The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Maternal and Infant Measurements
2.3. Sample Collection and DNA Methylation Analysis
2.4. Statistical Analysis
3. Results
3.1. Description of the Study Population
3.2. Duration of Breastfeeding and Anthropometric Measurements
3.3. Impact of Breastfeeding on Infant Buccal DNA Methylation
3.4. Anthropometric Measurements and Buccal DNA Methylation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
IARC Disclaimer
References
- Mameli, C.; Mazzantini, S.; Zuccotti, G.V. Nutrition in the First 1000 Days: The Origin of Childhood Obesity. Int. J. Environ. Res. Public Health 2016, 13, 838. [Google Scholar] [CrossRef] [PubMed]
- Woo Baidal, J.A.; Locks, L.M.; Cheng, E.R.; Blake-Lamb, T.L.; Perkins, M.E.; Taveras, E.M. Risk Factors for Childhood Obesity in the First 1000 Days: A Systematic Review. Am. J. Prev. Med. 2016, 50, 761–779. [Google Scholar] [CrossRef]
- Kramer, M.S.; Kakuma, R. The optimal duration of exclusive breastfeeding: A systematic review. Adv. Exp. Med. Biol. 2004, 554, 63–77. [Google Scholar] [PubMed]
- Beyerlein, A.; von Kries, R. Breastfeeding and body composition in children: Will there ever be conclusive empirical evidence for a protective effect against overweight? Am. J. Clin. Nutr. 2011, 94 (Suppl. 6), 1772S–1775S. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Cuppari, C.; Salpietro, V.; Filippelli, M.; Trovato, A.; Gitto, E.; Salpietro, C.; Arrigo, T. Obesity and breastfeeding: The strength of association. Women Birth 2015, 28, 81–86. [Google Scholar] [CrossRef]
- Koletzko, B. Early nutrition and its later consequences: New opportunities. Adv. Exp. Med. Biol. 2005, 569, 1–12. [Google Scholar] [PubMed]
- Koletzko, B.; Von Kries, R.; Monasterolo, R.C.; Subías, J.E.; Scaglioni, S.; Giovannini, M.; Beyer, J.; Demmelmair, H.; Anton, B.; Gruszfeld, D.; et al. Infant feeding and later obesity risk. Adv. Exp. Med. Biol. 2009, 646, 15–29. [Google Scholar]
- Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic effects of human breast milk. Nutrients 2014, 6, 1711–1724. [Google Scholar] [CrossRef]
- Obermann-Borst, S.A.; Eilers, P.H.; Tobi, E.W.; de Jong, F.H.; Slagboom, P.E.; Heijmans, B.T.; Steegers-Theunissen, R.P. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr. Res. 2013, 74, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Loret de Mola, C.; Davies, N.M.; Victora, C.G.; Relton, C.L. Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PLoS ONE 2017, 12, e0173070. [Google Scholar]
- Pauwels, S.; Duca, R.; Devlieger, R.; Freson, K.; Straetmans, D.; Van Herck, E.; Huybrechts, I.; Koppen, G.; Godderis, L. Maternal Methyl-Group Donor Intake and Global DNA (Hydroxy)Methylation before and during Pregnancy. Nutrients 2016, 8, 474. [Google Scholar] [CrossRef]
- Roelants, M.; Hauspie, R.; Hoppenbrouwers, K. References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann. Hum. Biol. 2009, 36, 680–694. [Google Scholar] [CrossRef] [PubMed]
- The optimal duration of exclusive breastfeeding: Results of a WHO systematic review. Indian Pediatr. 2001, 38, 565–567.
- Murphy, S.K.; Huang, Z.; Hoyo, C. Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues. PLoS ONE 2012, 7, e40924. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, S.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.; Koppen, G.; Devlieger, R.; Godderis, L. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin. Epigenet. 2017, 9, 16. [Google Scholar] [CrossRef]
- WHO. Body Mass Index. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 24 May 2019).
