Nutritional Considerations for Peripheral Arterial Disease: A Narrative Review
Abstract
:1. Introduction
2. Nutrition in the Prevention of Endothelial Dysfunction and Atherosclerosis
3. Nutrition in the Management of Peripheral Arterial Disease
3.1. Asymptomatic PAD
3.2. Intermittent Claudication
3.3. Critical Limb Ischaemia
4. Impact of the Perioperative State on Nutritional Status in PAD
5. Long-Term Nutritional Requirements
6. Summary and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Thomas, J.; Delaney, C.; Suen, J.; Miller, M. Nutritional status of patients admitted to a metropolitan tertiary care vascular surgery unit. Asia Pac. J. Clin. Nutr. 2019, 28, 64–71. [Google Scholar] [PubMed]
- McDermott, M.M.; Hoff, F.; Ferrucci, L.; Pearce, W.H.; Guralnik, J.M.; Tian, L.; Liu, K.; Schneider, J.R.; Sharma, L.; Tan, J.; et al. Lower extremity ischemia, calf skeletal muscle characteristics, and functional impairment in peripheral arterial disease. J. Am. Geriatr. Soc. 2007, 55, 400–406. [Google Scholar] [CrossRef]
- Gardner, A.W.; Bright, B.C.; Ort, K.A.; Montgomery, P.S. Dietary intake of participants with peripheral artery disease and claudication. Angiology 2011, 62, 270–275. [Google Scholar] [CrossRef]
- Hiddink, G.; Hautvast, J.; van Woerkum, C.; Fieren, C.; van’t Hof, M. Nutrition guidance by primary-care physicians: Perceived barriers and low involvement. Eur. J. Clin. Nutr. 1995, 49, 842–851. [Google Scholar]
- Grass, F.; Cerantola, Y.; Schäfer, M.; Müller, S.; Demartines, N.; Hübner, M. Perioperative nutrition is still a surgical orphan: Results of a Swiss–Austrian survey. Eur. J. Clin. Nutr. 2011, 65, 642–647. [Google Scholar] [CrossRef]
- Adams, K.M.; Butsch, W.S.; Kohlmeier, M. The state of nutrition education at US medical schools. J. Biomed. Educ. 2015, 2015. [Google Scholar] [CrossRef]
- Thomas, J.; Leedham, H.; Delaney, C.; Spark, J.; Miller, M. Estimating dietary energy and protein requirements for patients with peripheral arterial disease: An evaluation of current practice amongst dietitians. J. Nutr. Health Food Sci. 2015, 3. [Google Scholar] [CrossRef]
- Brotons, C.; Drenthen, A.J.M.; Durrer, D.; Moral, I. Beliefs and attitudes to lifestyle, nutrition and physical activity: The views of patients in Europe. Fam. Pract. 2012, 29, i49–i55. [Google Scholar] [CrossRef]
- Owens, M.; Mohan, H.; Moloney, M.A.; Roche-Nagle, G.; Baker, J.; Sheehan, S.; Mehigan, D.; Barry, M. Patient knowledge of peripheral vascular disease in an outpatient setting: An Achilles heel? Ir. Med. J. 2013, 106, 116–118. [Google Scholar]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Estruch, R. Anti-inflammatory effects of the Mediterranean diet: The experience of the PREDIMED study. Proc. Nutr. Soc. 2010, 69, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Noakes, M.; Keogh, J.; Foster, P.; Clifton, P. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am. J. Clin. Nutr. 2005, 81, 1298–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, D.; Bennett, G.G.; Svetkey, L. The DASH diet, 20 years later. JAMA 2017, 317, 1529–1530. [Google Scholar] [CrossRef]
- American Diabetes, A. Standards of medical care in diabetes—2007. (Position Statement)(Disease/Disorder overview). Diabetes Care 2007, 30, S4. [Google Scholar] [CrossRef] [PubMed]
- Lepretti, M.; Martucciello, S.; Burgos Aceves, M.A.; Putti, R.; Lionetti, L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients 2018, 10, 350. [Google Scholar] [CrossRef]
- Rangel-Huerta, O.D.; Gil, A. Omega 3 fatty acids in cardiovascular disease risk factors: An updated systematic review of randomised clinical trials. Clin. Nutr. 2018, 37, 72–77. [Google Scholar] [CrossRef]
- Chauhan, S.; Kodali, H.; Noor, J.; Ramteke, K.; Gawai, V. Role of omega-3 fatty acids on lipid profile in diabetic dyslipidaemia: Single blind, randomised clinical trial. J. Clin. Diagn. Res. 2017, 11, OC13–OC16. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, T.; Yu, Y.; Hu, X.; Yang, B.; Li, D. Fish consumption and CHD mortality: An updated meta-analysis of seventeen cohort studies. Public Health Nutr. 2012, 15, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Tangney, C.; Rosenson, R. Lipid Lowering with Diet or Dietary Supplements. UpToDate Inc. Available online: https://www.uptodate.com (accessed on 12 April 2019).
- Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of alcohol consumption with selected cardiovascular disease outcomes: A systematic review and meta-analysis. BMJ 2011, 342, d671. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Suen, J.; Thomas, J.; Kranz, A.; Vun, S.; Miller, M. Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: A systematic review. Healthcare (Basel) 2016, 4, 69. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Kampoli, A.M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharm. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Mokhtari, S.M.; Sadeghi, M.; Foroozan, R.; Safari, M. Effect of vitamin D therapy on endothelial function in ischemic heart disease female patients with vitamin D deficiency or insufficiency: A primary report. Arya Atheroscler. 2015, 11, 54–59. [Google Scholar]
- Melamed Michal, L.; Muntner, P.; Michos Erin, D.; Uribarri, J.; Weber, C.; Sharma, J.; Raggi, P. Serum 25-Hydroxyvitamin D levels and the prevalence of peripheral arterial disease. Arter. Thromb. Vasc. Biol. 2008, 28, 1179–1185. [Google Scholar] [CrossRef]
- Moss, J.W.; Ramji, D.P. Nutraceutical therapies for atherosclerosis. Nat. Rev. Cardiol. 2016, 13, 513–532. [Google Scholar] [CrossRef]
- Torres, N.; Guevara-Cruz, M.; Velazquez-Villegas, L.A.; Tovar, A.R. Nutrition and Atherosclerosis. Arch. Med. Res. 2015, 46, 408–426. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; Holden, R.M. Vitamin K status and vascular calcification: Evidence from observational and clinical studies. Adv. Nutr. 2012, 3, 158–165. [Google Scholar] [CrossRef]
- Vossen, L.M.; Schurgers, L.J.; van Varik, B.J.; Kietselaer, B.L.; Vermeer, C.; Meeder, J.G.; Rahel, B.M.; van Cauteren, Y.J.; Hoffland, G.A.; Rennenberg, R.J.; et al. Menaquinone-7 supplementation to reduce vascular calcification in patients with coronary artery disease: Rationale and study protocol (VitaK-CAC Trial). Nutrition 2015, 7, 8905–8915. [Google Scholar] [CrossRef]
- Lai, H.T.M.; de Oliveira Otto, M.C.; Lemaitre, R.N.; McKnight, B.; Song, X.; King, I.B.; Chaves, P.H.M.; Odden, M.C.; Newman, A.B.; Siscovick, D.S.; et al. Serial circulating omega 3 polyunsaturated fatty acids and healthy ageing among older adults in the Cardiovascular Health Study: Prospective cohort study. BMJ 2018, 363, k4067. [Google Scholar] [CrossRef]
- Defago, M.D.; Elorriaga, N.; Irazola, V.E.; Rubinstein, A.L. Influence of food patterns on endothelial biomarkers: A systematic review. J. Clin. Hypertens (Greenwich) 2014, 16, 907–913. [Google Scholar] [CrossRef]
- Grimble, R.F. Basics in clinical nutrition: Immunonutrition 2013; Nutrients which influence immunity: Effect and mechanism of action. E Spen Eur. E J. Clin. Nutr. Metab. 2009, 4, e10–e13. [Google Scholar] [CrossRef]
- Wischmeyer, P.E.; Carli, F.; Evans, D.C.; Guilbert, S.; Kozar, R.; Pryor, A.; Thiele, R.H.; Everett, S.; Grocott, M.; Gan, T.J.; et al. American society for enhanced recovery and perioperative quality initiative joint consensus statement on nutrition screening and therapy within a surgical enhanced recovery pathway. Anesth Analg. 2018, 126, 1883–1895. [Google Scholar] [CrossRef]
- Drover, J.W.; Dhaliwal, R.; Weitzel, L.; Wischmeyer, P.E.; Ochoa, J.B.; Heyland, D.K. Perioperative use of arginine-supplemented diets: A systematic review of the evidence. J. Am. Coll. Surg. 2011, 212, 385–399.e1. [Google Scholar] [CrossRef]
