Plasma Phospholipid Fatty Acids and Coronary Heart Disease Risk: A Matched Case-Control Study within the Women’s Health Initiative Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Plasma PL-FA Profiles
2.3. Covariates and Dietary Data
2.4. Statistical Analysis
3. Results
3.1. Associations between Increased Plasma PL-FA and CHD Risk
3.2. Plasma PL-FA Substitutions
3.3. Correlations between Plasma PL-FA and Select Food Groups
3.4. Sensitivity Analyses
4. Discussion
4.1. Plasma PL SFA Profiles and CHD Risk
4.2. Plasma PL-FA Substitution in Groups
4.3. Potential Food Sources of Plasma PL-FA and Dietary Recommendations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
CHD | coronary heart disease |
DHA | docosahexaenoic acid |
HDL-C | High-density lipoprotein cholesterol |
LA | linoleic acid |
LDL-C | low-density lipoprotein cholesterol |
MI | myocardial infarction |
MUFA | monounsaturated fatty acids |
PL-FA | phospholipid fatty acids |
PUFA | polyunsaturated fatty acids |
SFA | saturated fatty acids |
TFA | trans fatty acids |
WHI-OS | Women’s Health Initiative Observational Study |
Appendix A
SFA | MUFA | PUFA n-3 | PUFA n-6 | TFA | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | pb | T1 | T2 | T3 | pb | T1 | T2 | T3 | pb | T1 | T2 | T3 | pb | T1 | T2 | T3 | pb | |
Median, moL % | 44.8 | 46.0 | 47.3 | 10.4 | 11.6 | 13.3 | 3.9 | 4.9 | 6.5 | 34.0 | 36.5 | 38.5 | 0.4 | 0.6 | 1.0 | |||||
Socio-demographics | ||||||||||||||||||||
Age, y c | 67.8 | 68.1 | 67.5 | 0.34 | 67.4 | 68.1 | 67.9 | 0.16 | 67.4 | 67.7 | 68.3 | <0.01 | 68.0 | 68.0 | 67.4 | 0.09 | 67.6 | 68.0 | 67.8 | 0.64 |
White, % | 92 | 89 | 88 | 0.41 | 86 | 91 | 92 | <0.01 | 93 | 89 | 86 | <0.01 | 89 | 88 | 91 | 0.04 | 87 | 91 | 90 | 0.02 |
Income, % | 0.94 | 0.24 | <0.01 | <0.01 | <0.01 | |||||||||||||||
<$20,000 | 19 | 18 | 18 | 17 | 20 | 18 | 23 | 18 | 14 | 16 | 19 | 20 | 15 | 16 | 25 | |||||
$20,000–$74,999 | 63 | 63 | 64 | 65 | 63 | 62 | 66 | 65 | 59 | 59 | 66 | 65 | 62 | 66 | 62 | |||||
>$75,000 | 18 | 18 | 18 | 18 | 17 | 20 | 11 | 17 | 27 | 25 | 16 | 14 | 23 | 18 | 14 | |||||
Lifestyle factors | ||||||||||||||||||||
PA, MET-h/week d | 10.5 | 8.3 | 9.8 | <0.01 | 8.6 | 9.5 | 10.5 | <0.01 | 7.5 | 9.0 | 11.3 | <0.01 | 11.1 | 9.0 | 7.8 | <0.01 | 11.3 | 9.5 | 7.5 | <0.01 |
BMI, kg/m2 d | 25.2 | 26.2 | 27.8 | <0.01 | 27.0 | 26.7 | 25.3 | <0.01 | 27.1 | 26.5 | 25.8 | <0.01 | 26.1 | 26.6 | 26.5 | <0.01 | 26.0 | 26.6 | 26.6 | <0.01 |
Smoking, % | 0.24 | 0.06 | <0.01 | 0.04 | <0.01 | |||||||||||||||
Never | 54 | 49 | 49 | 54 | 51 | 47 | 51 | 51 | 51 | 47 | 50 | 54 | 46 | 52 | 54 | |||||
Past | 40 | 43 | 44 | 40 | 43 | 45 | 39 | 43 | 46 | 46 | 43 | 39 | 46 | 423 | 39 | |||||
Current | 6 | 8 | 6 | 6 | 7 | 8 | 11 | 6 | 3 | 6 | 7 | 7 | 8 | 5 | 7 | |||||
CHD risk factors | ||||||||||||||||||||
Family history, % yes | ||||||||||||||||||||
MI | 57 | 56 | 58 | 0.75 | 59 | 53 | 55 | 0.37 | 56 | 59 | 56 | 0.41 | 58 | 56 | 57 | 0.75 | 57 | 57 | 57 | 0.93 |