- Godfrey, K.M.; Sheppard, A.; Gluckman, P.D.; Lillycrop, K.A.; Burdge, G.C.; McLean, C.; Rodford, J.; Slater-Jefferies, J.L.; Garratt, E.; Crozier, S.R.; et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011, 60, 1528–1534. [Google Scholar] [CrossRef]
- Yang, Z.; Huffman, S.L. Nutrition in pregnancy and early childhood and associations with obesity in developing countries. Matern. Child Nutr. 2013, 9 (Suppl. 1), 105–119. [Google Scholar] [CrossRef]
- Baird, J.; Fisher, D.; Lucas, P.; Kleijnen, J.; Roberts, H.; Law, C. Being big or growing fast: Systematic review of size and growth in infancy and later obesity. BMJ 2005, 331, 929. [Google Scholar] [CrossRef]
- Singhal, A. Does weight gain in infancy influence the later risk of obesity? J. Pediatr. Gastroenterol. Nutr. 2010, 51 (Suppl. 3), S119–S120. [Google Scholar] [CrossRef]
- Temples, H.S.; Willoughby, D.; Holaday, B.; Rogers, C.R.; Wueste, D.; Bridges, W.; Saffery, R.; Craig, J.M. Breastfeeding and Growth of Children in the Peri/postnatal Epigenetic Twins Study (PETS): Theoretical Epigenetic Mechanisms. J. Hum. Lact. 2016, 32, 481–488. [Google Scholar] [CrossRef]
- Koletzko, B.; Broekaert, I.; Demmelmair, H.; Franke, J.; Hannibal, I.; Oberle, D.; Schiess, S.; Baumann, B.T.; Verwied-Jorky, S. Protein intake in the first year of life: A risk factor for later obesity? The E.U. childhood obesity project. Adv. Exp. Med. Biol. 2005, 569, 69–79. [Google Scholar] [PubMed]
- Ilcol, Y.O.; Hizli, Z.B.; Ozkan, T. Leptin concentration in breast milk and its relationship to duration of lactation and hormonal status. Int. Breastfeed. J. 2006, 1, 21. [Google Scholar] [CrossRef] [PubMed]
- Vickers, M.H.; Sloboda, D.M. Leptin as mediator of the effects of developmental programming. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Bouret, S.G. Neurodevelopmental actions of leptin. Brain Res. 2010, 1350, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melzner, I.; Scott, V.; Dorsch, K.; Fischer, P.; Wabitsch, M.; Brüderlein, S.; Hasel, C.; Möller, P. Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. J. Biol. Chem. 2002, 277, 45420–45427. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.J.; Nicolson, M. Leptin levels and body fatness in children: Effects of gender, ethnicity, and sexual development. Pediatr. Res. 1997, 42, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Spector, T.D.; Deloukas, P.; Bell, J.T.; Engelhardt, B.E. Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol. 2015, 16, 14. [Google Scholar] [CrossRef]
- Vidović, A.; Juras, D.V.; Boras, V.V.; Lukač, J.; Grubišić-Ilić, M.; Rak, D.; Sabioncello, A. Determination of leucocyte subsets in human saliva by flow cytometry. Arch. Oral Biol. 2012, 57, 577–583. [Google Scholar] [CrossRef]
- Lowe, R.; Gemma, C.; Beyan, H.; Hawa, M.I.; Bazeos, A.; Leslie, R.D.; Montpetit, A.; Rakyan, V.K.; Ramagopalan, S.V. Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics 2013, 8, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Langie, S.A.; Moisse, M.; Declerck, K.; Koppen, G.; Godderis, L.; Vanden Berghe, W.; Drury, S.; De Boever, P. Salivary DNA Methylation Profiling: Aspects to Consider for Biomarker Identification. Basic Clin. Pharmacol. Toxicol. 2017, 121 (Suppl. 3), 93–101. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.; Yew, S.S.Y.; Devenish, G.; Ha, D.; Do, L.; Scott, J. Duration of Breastfeeding, but Not Timing of Solid Food, Reduces the Risk of Overweight and Obesity in Children Aged 24 to 36 Months: Findings from an Australian Cohort Study. Int. J. Environ. Res. Public Health 2018, 15, 599. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean (SD) | Range |