- Calder, P.C. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol. Nutr. Food Res. 2012, 56, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Uno, H.; Furukawa, K.; Suzuki, D.; Shimizu, H.; Ohtsuka, M.; Kato, A.; Yoshitomi, H.; Miyazaki, M. Immunonutrition suppresses acute inflammatory responses through modulation of resolvin E1 in patients undergoing major hepatobiliary resection. Surgery 2016, 160, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Norman, P.E.; Eikelboom, J.W.; Hankey, G.J. Peripheral arterial disease: Prognostic significance and prevention of atherothrombotic complications. Med. J. Aust. 2004, 181, 150–154. [Google Scholar]
- Dhaliwal, G.; Mukherjee, D. Peripheral arterial disease: Epidemiology, natural history, diagnosis and treatment. Int. J. Angiol. 2007, 16, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.; Group, T.I.W. Inter-Society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 2007, 45 (Suppl. S5), S5–S67. [Google Scholar] [CrossRef]
- Gattone, M.; Giannuzzi, P. Interventional strategies in early atherosclerosis. Monaldi Arch. Chest Dis. 2006, 66, 54–62. [Google Scholar] [CrossRef]
- Fenton, R.; Brook-Barclay, L.; Delaney, C.L.; Spark, J.I.; Miller, M.D. Do medications commonly prescribed to patients with peripheral arterial disease have an effect on nutritional status? A review of the literature. Ann. Vasc. Surg. 2016, 32, 145–175. [Google Scholar] [CrossRef]
- Booth, S.L.; Golly, I.; Sacheck, J.M.; Roubenoff, R.; Dallal, G.E.; Hamada, K.; Blumberg, J.B. Effect of vitamin E supplementation on vitamin K status in adults with normal coagulation status. Am. J. Clin. Nutr. 2004, 80, 143–148. [Google Scholar] [CrossRef]
- Hageman, D.; Fokkenrood, H.J.; Gommans, L.N.; van den Houten, M.M.; Teijink, J.A. Supervised exercise therapy versus home-based exercise therapy versus walking advice for intermittent claudication. Cochrane Database Syst. Rev. 2018, 4, CD005263. [Google Scholar] [CrossRef]
- Vun, S.V.; Miller, M.D.; Delaney, C.L.; Allan, R.B.; Spark, J.I. The effect of supervised exercise therapy for intermittent claudication on lower limb lean mass. J. Vasc. Surg. 2016, 64, 1763–1769. [Google Scholar] [CrossRef] [Green Version]
- Delaney, C.L.; Miller, M.D.; Chataway, T.K.; Spark, J.I. A randomised controlled trial of supervised exercise regimens and their impact on walking performance, skeletal muscle mass and calpain activity in patients with intermittent claudication. Eur. J. Vasc. Endovasc. Surg. 2014, 47, 304–310. [Google Scholar] [CrossRef]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Cole, J.A.; Smith, S.M.; Hart, N.; Cupples, M.E. Systematic review of the effect of diet and exercise lifestyle interventions in the secondary prevention of coronary heart disease. Cardiol. Res. Pr. 2011, 2011, 25. [Google Scholar] [CrossRef]
- Esmarck, B.; Andersen, J.L.; Olsen, S.; Richter, E.A.; Mizuno, M.; Kjaer, M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J. Physiol. 2001, 535, 301–311. [Google Scholar] [CrossRef]
- Miller, M.D.; Crotty, M.; Whitehead, C.; Bannerman, E.; Daniels, L.A. Nutritional supplementation and resistance training in nutritionally at risk older adults following lower limb fracture: A randomized controlled trial. Clin. Rehabil. 2006, 20, 311–323. [Google Scholar] [CrossRef]
- Fiatarone, M.A.; O’Neill, E.F.; Ryan, N.D.; Clements, K.M.; Solares, G.R.; Nelson, M.E.; Roberts, S.B.; Kehayias, J.J.; Lipsitz, L.A.; Evans, W.J. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 1994, 330, 1769–1775. [Google Scholar] [CrossRef]