Diabetes | 31 | 32 | 38 | 0.01 | 36 | 31 | 33 | 0.24 | 35 | 36 | 30 | 0.03 | 33 | 36 | 34 | 0.30 | 33 | 38 | 13 | 0.02 |
Hormone usage | 0.10 | 0.33 | 0.02 | 0.16 | <0.01 | |||||||||||||||
Current E + P | 14 | 13 | 17 | 13 | 16 | 15 | 13 | 14 | 17 | 17 | 13 | 14 | 17 | 14 | 13 | |||||
Current E alone | 20 | 23 | 24 | 23 | 25 | 21 | 20 | 25 | 23 | 23 | 24 | 21 | 25 | 25 | 18 | |||||
Past Users | 17 | 15 | 14 | 16 | 15 | 17 | 17 | 16 | 13 | 14 | 15 | 18 | 15 | 15 | 16 | |||||
Never Used | 49 | 48 | 45 | 49 | 45 | 48 | 50 | 45 | 47 | 46 | 48 | 47 | 44 | 45 | 52 | |||||
Hypertension | <0.01 | <0.01 | 0.85 | 0.90 | 0.01 | |||||||||||||||
Never | 67 | 54 | 55 | 55 | 57 | 63 | 59 | 57 | 57 | 58 | 58 | 59 | 53 | 59 | 62 | |||||
Untreated | 8 | 11 | 10 | 9 | 10 | 11 | 10 | 10 | 10 | 11 | 9 | 10 | 10 | 10 | 9 | |||||
Treated | 25 | 36 | 35 | 36 | 34 | 27 | 31 | 33 | 33 | 32 | 33 | 32 | 37 | 31 | 29 | |||||
Diabetes, % | 6 | 7 | 10 | 0.01 | 11 | 8 | 5 | <0.01 | 10 | 8 | 6 | 0.01 | 6 | 8 | 10 | 0.01 | 8 | 9 | 7 | 0.62 |
Hysterectomy, % | 39 | 41 | 43 | 0.19 | 43 | 42 | 38 | 0.13 | 42 | 43 | 39 | 0.28 | 39 | 41 | 43 | 0.25 | 40 | 45 | 38 | 0.01 |
Dietary Factors | ||||||||||||||||||||
Alc, g/d d | 0.5 | 1.0 | 1.0 | 0.02 | 0.5 | 1.0 | 1.2 | <0.01 | 0.4 | 1.0 | 1.0 | <0.01 | 1.1 | 1.0 | 0.2 | <0.01 | 1.9 | 0.9 | 0.1 | <0.01 |
Carb % cal d | 52.3 | 51.2 | 52.6 | 0.55 | 50.9 | 52.0 | 53.4 | <0.01 | 50.0 | 52.0 | 55.0 | <0.01 | 54.7 | 52.3 | 49.7 | <0.01 | 52.4 | 52.1 | 52.1 | 0.96 |
Protein % cal d | 16.7 | 16.6 | 17.0 | 0.06 | 16.9 | 16.7 | 16.6 | 0.10 | 16.3 | 16.8 | 17.2 | <0.01 | 17.2 | 16.6 | 16.5 | <0.01 | 17.0 | 17.0 | 16.3 | <0.01 |
Energy, kcal/d d | 1481 | 1500 | 1541 | 0.03 | 1499 | 1495 | 1518 | 0.72 | 1558 | 1535 | 1426 | <0.01 | 1524 | 1471 | 1533 | 0.15 | 1483 | 1542 | 1501 | 0.52 |
Appendix B
Appendix C
Appendix D
Plasma Phospholipid Fatty Acids | Crude Model a | Fully Adjusted Model b | Parsimonious Model c | Adjusted Model from a Prior Study [15] d |
---|---|---|---|---|
SFA | 1.19 (1.11, 1.28) | 1.23 (1.13, 1.34) | 1.20 (1.10, 1.30) | 1.20 (1.08, 1.32) |
Long-chain SFA | 1.17 (1.09, 1.25) | 1.21 (1.12, 1.32) | 1.18 (1.09, 1.28) | NR |
Very-long-chain SFA | 1.00 (0.80, 1.26) | 1.00 (0.76, 1.30) | 1.00 (0.77, 1.30) | NR |
MUFA | 0.96 (0.91, 1.01) | 0.99 (0.93, 1.05) | 0.98 (0.93, 1.04) | 0.97 (0.91, 1.04) |
PUFA n-3 | 0.89 (0.84, 0.94) | 0.94 (0.88, 0.99) | 0.93 (0.88, 0.99) | 0.89 (0.83, 0.97) |
PUFA n-6 | 1.03 (0.99, 1.06) | 0.98 (0.95, 1.03) | 1.00 (0.96, 1.03) | 1.02 (0.97, 1.07) |
TFA | 1.06 (0.84, 1.33) | 0.97 (0.74, 1.27) | 1.01 (0.78, 1.31) | 1.00 (0.81, 1.24) |
Appendix E
Plasma Phospholipid Fatty Acids | BMI Adjusted Model a OR (95% CIs) | Waist Circumference Adjusted Model a OR (95% CIs) | Waist: Hip Adjusted Model a OR (95% CIs) | BMI Change Adjusted Model a,b OR (95% CIs) |
---|---|---|---|---|
SFA | 1.20 (1.10, 1.30) | 1.17 (1.08, 1.28) | 1.17 (1.08, 1.28) | 1.26 (1.13, 1.39) |
Long-chain SFA | 1.18 (1.09, 1.28) | 1.16 (1.07, 1.26) | 1.16 (1.07, 1.26) | 1.23 (1.12, 1.36) |
