Calcium Intake and Health
Abstract
:1. Introduction
2. Sources of Calcium
3. Calcium Recommendations
4. Global Calcium Intake. Inequities
5. Calcium and Blood Pressure
6. Calcium Intake and Effect on Blood Pressure
7. Calcium Intake during Pregnancy and the Effects on the Offspring
8. Other Effects of Calcium Intake on Health
8.1. Cholesterol
8.2. Bone Health
8.3. Recurrent Colorectal Adenomas
9. Calcium Supplementation Concerns
9.1. Supplements and Renal Stones
9.2. Calcium Supplements and Myocardial Infarction
9.3. Calcium Supplements and Iron Absorption
9.4. Calcium Intake and Maternal Bone Post-Partum Resorption
10. Calcium Intake and Drug Interactions
11. Discussion
12. Conclusions
Author Contributions
Conflicts of Interest
References
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Belizan, J.M.; Villar, J. The relationship between calcium intake and edema-, proteinuria-, and hypertension-gestosis: An hypothesis. Am. J. Clin. Nutr. 1980, 33, 2202–2210. [Google Scholar] [CrossRef] [PubMed]
- Bressani, R.; Turcios, J.C.; de Ruiz, A.S.C. Nixtamalization Effects on the Contents of Phytic Acid, Calcium, Iron and Zinc in the Whole Grain, Endosperm and Germ of Maize. Food Sci. Technol. Int. 2002, 8, 81–86. [Google Scholar] [CrossRef]
- US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28 (Slightly Revised). Version Current: May 2016. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 12 July 2019).
- Silanikove, N.; Leitner, G.; Merin, U. The interrelationships between lactose intolerance and the modern dairy industry: Global perspectives in evolutional and historical backgrounds. Nutrients 2015, 7, 7312–7331. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intakes. Recommended Dietary Allowances and Adequate Intakes, Element. Available online: http://nationalacademies.org/hmd/~/media/Files/Report%20Files/2019/DRI-Tables-2019/2_RDAAIVVE.pdf?la=en (accessed on 11 July 2019).
- Huang, F.; Wang, Z.; Zhang, J.; Du, W.; Su, C.; Jiang, H.; Jia, X.; Ouyang, Y.; Wang, Y.; Li, L.; et al. Dietary calcium intake and food sources among Chinese adults in CNTCS. PLoS ONE 2018, 13, e0205045. [Google Scholar] [CrossRef] [PubMed]
- Willemse, J.P.M.M.; Meertens, L.J.E.; Scheepers, H.C.J.; Achten, N.M.J.; Eussen, S.J.; van Dongen, M.C.; Smits, L.J.M. Calcium intake from diet and supplement use during early pregnancy: The Expect study I. Eur. J. Nutr. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Dodd, K.W.; Goldman, J.A.; Gahche, J.J.; Dwyer, J.T.; Moshfegh, A.J.; Sempos, C.T.; Picciano, M.F. Estimation of Total Usual Calcium and Vitamin D Intakes in the United States. J. Nutr. 2010, 140, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Salud de la Nación. Encuesta Nacional de Nutrición y Salud; 2007. Presidencia de la Nación. Available online: http://www.extensioncbc.com.ar/wp-content/uploads/ENNyS-2007.pdf (accessed on 11 July 2019).