- Gardner, A.W.; Montgomery, P.S.; Wang, M.; Chen, C.; Kuroki, M.; Kim, D.J.-K. Greater exercise pressor response is associated with impaired claudication outcomes in symptomatic peripheral artery disease. Angiology 2018, 70, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Delaney, C.L.; Miller, M.D.; Dickinson, K.M.; Spark, J.I. Change in dietary intake of adults with intermittent claudication undergoing a supervised exercise program and compared to matched controls. Nutr. J. 2014, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Pande, R.L.; Creager, M.A. Socioeconomic inequality and peripheral artery disease prevalence in US adults. Circ. Cardiovasc. Qual. Outcomes 2014, 7, 532–539. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Addison, O.; Prior, S.J.; Kundi, R.; Serra, M.C.; Katzel, L.I.; Gardner, A.W.; Ryan, A.S. Sarcopenia in peripheral arterial disease: Prevalence and effect on functional status. Arch. Phys. Med. Rehabil. 2018, 99, 623–628. [Google Scholar] [CrossRef]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, K.; Ishii, H.; Kikuchi, R.; Suzuki, S.; Aoki, T.; Harada, K.; Sumi, T.; Negishi, Y.; Shibata, Y.; Tatami, Y.; et al. Clinical impact of circulating irisin on classified coronary plaque characteristics. J. Appl. Lab. Med. 2018, 3, 79. [Google Scholar] [CrossRef]
- Kinlay, S. Management of critical limb ischemia. Circ. Cardiovasc. Interv. 2016, 9, e001946. [Google Scholar] [CrossRef] [PubMed]
- Jalkanen, J.; Maksimow, M.; Hollmén, M.; Jalkanen, S.; Hakovirta, H. Compared to intermittant claudication critical limb ischemia is associated with elevated levels of cytokines. PLoS ONE 2016, 11, e0162353. [Google Scholar] [CrossRef]
- Robinson, J.M.; Gallavin, L.; Gough, M.J.; Homer-Vanniasinkam, S.; Kester, R.C.; Scott, D.J.A.; Spark, J.I. Patients with chronic critical limb ischaemia have reduced total antioxidant capacity and impaired nutritional status. Eur. J. Vasc. Endovasc. Surg. 2002, 24, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Salomon du Mont, L.; Leclerc, B.; Morgant, M.C.; Besch, G.; Laubriet, A.; Steinmetz, E.; Rinckenbach, S. Impact of nutritional state on critical limb ischemia early outcomes (DENUCRITICC Study). Ann. Vasc. Surg. 2017, 45, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.W.; Montgomery, P.S. Resting energy expenditure in subjects with and without intermittent claudication. Metabolism 2009, 58, 1008–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, A.W.; Montgomery, P.S. Resting energy expenditure in patients with intermittent claudication and critical limb ischemia. J. Vasc. Surg. 2010, 51, 1436–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, C.W.; Yang, C.; Ndumele, C.E.; Folsom, A.R.; Heiss, G.; Black, J.H., III; Selvin, E.; Matsushita, K. Associations of obesity with incident hospitalization related to peripheral artery disease and critical limb ischemia in the ARIC Study. J. Am. Heart Assoc. 2018, 7, e008644. [Google Scholar] [CrossRef]
- Miller, M.D.; Delaney, C.; Penna, D.; Liang, L.; Thomas, J.M.; Puckridge, P.; Spark, J.I. A 3-year follow-up study of inpatients with lower limb ulcers: Evidence of an obesity paradox? J. Multidiscip. Healthc. 2013, 5, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, Y.; Matsumoto, T.; Aoyagi, Y.; Tanaka, S.; Okadome, J.; Morisaki, K.; Shirabe, K.; Maehara, Y. Sarcopenia is a prognostic factor for overall survival in patients with critical limb ischemia. J. Vasc. Surg. 2015, 61, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Sugai, T.; Watanabe, T.; Otaki, Y.; Goto, J.; Watanabe, K.; Toshima, T.; Takahashi, T.; Yokoyama, M.; Tamura, H.; Nishiyama, S.; et al. Decreased psoas muscle computed tomography value predicts poor outcome in peripheral artery disease. Circulation 2018, 82. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Klersy, C.; Rondanelli, M.; Caccialanza, R. Energy balance in patients with pressure ulcers: A systematic review and meta-analysis of observational studies. J. Am. Diet. Assoc. 2011, 111, 1868–1876. [Google Scholar] [CrossRef]
- Russell, L. The importance of patients’ nutritional status in wound healing. Br. J. Nurs. 2001, 10 (Suppl. S42), s44–s49. [Google Scholar] [CrossRef]