Very-long-chain SFA | 1.00 (0.77, 1.30) | 1.01 (0.78, 1.32) | 0.99 (0.76, 1.29) | 1.04 (0.75, 1.44) |
MUFA | 0.99 (0.93, 1.05) | 0.99 (0.94, 1.05) | 1.00 (0.94, 1.05) | 0.97 (0.90, 1.04) |
PUFA n-3 | 0.93 (0.88, 0.99) | 0.93 (0.88, 0.99) | 0.94 (0.88, 1.00) | 0.93 (0.87, 1.00) |
PUFA n-6 | 1.00 (0.96, 1.03) | 1.00 (0.96, 1.04) | 0.99 (0.96, 1.03) | 0.99 (0.95, 1.04) |
TFA | 1.00 (0.78, 1.30) | 1.04 (0.80, 1.35) | 1.00 (0.77, 1.31) | 1.01 (0.74, 1.39) |
Appendix F
Plasma Phospholipid Fatty Acids | Overall | Physically Active | Physically Inactive |
---|---|---|---|
PUFA n-6 ↓ PUFA n-3 ↑ (1 moL %) | 0.90 (0.84, 0.96) | 0.95 (0.84, 1.06) | 0.88 (0.76, 1.02) |
TFA ↓ PUFA n-3 ↑ (1 moL %) | 0.74 (0.56, 0.99) | 0.88 (0.50, 1.54) | 1.04 (0.60, 1.82) |
TFA ↓ PUFA n-6↑ (1 moL %) | 0.82 (0.61, 1.11) | 0.92 (0.52, 1.65) | 1.19 (0.67, 2.11) |
Appendix G
Plasma Phospholipid Fatty Acids | Complete Analysis (N = 2181) | Multiple Imputation (N = 2428) |
---|---|---|
OR (95% CIs) | OR (95% CIs) | |
SFA | 1.21 (1.08, 1.35) | 1.20 (1.10, 1.30) |
Long-chain SFA b | 1.19 (1.07, 1.33) | 1.18 (1.09, 1.28) |
Very-long-chain SFA c | 0.99 (0.70, 1.41) | 1.00 (0.77, 1.30) |
MUFA | 0.98 (0.91, 1.06) | 0.98 (0.93, 1.04) |
PUFA n-3 | 0.93 (0.86, 1.01) | 0.93 (0.88, 0.99) |
PUFA n-6 | 1.00 (0.95, 1.05) | 1.00 (0.96, 1.03) |
TFA | 0.97 (0.69, 1.38) | 1.01 (0.78, 1.31) |
Appendix H
Plasma Phospholipid Fatty Acids | Complete Analysis (N = 2181) | Multiple Imputation (N = 2428) |
---|---|---|
OR (95% CIs) | OR (95% CIs) | |
PUFA n-6 ↓ PUFA n-3 ↑ (1 moL %) | 0.90 (0.85, 0.97) | 0.90 (0.84, 0.96) |
TFA ↓ PUFA n-3 ↑ (1 moL %) | 0.75 (0.57, 1.00) | 0.74 (0.56, 0.99) |
TFA ↓ PUFA n-6↑ (1 moL %) | 0.85 (0.62, 1.15) | 0.82 (0.61, 1.11) |
References
- Li, Z.; Otvos, J.D.; Lamon-Fava, S.; Carrasco, W.V.; Lichtenstein, A.H.; McNamara, J.R.; Ordovás, J.M.; Schaefer, E.J. Men and women differ in lipoprotein response to dietary saturated fat and cholesterol restriction. J. Nutr. 2003, 133, 3428–3433. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Zamora, D.; Leelarthaepin, B.; Majchrzak-Hong, S.F.; Faurot, K.R.; Suchindran, C.M.; Ringel, A.; Davis, J.M.; Hibbeln, J.R. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: Evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013, 346, e8707. [Google Scholar] [CrossRef] [PubMed]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, M.U.; O’Reilly, E.J.; Heitmann, B.L.; Pereira, M.A.; Bälter, K.; Fraser, G.E.; Goldbourt, U.; Hallmans, G.; Knekt, P.; Liu, S.; et al. Major types of dietary fat and risk of coronary heart disease: A pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 2009, 89, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Mozaffarian, D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: A fresh look at the evidence. Lipids 2010, 45, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Katan, M.B. Effect of a diet enriched with monounsaturated or polyunsaturated fatty acids on levels of low-density and high-density lipoprotein cholesterol in healthy women and men. N. Engl. J. Med. 1989, 321, 436–441. [Google Scholar] [CrossRef]