- Cormick, G.; Zhang, N.N.; Andrade, S.P.; Quiroga, M.J.; Di Marco, I.; Porta, A.; Althabe, F.; Belizán, J.M. Gaps between calcium recommendations to prevent pre-eclampsia and current intakes in one hospital in Argentina. BMC Res. Notes 2014, 7, 920. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Absorbability and utility of calcium in mineral waters. Am. J. Clin. Nutr. 2006, 84, 371–374. [Google Scholar] [CrossRef]
- FAO; WHO. Human Vitamin and Mineral Requirements; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2001. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and A (NDA). Scientific Opinion on principles for deriving and applying Dietary Reference Values. EFSA J. 2010, 8, 1–30. [Google Scholar] [CrossRef]
- Wiseman, M. The COMA Report: Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Br. Food J. 1992, 94, 7–9. [Google Scholar] [CrossRef]
- Chung, M.; Balk, E.M.; Lau, J.; Lee, J.; Lichtenstein, A.; Patel, K.; Raman, G.; Tatsioni, A.; Brendel, M.; Ip, S.; et al. Vitamin D and calcium: A systematic review of health outcomes. Evid. Rep. Technol Assess. (Full Rep.) 2009, 183, 1–420. [Google Scholar] [CrossRef]
- World Health Organization. 10. Selenium. In Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Office for Official Publications of the European Communities. Nutrient and Energy Intakes for the European Community. Reports of the Scientific Committee for Food (31st Series); European Commission: Luxembourg, 1993. [Google Scholar]
- German Nutrition Society. New reference values for Vitamin, D. Ann. Nutr Metab. 2012, 60, 241–246. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline: Calcium Supplementation in Pregnant Women; WHO: Geneva, Switzerland, 2013. [Google Scholar] [CrossRef]
- WHO. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience. Ultrasound Obstet. Gynecol. 2013. [Google Scholar] [CrossRef]
- Food And Nutrition Board, Institue of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Bethesda, MD, USA, 1997. [Google Scholar]
- Merialdi, M.; Mathai, M.; Ngoc, N.T.N.; Purwar, M.; Campodonico, L.; Abdel-Aleem, H.; Hofmeyr, G.J.; Rojas, M.X.; Perez-Cuevas, R.; Joseph, G.; et al. World Health Organization systematic review of the literature and multinational nutritional survey of calcium intake during pregnancy. Fetal Matern. Med. Rev. 2005, 16, 97–121. [Google Scholar] [CrossRef]
- Cormick, G.; Betrán, A.P.; Romero, I.B.; Lombardo, C.F.; Gülmezoglu, A.M.; Ciapponi, A.; Belizán, J.M. Global inequities in dietary calcium intake during pregnancy: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 444–456. [Google Scholar] [CrossRef]
- Lee, S.E.; Talegawkar, S.A.; Merialdi, M.; Caulfield, L.E. Dietary intakes of women during pregnancy in low- and middle-income countries. Public Health Nutr. 2013, 16, 1340–1353. [Google Scholar] [CrossRef] [PubMed]
- Kumssa, D.B.; Joy, E.J.M.; Ander, E.L.; Watts, M.J.; Young, S.D.; Walker, S.; Broadley, M.R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Balk, E.M.; Adam, G.P.; Langberg, V.N.; Earley, A.; Clark, P.; Ebeling, P.R.; Mithal, A.; Rizzoli, R.; Zerbini, C.A.F.; Pierroz, D.D.; et al. Global dietary calcium intake among adults: A systematic review. Osteoporos. Int. 2017, 28, 3315–3324. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Overview of Calcium. In Dietary Reference Intakes Calcium and Vitamin D; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Bauer, D.C. Calcium Supplements and Fracture Prevention. N. Engl. J. Med. 2013, 370, 387–388. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Belizan, J.M.; Fischer, P.J. Epidemiologic observations on the relationship between calcium intake and eclampsia. Int. J. Gynecol. Obstet. 1983, 21, 271–278. [Google Scholar] [CrossRef]
- Kožíšek, F. Health Significance of Drinking Water Calcium and Magnesium. Available online: http://www.szu.cz/uploads/documents/chzp/voda/pdf/hardness.pdf (accessed on 11 July 2019).
