doi.org/10.3390/nu11030640
APA StyleQuirós-Fernández, R., López-Plaza, B., Bermejo, L. M., Palma-Milla, S., & Gómez-Candela, C. (2019). Supplementation with Hydroxytyrosol and Punicalagin Improves Early Atherosclerosis Markers Involved in the Asymptomatic Phase of Atherosclerosis in the Adult Population: A Randomized, Placebo-Controlled, Crossover Trial. Nutrients, 11(3), 640. https://doi.org/10.3390/nu11030640