- Appel, L.J.; Sacks, F.M.; Carey, V.J.; Obarzanek, E.; Swain, J.F.; Miller, E.R.; Conlin, P.R.; Erlinger, T.P.; Rosner, B.A.; Laranjo, N.M.; et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005, 294, 2455–2464. [Google Scholar] [CrossRef]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2960–2984. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias: The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 253, 281–344. [Google Scholar]
- De Oliveira Otto, M.C.; Wu, J.H.; Baylin, A.; Vaidya, D.; Rich, S.S.; Tsai, M.Y.; Jacobs, D.R.; Mozaffarian, D. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2013, 2, e000506. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J. Diet-heart: A problematic revisit. Am. J. Clin. Nutr. 2010, 91, 497–499. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Otto, M.C.; Nettleton, J.A.; Lemaitre, R.N.; Steffen, L.M.; Kromhout, D.; Rich, S.S.; Tsai, M.Y.; Jacobs, D.R.; Mozaffarian, D. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2013, 2, e000092. [Google Scholar] [CrossRef] [PubMed]
- Matthan, N.R.; Ooi, E.M.; Van Horn, L.; Neuhouser, M.L.; Woodman, R.; Lichtenstein, A.H. Plasma Phospholipid Fatty Acid Biomarkers of Dietary Fat Quality and Endogenous Metabolism Predict Coronary Heart Disease Risk: A Nested Case-Control Study Within the Women’s Health Initiative Observational Study. J. Am. Heart Assoc. 2014, 3, e000764. [Google Scholar] [CrossRef] [PubMed]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
- Arab, L. Biomarkers of fat and fatty acid intake. J. Nutr. 2003, 133 (Suppl. 3), 925S–932S. [Google Scholar] [CrossRef]
- Saadatian-Elahi, M.; Slimani, N.; Chajes, V.; Jenab, M.; Goudable, J.; Biessy, C.; Ferrari, P.; Byrnes, G.; Autier, P.; Peeters, P.H.; et al. Plasma phospholipid fatty acid profiles and their association with food intakes: Results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2009, 89, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, V.K.; Pu, S.; Jenkins, D.A.; Lamarche, B.; Kris-Etherton, P.M.; West, S.G.; Fleming, J.A.; Liu, X.; McCrea, C.E.; Jones, P.J. Plasma fatty acid changes following consumption of dietary oils containing n-3, n-6, and n-9 fatty acids at different proportions: Preliminary findings of the Canola Oil Multicenter Intervention Trial (COMIT). Trials 2014, 15, 136. [Google Scholar] [CrossRef] [PubMed]
- The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control. Clin. Trials 1998, 19, 61–109. [Google Scholar] [CrossRef]
- Hays, J.; Hunt, J.R.; Hubbell, F.A.; Anderson, G.L.; Limacher, M.; Allen, C.; Rossouw, J.E. The Women’s Health Initiative recruitment methods and results. Ann. Epidemiol. 2003, 13, S18–S77. [Google Scholar] [CrossRef]