- Catling, L.A.; Abubakar, I.; Lake, I.R.; Swift, L.; Hunter, P.R. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness. J. Water Health 2008, 6, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leoni, V.; Fabiani, L.; Ticchiarelli, L. Water hardness and cardiovascular mortality rate in abruzzo, Italy. Arch. Environ. Health 1985, 40, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.P. Calcium and Magnesium in Drinking-water: Public Health Significance. Int. J. Environ. Stud. 2010, 67, 612–613. [Google Scholar] [CrossRef]
- Masironi, R.; Miesch, A.T.; Crawford, M.D.; Hamilton, E.I. Geochemical environments, trace elements, and cardiovascular diseases. Bull. World Health Organ. 1972, 47, 139–150. [Google Scholar] [PubMed]
- Belizan, J.M.; Pineda, O.; Sainz, E.; Menendez, L.A.; Villar, J. Rise of blood pressure in calcium-deprived pregnant rats. Am. J. Obstet. Gynecol. 1981, 141, 163–169. [Google Scholar] [CrossRef]
- Belizan, J.M.; Villar, J.; Pineda, O.; Gonzalez, A.E.; Sainz, E.; Garrera, G.; Sibrian, R. Reduction of Blood Pressure with Calcium Supplementation in Young Adults. JAMA J. Am. Med. Assoc. 1983, 249, 1161–1165. [Google Scholar] [CrossRef]
- Yuasa, S.; Sumikura, T.; Yura, T.; Takahashi, N.; Shoji, T.; Uchida, K.; Fujioka, H.; Miki, S.; Matsuo, H.; Takamitsu, Y. Effect of low dietary calcium intake on blood pressure and pressure natriuresis response in rats: A possible role of the renin-angiotensin system. Blood Press. 1996, 5, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Baksi, S.N.; Abhold, R.H.; Speth, R.C. Low-calcium diet increases blood pressure and alters peripheral but not central angiotensin ii binding sites in rats. J. Hypertens. 1989, 7, 423–427. [Google Scholar] [CrossRef]
- Arvola, P.; Ruskoaho, H.; Pörsti, I. Effects of high calcium diet on arterial smooth muscle function and electrolyte balance in mineralocorticoid-salt hypertensive rats. Br. J. Pharmacol. 1993, 108, 948–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatton, D.C.; Scrogin, K.E.; Levine, D.; Feller, D.; McCarron, D.A. Dietary calcium modulates blood pressure through alpha 1-adrenergic receptors. Am. J. Physiol. Physiol. 2017, 264, 234–238. [Google Scholar] [CrossRef] [PubMed]
- McCarron, D.A. Blood pressure and calcium balance in the Wistar-Kyoto rat. Life Sci. 1982, 30, 683–689. [Google Scholar] [CrossRef]
- Furspan, P.B.; Rinaldi, G.J.; Hoffman, K.; Bohr, D.F. Dietary calcium and cell membrane abnormality in genetic hypertension. Hypertension 1989, 13, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizán, J.M. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst. Rev. 2015, 6, CD010037. [Google Scholar] [CrossRef] [PubMed]
- van Mierlo, L.A.J.; Arends, L.R.; Streppel, M.T.; Zeegers, M.P.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Blood pressure response to calcium supplementation: A meta-analysis of randomized controlled trials. J. Hum. Hypertens. 2006, 20, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, H.O.; Nicolson, D.; Cook, J.V.; Campbell, F.; Beyer, F.R.; Ford, G.A.; Mason, J. Calcium supplementation for the management of primary hypertension in adults. Cochrane Database Syst. Rev. 1996, 2, 5–12. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, Á.N.; Duley, L.; Torloni, M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev. 2014, 6, CD001059. [Google Scholar] [CrossRef] [PubMed]
- Hofmeyr, G.J.; Betrán, A.P.; Singata-Madliki, M.; Cormick, G.; Munjanja, S.P.; Fawcus, S.; Mose, S.; Hall, D.; Ciganda, A.; Seuc, A.H.; et al. Prepregnancy and early pregnancy calcium supplementation among women at high risk of pre-eclampsia: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 330–339. [Google Scholar] [CrossRef]
- Fardella, C.; Rodriguez-Portales, J.A. Intracellular calcium and blood pressure: Comparison between primary hyperparathyroidism and essential hypertension. J. Endocrinol. Invest. 1995, 18, 827–832. [Google Scholar] [CrossRef]
- Yim, H.E.; Yoo, K.H. Renin-angiotensin system—Considerations for hypertension and kidney. Electrolytes Blood Press. 2008, 6, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Calcium intake and disease prevention. Arq. Bras. Endocrinol. Metabol. 2006, 50. [Google Scholar] [CrossRef]