- Pompeo, M. Misconceptions about protein requirements for wound healing: Results of a prospective study. Ostomy Wound Manag. 2007, 53, 30–32, 34, 36–38. [Google Scholar]
- Posthauer, M.E.; Banks, M.; Dorner, B.; Schols, J.M. The role of nutrition for pressure ulcer management: National pressure ulcer advisory panel, European pressure ulcer advisory panel, and pan pacific pressure injury alliance white paper. Adv. Skin Wound Care. 2015, 28, 175–188, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Mirastschijski, U.; Martin, A.; Jorgensen, L.N.; Sampson, B.; Agren, M.S. Zinc, copper, and selenium tissue levels and their relation to subcutaneous abscess, minor surgery, and wound healing in humans. Biol. Trace Elem. Res. 2013, 153, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Chua, G.T.; Chan, Y.C.; Cheng, S.W. Vitamin D status and peripheral arterial disease: Evidence so far. Vasc. Health Risk Manag. 2011, 7, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Bruins, M.J.; Mugambi, G.; Verkaik-Kloosterman, J.; Hoekstra, J.; Kraemer, K.; Osendarp, S.; Melse-Boonstra, A.; Gallagher, A.M.; Verhagen, H. Addressing the risk of inadequate and excessive micronutrient intakes: Traditional versus new approaches to setting adequate and safe micronutrient levels in foods. Food Nutr. Res. 2015, 59, 26020. [Google Scholar] [CrossRef]
- Chi, W.K.; Tan, G.; Yan, B. Prognostic nutritional index as a predictor of prognosis in patients with critical limb ischemia who underwent endovascular revascularization therapy. J. Am. Coll. Cardiol. 2019, 73, 2064. [Google Scholar] [CrossRef]
- Molnar, J.A.; Underdown, M.J.; Clark, W.A. Nutrition and chronic wounds. Adv. Wound Care 2014, 3, 663–681. [Google Scholar] [CrossRef]
- Shah, P.K. Inflammation, neointimal hyperplasia, and restenosis: As the leukocytes roll, the arteries thicken. Circulation 2003, 107, 2175–2177. [Google Scholar] [CrossRef]
- Subbotin, V.M. Analysis of arterial intimal hyperplasia: Review and hypothesis. Biol. Med. Model. 2007, 4, 41. [Google Scholar] [CrossRef]
- Collins, M.J.; Li, X.; Lv, W.; Yang, C.; Protack, C.D.; Muto, A.; Jadlowiec, C.C.; Shu, C.; Dardik, A. Therapeutic strategies to combat neointimal hyperplasia in vascular grafts. Expert Rev. Cardiovasc. 2012, 10, 635–647. [Google Scholar] [CrossRef]
- Katsanos, K.; Spiliopoulos, S.; Kitrou, P.; Krokidis, M.; Karnabatidis, D. Risk of Death Following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2018, 7, e011245. [Google Scholar] [CrossRef]
- Sato, T.; Iwasaki, Y.; Kikkawa, Y.; Fukagawa, M. An Efficacy of intensive Vitamin D delivery to neointimal hyperplasia in recurrent vascular access stenosis. J. Vac. Access. 2015, 17, 72–77. [Google Scholar] [CrossRef]
- Koga, T.; Kwan, P.; Zubik, L.; Ameho, C.; Smith, D.; Meydani, M. Vitamin E supplementation suppresses macrophage accumulation and endothelial cell expression of adhesion molecules in the aorta of hypercholesterolemic rabbits. Atherosclerosis 2004, 176, 265–272. [Google Scholar] [CrossRef]
- Gupta, G.K.; Agrawal, T.; Rai, V.; Del Core, M.G.; Hunter, W.J., 3rd; Agrawal, D.K. Vitamin D supplementation reduces intimal hyperplasia and restenosis following coronary intervention in atherosclerotic swine. PLoS ONE 2016, 11, e0156857. [Google Scholar] [CrossRef]
- Kakade, S.; Mani, G. A comparative study of the effects of vitamin C, sirolimus, and paclitaxel on the growth of endothelial and smooth muscle cells for cardiovascular medical device applications. Drug Des. Dev. 2013, 7, 529–544. [Google Scholar] [CrossRef]
- Li, X.; Ballantyne, L.L.; Che, X.; Mewburn, J.D.; Kang, J.X.; Barkley, R.M.; Murphy, R.C.; Yu, Y.; Funk, C.D. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J. Am. Heart Assoc. 2015, 4. [Google Scholar] [CrossRef]