- Curb, J.D.; McTiernan, A.; Heckbert, S.R.; Kooperberg, C.; Stanford, J.; Nevitt, M.; Johnson, K.C.; Proulx-Burns, L.; Pastore, L.; Criqui, M.; et al. Outcomes ascertainment and adjudication methods in the Women’s Health Initiative. Ann. Epidemiol. 2003, 13, S122–S128. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Matthan, N.R.; Jalbert, S.M.; Resteghini, N.A.; Schaefer, E.J.; Ausman, L.M. Novel soybean oils with different fatty acid profiles alter cardiovascular disease risk factors in moderately hyperlipidemic subjects. Am. J. Clin. Nutr. 2006, 84, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Pottala, J.V.; Sands, S.A.; Jones, P.G. Comparison of the effects of fish and fish-oil capsules on the n–3 fatty acid content of blood cells and plasma phospholipids. Am. J. Clin. Nutr. 2007, 86, 1621–1625. [Google Scholar] [CrossRef]
- Khaw, K.-T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012, 9, e1001255. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Rossouw, J.E.; Roberts, M.B.; Liu, S.; Johnson, K.C.; Shikany, J.M.; Manson, J.E.; Tinker, L.F.; Eaton, C.B. Theoretical effects of substituting butter with margarine on risk of cardiovascular disease. Epidemiology 2017, 28, 145. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A.; Fong, J.; Bemert, J.T., Jr.; Browner, W.S. Relation of smoking and alcohol consumption to serum fatty acids. Am. J. Epidemiol. 1996, 144, 325–334. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef]
- Emken, E.A.; Adlof, R.O.; Gulley, R.M. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim. Biophys. Acta 1994, 1213, 277–288. [Google Scholar] [CrossRef]
- Resche-Rigon, M.; White, I.R. Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Stat. Methods Med. Res. 2018, 27, 1634–1649. [Google Scholar] [CrossRef] [PubMed]
- Flock, M.R.; Kris-Etherton, P.M. Diverse physiological effects of long-chain saturated fatty acids: Implications for cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B.; Sotoodehnia, N.; Knopp, R.H.; Mozaffarian, D.; McKnight, B.; Rice, K.; Friedlander, Y.; Lumley, T.S.; Raghunathan, T.E.; et al. Endogenous red blood cell membrane fatty acids and sudden cardiac arrest. Metab. Clin. Exp. 2010, 59, 1029–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, R.; Shipley, M.; Armitage, J.; Collins, R.; Harris, W. Plasma phospholipid fatty acids and CHD in older men: Whitehall study of London civil servants. Br. J. Nutr. 2009, 102, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Lemaitre, R.N.; Imamura, F.; King, I.B.; Song, X.; Spiegelman, D.; Siscovick, D.S.; Mozaffarian, D. Fatty acids in the de novo lipogenesis pathway and risk of coronary heart disease: The Cardiovascular Health Study. Am. J. Clin. Nutr. 2011, 94, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Folsom, A.R.; Eckfeldt, J.H. Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: The Atherosclerosis Risk in Communities (ARIC) Study. Nutr. Metab. Cardiovasc. Dis. 2003, 13, 256–266. [Google Scholar] [CrossRef]