- Belizan, J.M.; Villar, J.; Self, S.; Pineda, O.; González, I.; Sainz, E. The mediating role of the parathyroid gland in the effect of low calcium intake on blood pressure in the rat. Arch. Latinoam. Nutr. 1984, 34, 666–675. [Google Scholar] [PubMed]
- Villa-Etchegoyen, C.; Lombarte, M.; Matamoros, N.; Belizán, J.M.; Cormick, G. Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients 2019, 11, 1112. [Google Scholar] [CrossRef] [PubMed]
- Belizan, J.M.; Villar, J.; Bergel, E.; del Pino, A.; Di Fulvio, S.; Galliano, S.V.; Kattan, C. Long term effect of calcium supplementation during pregnancy on the blood pressure of offspring: Follow up of a randomised controlled trial. BMJ 2011, 315, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Ames, R.; Mason, B.; Bolland, M.J.; Bacon, C.J.; Reid, H.E.; Kyle, C.; Gamble, G.D.; Grey, A.; Horne, A. Effects of calcium supplementation on lipids, blood pressure, and body composition in healthy older men: A randomized controlled trial. Am. J. Clin. Nutr. 2010, 91, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Bergel, E.; Barros, A.J.D. Effect of maternal calcium intake during pregnancy on children’s blood pressure: A systematic review of the literature. BMC Pediatr. 2007, 7, 15. [Google Scholar] [CrossRef]
- Bergel, E.; Belizán, J.M. A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. BJOG Int. J. Obstet. Gynaecol. 2002, 109, 540–545. [Google Scholar] [CrossRef]
- Bergel, E.; Gibbons, L.; Rasines, M.G.; Luetich, A.; Belizán, J.M. Maternal calcium supplementation during pregnancy and dental caries of children at 12 years of age: Follow-up of a randomized controlled trial. Acta Obstet. Gynecol. Scand. 2010, 89, 1396–1402. [Google Scholar] [CrossRef]
- Omotayo, M.O.; Martin, S.L.; Stoltzfus, R.J.; Ortolano, S.E.; Mwanga, E.; Dickin, K.L. With adaptation, the WHO guidelines on calcium supplementation for prevention of pre-eclampsia are adopted by pregnant women. Matern. Child. Nutr. 2018, 14, e12521. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; Perry, R.; Zhang, J.; Ernst, E. Efficacy of calcium supplementation for management of overweight and obesity: Systematic review of randomized clinical trials. Nutr. Rev. 2011, 69, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ge, S.; Li, S.; Wu, L.; Liu, T.; Li, C. The Effects of Dietary Calcium Supplements Alone or with Vitamin D on Cholesterol Metabolism: A Meta-Analysis of Randomized Controlled Trials. J. Cardiovasc. Nurs. 2017, 32, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Vinarova, L.; Vinarov, Z.; Tcholakova, S.; Denkov, N.D.; Stoyanov, S.; Lips, A. The mechanism of lowering cholesterol absorption by calcium studied by using an in vitro digestion model. Food Funct. 2016, 7, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Winzenberg, T.; Shaw, K.; Fryer, J.; Jones, G. Effects of calcium supplementation on bone density in healthy children: Meta-analysis of randomised controlled trials. Br. Med. J. 2006, 333, 775. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
- Moyer, V.A. Vitamin D and calcium supplementation to prevent fractures in adults: U.S. preventive services task Force recommendation statement. Ann. Intern. Med. 2013, 158, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Alexander, D.D.; Boushey, C.J.; Dawson-Hughes, B.; Lappe, J.M.; LeBoff, M.S.; Liu, S.; Looker, A.C.; Wallace, T.C.; Wang, D.D. Calcium plus vitamin D supplementation and risk of fractures: An updated meta-analysis from the National Osteoporosis Foundation. Osteoporos. Int. 2016, 27, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Bonovas, S.; Fiorino, G.; Lytras, T.; Malesci, A.; Danese, S. Calcium supplementation for the prevention of colorectal adenomas: A systematic review and meta-analysis of randomized controlled trials. World J. Gastroenterol. 2016, 22, 4594–4603. [Google Scholar] [CrossRef] [PubMed]
- Newmark, H.L.; Wargovich, M.J.; Bruce, W.R. Colon cancer and dietary fat, phosphate, and calcium: A hypothesis. J. Natl. Cancer Inst. 1984, 72, 1323–1325. [Google Scholar] [CrossRef]