- Rittgers, S.E.; Karayannacos, P.E.; Guy, J.F.; Nerem, R.M.; Shaw, G.M.; Hostetler, J.R.; Vasko, J.S. Velocity distribution and intimal proliferation in autologous vein grafts in dogs. Circ. Res. 1978, 42, 792–801. [Google Scholar] [CrossRef]
Lifestyle | |
Avoid tobacco use | |
Regular physical activity | |
Minimum of 30 min moderate intensity physical activity at least 5 days/week | |
Diet | |
Fats | |
Limit saturated fats to <7% of daily caloric intake | |
Replace saturated fats with unsaturated fats (eg., omega-3 fatty acids) | |
At least two fish meals per week | |
Use olive oil for cooking | |
High unsaturated fat content and the anti-oxidant hydroxytyrosol | |
Consume low-fat dairy products | |
Limit red meat to one meal per week | |
Replace with beans or legumes | |
Calories | |
Limit sugar consumption (food and drink) | |
Avoid excessive caloric intake from any source | |
Sodium | |
Limit intake to 1.7 g per day | |
Fruit, Vegetables and Wholegrains | |
Five serves of vegetables, two serves of fruit, four serves of wholegrain per day | |
Ensures satisfactory daily fibre, vitamin and mineral intake | |
Consume wholegrain in preference to white or refined grain products | |
Anti-oxidants | |
1–2 cups of green tea daily | |
Fruit and vegetable intake as above |
Assessment | |
Given the high prevalence of malnutrition in PAD, all patients (inpatients or outpatients) with a diagnosis of PAD should undergo a formal dietitian assessment to determine nutritional status/requirements | |
Anthropometry | |
BMI, recent history of unintentional weight loss | |
Routine nutritional biochemistry | |
haemoglobin, iron studies, albumin and total protein, lipid profile, C-reactive protein and white cell count, glycated haemoglobin (HbA1c), electrolytes and creatinine | |
Micronutrient/Trace element screen | |
Vitamins A, C, D, E, Vitamin B12 and folate, Zinc | |
Clinical assessment | |
Stage of PAD (Asymptomatic, intermittent claudication or critical limb ischaemia) | |
Peri-operative state or conservative management | |
Potential drug:nutrient interactions | |
Dietary assessment | |
Does protein/energy intake match the estimated requirement? | |
Adjust requirement if hypermetabolic state | |
Variable adjustment depending on presence/size of ulceration; peri-operative state (magnitude of surgery performed); active infection | |
Intervention | |
Education/counselling/dietary recommendations to reduce risk of disease progression (see Table 1) and allow improved blood-glucose level control | |
Tailor supplementation to meet the needs of individual patients | |
Protein/Energy | |
Micronutrients/Trace elements | |
Monitoring | |
Routine re-assessment of patients to identify a change in clinical state and associated nutritional requirements |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delaney, C.L.; Smale, M.K.; Miller, M.D. Nutritional Considerations for Peripheral Arterial Disease: A Narrative Review. Nutrients 2019, 11, 1219. https://doi.org/10.3390/nu11061219
Delaney CL, Smale MK, Miller MD. Nutritional Considerations for Peripheral Arterial Disease: A Narrative Review. Nutrients. 2019; 11(6):1219. https://doi.org/10.3390/nu11061219
Chicago/Turabian StyleDelaney, Christopher L., Matilda K. Smale, and Michelle D. Miller. 2019. "Nutritional Considerations for Peripheral Arterial Disease: A Narrative Review" Nutrients 11, no. 6: 1219. https://doi.org/10.3390/nu11061219
APA StyleDelaney, C. L., Smale, M. K., & Miller, M. D. (2019). Nutritional Considerations for Peripheral Arterial Disease: A Narrative Review. Nutrients, 11(6), 1219. https://doi.org/10.3390/nu11061219