- Malik, V.S.; Chiuve, S.E.; Campos, H.; Rimm, E.B.; Mozaffarian, D.; Hu, F.B.; Sun, Q. Circulating very-long chain saturated fatty acids and incident coronary heart disease in US men and women. Circulation 2015, 132, 260–268. [Google Scholar] [CrossRef]
- Lemaitre, R.N.; Fretts, A.M.; Sitlani, C.M.; Biggs, M.L.; Mukamal, K.; King, I.B.; Song, X.; Djoussé, L.; Siscovick, D.S.; McKnight, B.; et al. Plasma phospholipid very-long-chain saturated fatty acids and incident diabetes in older adults: The Cardiovascular Health Study. Am. J. Clin. Nutr. 2015, 101, 1047–1054. [Google Scholar] [CrossRef]
- Kihara, A. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 2012, 152, 387–395. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cho, Y.; Shin, M.J. Dietary Very Long Chain Saturated Fatty Acids and Metabolic Factors: Findings from the Korea National Health and Nutrition Examination Survey 2013. Clin. Nutr. Res. 2015, 4, 182–189. [Google Scholar] [CrossRef]
- Demaison, L.; Moreau, D. Dietary n-3 polyunsaturated fatty acids and coronary heart disease-related mortality: A possible mechanism of action. Cell. Mol. Life Sci. 2002, 59, 463–477. [Google Scholar] [CrossRef]
- Bendsen, N.T.; Christensen, R.; Bartels, E.M.; Astrup, A. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: A systematic review and meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011, 65, 773–783. [Google Scholar] [CrossRef]
- Gebauer, S.K.; Chardigny, J.-M.; Jakobsen, M.U.; Lamarche, B.; Lock, A.L.; Proctor, S.D.; Baer, D.J. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: A comprehensive review of epidemiological, clinical, and mechanistic studies. Adv. Nutr. 2011, 2, 332–354. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Warensjo Lemming, E.; Nalsen, C.; Becker, W.; Ridefelt, P.; Mattisson, I.; Lindroos, A.K. Relative validation of the dietary intake of fatty acids among adults in the Swedish National Dietary Survey using plasma phospholipid fatty acid composition. J. Nutr. Sci. 2015, 4, e25. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Sasaki, S.; Kawabata, T.; Hasegawa, K.; Akabane, M.; Tsugane, S. Single measurement of serum phospholipid fatty acid as a biomarker of specific fatty acid intake in middle-aged Japanese men. Eur. J. Clin. Nutr. 2001, 55, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Serra-Majem, L.; Nissensohn, M.; Overby, N.C.; Fekete, K. Dietary methods and biomarkers of omega 3 fatty acids: A systematic review. Bri. J. Nutr. 2012, 107 (Suppl. 2), S64–S76. [Google Scholar] [CrossRef]
- Fusconi, E.; Pala, V.; Riboli, E.; Vineis, P.; Sacerdote, C.; Del Pezzo, M.; De Magistris, M.S.; Palli, D.; Masala, G.; Sieri, S.; et al. Relationship between plasma fatty acid composition and diet over previous years in the Italian centers of the European Prospective Investigation into Cancer and Nutrition (EPIC). Tumori J. 2003, 89, 624–635. [Google Scholar] [CrossRef]
- US Department of Agriculture. National Nutrient Database for Standard Reference, Release 28; US Department of Agriculture: Washington, DC, USA, 2015.