- Pence, B.C.; Buddingh, F. Inhibition of dietary fat-promoted colon carcinogenesis in rats by supplemental calcium or vitamin D3. Carcinogenesis 1988, 9, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Pence, B.C. Role of calcium in colon cancer prevention: Experimental and clinical studies. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1993, 290, 87–95. [Google Scholar] [CrossRef]
- Jackson, R.D.; Lacroix, A.Z.; Gass, M. Calcium plus vitamin D supplementation and the risk of fractures: Commentary. Obstet. Gynecol. Surv. 2006. [Google Scholar] [CrossRef]
- Heaney, R.P. Calcium Supplementation and Incident Kidney Stone Risk: A Systematic Review. J. Am. Coll. Nutr. 2008, 27, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Bhutta, Z.A. Effects of calcium supplementation during pregnancy on maternal, fetal and birth outcomes. Paediatr. Perinat. Epidemiol. 2012, 1, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, M.D.; Eisner, B.H.; Stone, K.L.; Kahn, A.J.; Lui, L.Y.; Sadetsky, N.; Stoller, M.L. Impact of calcium intake and intestinal calcium absorption on kidney stones in older women: The study of osteoporotic fractures. J. Urol. 2012, 187, 1287–1292. [Google Scholar] [CrossRef]
- Prezioso, D.; Strazzullo, P.; Lotti, T.; Bianchi, G.; Borghi, L.; Caione, P.; Carini, M.; Caudarella, R.; Ferraro, M.; Gambaro, G.; et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch. Ital. Urol. Androl. 2015, 87, 105–120. [Google Scholar] [CrossRef]
- Sorensen, M.D. Calcium intake and urinary stone disease. Trans. Androl. Urol. 2014, 3, 235–240. [Google Scholar] [CrossRef]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ. 2011, 342, d2040. [Google Scholar] [CrossRef]
- Lewis, J.R.; Radavelli-Bagatini, S.; Rejnmark, L.; Chen, J.S.; Simpson, J.M.; Lappe, J.M.; Mosekilde, L.; Prentice, R.L.; Prince, R.L. The effects of calcium supplementation on verified coronary heart disease hospitalization and death in postmenopausal women: A collaborative meta-Analysis of randomized controlled trials. J. Bone Miner. Res. 2015. [Google Scholar] [CrossRef]
- Lewis, J.R.; Zhu, K.; Prince, R.L. Adverse events from calcium supplementation: Relationship to errors in myocardial infarction self-reporting in randomized controlled trials of calcium supplementation. J. Bone Miner. Res. 2012, 27, 719–722. [Google Scholar] [CrossRef]
- Lewis, J.R.; Calver, J.; Zhu, K.; Flicker, L.; Prince, R.L. Calcium supplementation and the risks of atherosclerotic vascular disease in older women: Results of a 5-year RCT and a 4.5-year follow-up. J. Bone Miner. Res. 2011, 26, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.D.; Dassenko, S.A.; Whittaker, P. Calcium supplementation: Effect on iron absorption. Am. J. Clin. Nutr. 1991, 53, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Abrams, S.A. Calcium turnover and nutrition through the life cycle. Proceedings of the Nutrition Society. Proc. Nutr. Soc. 2001, 60, 283–289. [Google Scholar] [PubMed]
- Gaitan, D.; Flores, S.; Saavedra, P.; Miranda, C.; Olivares, M.; Arredondo, M.; López de Romaña, D.; Lönnerdal, B.; Pizarro, F.; Pizarro, F. Calcium Does Not Inhibit the Absorption of 5 Milligrams of Nonheme or Heme Iron at Doses Less Than 800 Milligrams in Nonpregnant Women. J. Nutr. 2011, 141, 1652–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, S.S. The effect of calcium consumption on iron absorption and iron status. Nutr. Clin. Care 2002, 5, 231–235. [Google Scholar] [CrossRef]
- Kalkwarf, H.J.; Harrast, S.D. Effects of calcium supplementation and lactation on iron status. Am. J. Clin. Nutr. 1998, 67, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Mølgaard, C.; Kæstel, P.; Michaelsen, K.F. Long-term calcium supplementation does not affect the iron status of 12-14-y-old girls. Am. J. Clin. Nutr. 2005, 82, 98–102. [Google Scholar] [CrossRef]
- Yan, L.; Prentice, A.; Dibba, B.; Jarjou, L.M.A.; Stirling, D.M.; Fairweather-Tait, S. The effect of long-term calcium supplementation on indices of iron, zinc and magnesium status in lactating Gambian women. Br. J. Nutr. 1996, 76, 821–831. [Google Scholar] [CrossRef]