---|---|---|
Mother | ||
Maternal age (y) | 30.76 (3.65) | 24–41 |
Pre-pregnancy BMI (kg/m2) | 23.00 (3.25) | 17.93–32.95 |
Gestational weight gain (kg) | 14.49 (4.05) | 7–28.9 |
Infant (1-year-old) | ||
Weight (g) | 9877.23 (1089.37) | 7980–13 200 |
Length (cm) | 75.20 (2.53) | 71–82.5 |
Age (months) | 12.20 (0.35) | 11.56–13.23 |
Weight z-score * | 0.08 (0.97) | −2.24–2.60 |
BMI-for-age z-score * | 0.39 (1.02) | −1.71–3.14 |
Weight-for-length z-score * | 0.37 (1) | −1.75–2.98 |
Conditional growth z-score * | −0.04 (0.89) | −2.68–2.45 |
% | N | |
Pre-pregnancy BMI (kg/m2) ** | ||
Underweight (<18.5) | 3.0 | 3 |
Normal weight (18.5–24.9) | 71.3 | 72 |
Overweight (25.0–29.9) | 22.8 | 23 |
Obese (>30.0) | 3.0 | 3 |
Maternal smoking (yes) | ||
During pregnancy/breastfeeding | 4 | 4 |
Type of Delivery | ||
Vaginal | 75.2 | 76 |
Caesarean section | 24.8 | 25 |
Gender | ||
Boy | 57.4 | 58 |
Girl | 42.6 | 43 |
Duration of Breastfeeding | N | % |
---|---|---|
No breastfeeding | 5 | 5.0 |
≤1–3 months | 31 | 30.7 |
4–6 months | 29 | 28.7 |
7–9 months | 19 | 18.8 |
10–12 months | 17 | 16.8 |
Infant Characteristics 1 Year PP | Duration of Breastfeeding | p-Value | |
---|---|---|---|
<6 Months (n = 61) Mean (SD) | ≥6 Months (n = 40) Mean (SD) | ||
Age (months) | 12.20 (0.33) | 12.19 (0.39) | 0.79 |
Length (cm) | 75.35 (2.37) | 74.96 (2.77) | 0.45 |
Weight (g) | 9827.87 (996.84) | 9952.5 (1226.6) | 0.58 |
Weight z-score * | 0.07 (0.91) | 0.1 (1.06) | 0.88 |
BMI z-score * | 0.30 (1.02) | 0.52 (1.01) | 0.28 |
Weight-for-length z-score * | 0.29 (1) | 0.49 (1) | 0.35 |
Conditional growth z-score * | −0.06 (0.75) | −0.02 (1.1) | 0.84 |
Weight (z-Score) | Weight for Length (z-Score) | BMI for Age (z-Score) | |
---|---|---|---|
Duration of Breastfeeding | |||
No breastfeeding | 0.532 | 0.610 | 0.612 |
≤1–3 months | −0.146 | −0.032 | −0.057 |
4–6 months | 0.323 | 0.706 | 0.752 |
7–9 months | 0.191 | 0.631 | 0.668 |
10–12 months | −0.549 | −0.207 | −0.180 |
Overall p-value = 0.03 | Overall p-value = 0.005 | Overall p-value = 0.003 |
Gene CpG site | RXRA | LEP | IGF2 | DNMT | |||||
---|---|---|---|---|---|---|---|---|---|
CpG1 † | CpG2 † | CpG † | CpG4 † | CpG5 † | All CpG Sites * | All CpG Sites * | All CpG Sites * | ||
Duration of breastfeeding (months) | Β (95% CI) p-value | −0.012 (−0.125, 0.101) 0.83 | 0.217 (0.103, 0.330) <0.001 | 0.058 (−0.056, 0.173) 0.32 | −0.005 (−0.118, 0.108) 0.93 | 0.03 (−0.083, 0.144) 0.60 | 0.060 (−0.073, 0.193) 0.37 | 0.229 (−0.050, 0.509) 0.12 | −0.041 (−0.085, 0.003) 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauwels, S.; Symons, L.; Vanautgaerden, E.-L.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; et al. The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients 2019, 11, 1408. https://doi.org/10.3390/nu11061408
Pauwels S, Symons L, Vanautgaerden E-L, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, Langie SAS, Koppen G, et al. The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients. 2019; 11(6):1408. https://doi.org/10.3390/nu11061408
Chicago/Turabian StylePauwels, Sara, Lin Symons, Eva-Lynn Vanautgaerden, Manosij Ghosh, Radu Corneliu Duca, Bram Bekaert, Kathleen Freson, Inge Huybrechts, Sabine A. S. Langie, Gudrun Koppen, and et al. 2019. "The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome" Nutrients 11, no. 6: 1408. https://doi.org/10.3390/nu11061408
APA StylePauwels, S., Symons, L., Vanautgaerden, E. -L., Ghosh, M., Duca, R. C., Bekaert, B., Freson, K., Huybrechts, I., Langie, S. A. S., Koppen, G., Devlieger, R., & Godderis, L. (2019). The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients, 11(6), 1408. https://doi.org/10.3390/nu11061408