- Dalton, M.A.; Sargent, J.D.; O’Connor, G.T.; Olmstead, E.M.; Klein, R.Z. Calcium and phosphorus supplementation of iron-fortified infant formula: No effect on iron status of healthy full-term infants. Am. J. Clin. Nutr. 1997, 65, 921–926. [Google Scholar] [CrossRef]
- Ilich-Ernst, J.Z.; McKenna, A.A.; Badenhop, N.E.; Clairmont, A.C.; Andon, M.B.; Nahhas, R.W.; Goel, P.; Matkovic, V. Iron status, menarche, and calcium supplementation in adolescent girls. Am. J. Clin. Nutr. 1998, 68, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Minihane, A.M.; Fairweather-Tait, S.J. Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron status. Am. J. Clin. Nutr. 1998, 68, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, M.O.; Dickin, K.L.; O’Brien, K.O.; Neufeld, L.M.; De Regil, L.M.; Stoltzfus, R.J. Calcium Supplementation to Prevent Preeclampsia: Translating Guidelines into Practice in Low-Income Countries. Adv. Nutr. Int. Rev. J. 2016, 7, 275–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarjou, L.M.A.; Laskey, M.A.; Sawo, Y.; Goldberg, G.R.; Cole, T.J.; Prentice, A. Effect of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake. Am. J. Clin. Nutr. 2010, 92, 450–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarjou, L.M.A.; Sawo, Y.; Goldberg, G.R.; Ann Laskey, M.; Cole, T.J.; Prentice, A. Unexpected long-term effects of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake: A follow-up study. Am. J. Clin. Nutr. 2013, 98, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Cullers, A.; King, J.C.; Van Loan, M.; Gildengorin, G.; Fung, E.B. Effect of prenatal calcium supplementation on bone during pregnancy and 1 y postpartum. Am. J. Clin. Nutr. 2019, 109, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacker, A.; King, J.; Van Loan, M.; Erik, G.; Mickye, A.; Aenor, S.; Ellen, F. Calcium Supplementation during Pregnancy Iimproves Tibial Bone Density at One Year Post-Partum in Racially Diverse Women. FASEB J. 2014, 28. Available online: https://www.fasebj.org/doi/abs/10.1096/fasebj.28.1_supplement.250.3 (accessed on 12 July 2019).
- Ettinger, A.S.; Lamadrid-Figueroa, H.; Mercado-García, A.; Katarzyna, K.; Richard, J.W.; Karen, E.P.; Howard, H.; Mauricio, H.-A.; Martha, M.T.-R. Effect of calcium supplementation on bone resorption in pregnancy and the early postpartum: A randomized controlled trial in Mexican Women. Nutr. J. 2014, 13, 116. [Google Scholar] [CrossRef]
- Diogenes, M.E.L.; Bezerra, F.F.; Rezende, E.P.; Taveira, M.F.; Pinhal, I.; Donangelo, C.M. Effect of calcium plus vitamin D supplementation during pregnancy in Brazilian adolescent mothers: A randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2013, 98, 82–91. [Google Scholar] [CrossRef]
- RX List. Calcium. 2019. Available online: https://www.rxlist.com/calcium/supplements.htm (accessed on 12 July 2019).
- Levine, R.J.; Hauth, J.C.; Curet, L.B.; Sibai, B.M.; Catalano, P.M.; Morris, C.D.; DerSimonian, R.; Esterlitz, J.R.; Raymond, E.G.; Bild, D.E.; et al. Trial of Calcium to Prevent Preeclampsia. N. Engl. J. Med. 1997, 337, 69–76. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Belizán, J.M.; Von Dadelszen, P. Low-dose calcium supplementation for preventing pre-eclampsia: A systematic review and commentary. BJOG Int. J. Obstet. Gynaecol. 2014, 121, 951–957. [Google Scholar] [CrossRef]
- Allen, L.; Benoist B de Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- e-Library of Evidence for Nutrition Actions: eLENA. Available online: http://www.who.int/elena/intervention/en/ (accessed on 12 July 2019).
- Sengupta, P. Potential health impacts of hard water. Int. J. Prev. Med. 2013, 4, 866–875. [Google Scholar] [PubMed]
- Böhmer, H.; Müller, H.; Resch, K.L. Calcium supplementation with calcium-rich mineral waters: A systematic review and meta-analysis of its bioavailability. Osteoporos. Int. 2000, 11, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Wynckel, A.; Hanrotel, C.; Wuillai, A.; Chanard, J. Intestinal calcium absorption from mineral water. Miner. Electrolyte Metab. 1997, 23, 88–92. [Google Scholar] [PubMed]
- Public Health England. Water Fluoridation Health Monitoring Report for England 2014 Executive Summary; Public Health England: London, UK, 2014.
- Iheozor-Ejiofor, Z.; Worthington, H.V.; Walsh, T.; O’Malley, L.; Clarkson, J.; Macey, R.; Alam, R.; Tugwell, P.; Welch, V.; Glenny, A. Water fluoridation for the prevention of dental caries. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Blinkhorn, A.S.; Byun, R.; Mehta, P.; Kay, M. A 4-year assessment of a new water-fluoridation scheme in New South Wales, Australia. Int. Dent. J. 2015, 65, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Firmino, R.T.; Bueno, A.X.; Martins, C.C.; Ferreira, F.M.; Granville-Garcia, A.F.; Paiva, S.M. Dental caries and dental fluorosis according to water fluoridation among 12-year-old Brazilian schoolchildren: A nation-wide study comparing different municipalities. J. Public Health 2018, 26, 501–507. [Google Scholar] [CrossRef]
- Arcanjo, F.P.N.; Amancio, O.M.S.; Braga, J.A.P.; de Paula Teixeira Pinto, V. Randomized Controlled Trial of Iron-Fortified Drinking Water in Preschool Children. J. Am. Coll. Nutr. 2010, 29, 122–129. [Google Scholar] [CrossRef]
- De almeida, C.A.N.; De mello, E.D.; Ramos, A.P.R.; João, C.A.; João, C.R.; Dutra-de-oliveira, J.E. Assessment of drinking water fortification with iron plus ascorbic acid or ascorbic acid alone in daycare centers as a strategy to control iron-deficiency anemia and iron deficiency: A randomized blind clinical study. J. Trop. Pediatr. 2014, 60, 40–46. [Google Scholar] [CrossRef]
- WHO. Meeting the MDG Drinking Water and Sanitation-The Urban and Rural Challenge of the Decade; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
UK (SACN) [15] | USA and Canada (IOM) [15] | FAO/WHO [13] | European (EFSA) [14] | |||||
---|---|---|---|---|---|---|---|---|
Age | Estimated Average Requirement (mg/day) | Recommended Nutrient Intake | Estimated Average Requirement (mg/day) | Recommended Dietary Allowance (mg/day) | Estimated Average Requirement (mg/day) | Recommended Nutrient Intake | Average Requirement (mg/day) | Population Reference Intake |
0–6 month | 400 | 525 | 200 (AI) | 240–300 | 300–400 | |||
6–12 month | 400 | 525 | 260 (AI) | 240–300 | 300–400 | 280 (AI) | ||
1–3 year | 275 | 350 | 500 | 700 | 500 | 390 | 450 | |
4–6 year | 350 | 450 | 800 | 1000 | 440 | 600 | 680 | 800 |
7–10 year | 425 | 550 | 800 | 1000 | 1300 | 680 | 800 | |
Males | ||||||||
11–14 year | 750 | 1000 | 1100 | 1300 | 1040 | 1300 | 960 | 1150 |
15–18 year | 750 | 1000 | 1100 | 1300 | 1040 | 1300 | 960 | 1150 |
19–24 year | 525 | 700 | 800 | 1000 | 840 | 1000 | 860 | 1000 |
25–50 year | 525 | 700 | 800 | 1000 | 840 | 1000 | 750 | 950 |
50 year | 525 | 700 | 800 | 1000 | 840 | 1000/1300 | 750 | 950 |
Females | ||||||||
11–14 year | 625 | 800 | 1100 | 1300 | 1040 | 1300 | 960 | 1150 |
15–18 year | 625 | 800 | 1100 | 1300 | 1040 | 1300 | 960 | 1150 |
19–24 year | 525 | 700 | 800 | 1000 | 840 | 1000 | 860 | 1000 |
25–50 year | 525 | 700 | 800 | 1000 | 840 | 1000 | 750 | 950 |
50 year | 525 | 700 | 1000 | 1200 | 840 | 1000 | 750 | 950 |
Pregnancy | ||||||||
14 to 18 year | Same as non-pregnant | Same as non-pregnant | 1100 | 1300 | * | * | Same as non-pregnant | Same as non-pregnant |
19 and older | Same as non-pregnant | Same as non-pregnant | 800 | 1000 | 940 | 1200 | Same as non-pregnant | Same as non-pregnant |
Lactation | plus 550 | plus 550 | 1100/800 | 1300/1000 | 1040 | 1000 | Same as non-lactating | Same as non-lactating |
Health Outcomes | Outcome | Population Group | Research Evidence | Effect Size |
---|---|---|---|---|
Hypertensive disorders of pregnancy | Preeclampsia | Pregnant women | Meta-Analysis | Calcium supplementation compared to placebo reduced the risk of preeclampsia, RR 0.45, (95% CI: 0.31 to 0.65) [48]. |
Pregnant women with low basal calcium intake | Meta-Analysis | Calcium supplementation compared to placebo reduced the risk of preeclampsia, RR 0.36, (95% CI: 0.20 to 0.65) [48]. | ||
High blood pressure | Pregnant women | Meta-Analysis | Calcium supplementation compared to placebo reduced the high blood pressure relative risk (RR) to 0.65, (95% CI: 0.53 to 0.81) [48]. | |
Blood pressure | Blood pressure | Normotensive adults | Meta-Analysis | Calcium supplementation reduced systolic blood pressure (SBP) in adults by 1.14 mmHg (95% CI: −2.01 to −0.27) with doses of calcium 1000 to 1500 mg/day and by 2.79 mmHg (95% CI: −4.71 to −0.86) with doses of calcium equal to or over 1500 mg/day. Calcium supplementation had the greatest effect in young adults of less than 35 years as their SBP was reduced by 2.11 mmHg (95%CI: −3.58 to −0.64) [45]. |
Blood pressure | Hypertensive adults | Calcium supplementation reduced SBP by −1.86 mm Hg (95% CI: −2.91 to −0.81) and diastolic BP (DBP) by −0.99 mm Hg (95% CI: −1.61 to −0.37) [46]. | ||
Blood pressure | Hypertensive adults with low basal calcium intake | In people with relatively low calcium intake (≤ 800 mg per day) calcium supplementation reduced SBP by −2.63 (95% CI: −4.03 to −1.24) and DBP by −1.30 (95% CI: −2.13 to −0.47) [46]. | ||
Blood pressure | Hypertensive adults | Calcium supplementation as compared to control induced a statistically significant reduction in SBP (mean difference: −2.5 mmHg, 95% CI: −4.5 to −0.6, I(2)= 42%) but not DBP (mean difference: −0.8 mmHg, 95% CI: −2.1 to 0.4, I(2) = 48%) [47]. | ||
Progeny blood pressure | High blood pressure | Pregnant women/children | RCT | Calcium supplementation showed that children whose mothers received calcium supplementation had, at seven years of age, a reduction in the risk of high blood pressure (above the 90th percentile) in comparison with children whose mothers were in the placebo group (RR 0.59; 95% CI: 0.39 to 0.90) [55]. |
Cholesterol | LDL and HDL Cholesterol | Adults | Meta-Analysis | Calcium supplementation reduced low-density lipoprotein (LDL) cholesterol [−0.12 mmol/L (95% CI: −0.22 to −0.02)] and increased high-density lipoprotein (HDL) cholesterol [0.05 mmol/L (95% CI: 0.00 to 0.10) [59]. |
Colorectal adenomas | Recurrent colorectal adenomas | Adults with previous adenomas | Meta-Analysis | Calcium supplementation with doses from 1200 to 2000 mg/day and treatment duration from 36 to 60 months reduced the risk of recurrent colorectal adenomas, RR = 0.89, (95%CI: 0.82–0.96) [65]. |
Bone health | Bone mineral density | Children | Meta-Analysis | Calcium supplementation had a small effect on total body bone mineral content (standardised mean difference 0.14, 95% CI: 0.01 to 0.27) and upper limb bone mineral density (0.14, 95% CI: 0.04 to 0.24), and this effect persisted after the end of supplementation only in the upper limb (0.14, 95% CI: 0.01 to 0.28) [61]. |
Renal stones | Urolithiasis | Individuals with osteoporosis | Meta-Analysis | Calcium supplementation compared to placebo, RR 0.66 [95% CI 0.19, 2.34]; 5 studies in postmenopausal or elderly women including 2038 subjects [70]. |
Urolithiasis | Pregnant women | Meta-Analysis | Calcium supplementation during pregnancy did not increase the risk of urolithiasis, RR 1.52 [95% CI: 0.06, 40.67] or renal colic, RR 1.75 [95% CI; 0.51, 5.99] in 2 studies with 12901 women [71]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. https://doi.org/10.3390/nu11071606
Cormick G, Belizán JM. Calcium Intake and Health. Nutrients. 2019; 11(7):1606. https://doi.org/10.3390/nu11071606
Chicago/Turabian StyleCormick, Gabriela, and Jose M Belizán. 2019. "Calcium Intake and Health" Nutrients 11, no. 7: 1606. https://doi.org/10.3390/nu11071606
APA StyleCormick, G., & Belizán, J. M. (2019). Calcium Intake and Health. Nutrients, 11(7), 1606. https://doi.org/10.3390/nu11071606