- Frost, H.R.; Andrew, A.S.; Karagas, M.R.; Moore, J.H. A screening-testing approach for detecting gene-environment interactions using sequential penalized and unpenalized multiple logistic regression. In Proceedings of the Pacific Symposium on Biocomputing, Waimea, HI, USA, 4–8 January 2015; pp. 183–194. [Google Scholar]
Lipid Names a | Common Names | Category | Mean (SD) Levels (moL %) |
---|---|---|---|
SFA | 46.09 (1.29) | ||
12:0 | Lauric acid | Long-chain | 0.07 (0.04) |
14:0 | Myristic acid | Long-chain | 0.69 (0.21) |
15:0 | Pentadecylic acid | Long-chain | 0.23 (0.05) |
16:0 | Palmitic acid | Long-chain | 30.57 (2.02) |
18:0 | Stearic acid | Long-chain | 13.19 (1.42) |
20:0 | Arachidic acid | Very-long-chain | 0.24 (0.07) |
22:0 | Behenic acid | Very-long-chain | 0.64 (0.23) |
24:0 | Lignoceric acid | Very-long-chain | 0.46 (0.18) |
MUFA | 11.77 (1.64) | ||
14:1 | 5-myristoleic acid | Long-chain | 0.12 (0.10) |
16:1 n-9 | 7-palmitoleic acid | Long-chain | 0.84 (0.32) |
16:1 n-7 | cis-9-palmitoleic acid | Long-chain | 0.12 (0.05) |
18:1 n-9 | Oleic acid | Long chain | 1.37 (0.28) |
18:1 n-7 | Vaccenic acid | Long-chain | 8.48 (1.37) |
20:1 n-9 | cis-gondoic acid | Very-long-chain | 0.08 (0.03) |
24:1 n-9 | Nervonic acid | Very-long-chain | 0.77 (0.30) |
PUFA | 41.60 (2.06) | ||
PUFA n-6 | 36.31 (2.46) | ||
18:2 n-6 | Linoleic acid (LA) | Long-chain | 20.79 (3.00) |
18:3 n-6 | γ-linoleic acid | Long-chain | 0.10 (0.05) |
20:2 n-6 | Eicosadienoic acid | Very-long-chain | 0.40 (0.16) |
20:3 n-6 | Eicosatrienoic acid | Very-long-chain | 3.32 (0.79) |
20:4 n-6 | Arachidonic acid (AA) | Very-long-chain | 10.93 (2.07) |
22:4 n-6 | Docosatetraenoic acid | Very-long-chain | 0.42 (0.11) |
22:5 n-6 | 4,7,10,13,16-Docosapentaenoic acid | Very-long-chain | 0.35 (0.13) |
PUFA n-3 | 5.14 (1.58) | ||
18:3 n-3 | α-linolenic acid (ALA) | Long-chain | 0.21 (0.08) |
20:5 n-3 | Eicosapentaenoic acid (EPA) | Very-long-chain | 0.81 (0.51) |
22:5 n-3 | 7,10,13,16,19-Docosapentaenoic acid (DPA) | Very-long-chain | 0.83 (0.19) |
22:6 n-3 | Docosahexaenoic acid (DHA) | Very-long-chain | 3.29 (1.13) |
TFA | 0.69 (0.34) | ||
18:1t | All 18:1 trans | Long-chain | 0.54 (0.30) |
18:2t | All 18:2 trans | Long-chain | 0.14 (0.06) |
Variables | Overall | CHD Status | ||
---|---|---|---|---|
Controls (N = 1214) | Cases (N = 1214) | p-Values a | ||
Socio-demographics | ||||
Age, years b | 67.8 (6.8) | 67.8 (6.8) | 67.8 (6.8) | Matched |
Race/ethnicity, n (%) | Matched | |||
Black | 136 (6) | 68 (6) | 68 (6) | |
Hispanic | 32 (1) | 16 (1) | 16 (1) | |
White | 2172 (90) | 1086 (90) | 1086 (90) | |
Other | 88 (4) | 44 (4) | 44 (4) | |
Region, n (%) | 0.40 | |||
Northeast | 610 (25) | 303 (25) | 307 (25) | |
South | 579 (24) | 299 (25) | 280 (23) | |
Midwest | 547 (23) | 264 (22) | 283 (23) | |
West | 692 (29) | 348 (29) | 344 (28) | |
Education, n (%) | <0.01 | |||
≤High school | 845 (35) | 380 (31) | 465 (38) | |
Some college and college graduate | 907 (37) | 471 (39) | 435 (36) | |
Postgraduate | 676 (28) | 363 (30) | 314 (26) | |
Income, n (%) | <0.01 | |||
<$20,000 | 448 (18) | 193 (16) | 255 (21) | |
$20,000–$74,999 | 1541 (64) | 776 (64) | 765 (63) | |
≥$75,000 | 439 (18) | 245 (20) | 194 (16) | |
Lifestyle factors | ||||
Physical activity, MET-h/week c | 9.5 (16.1) | 10.8 (17.3) | 8.3 (15.4) | <0.01 |
BMI, Kg/m2 c | 26.4 (6.8) | 25.9 (6.4) | 26.9 (7.4) | <0.01 |
Waist circumference, cm c | 84.2 (13.6) | 83.0 (12.3) | 86.5 (14.4) | <0.01 |
Waist-to-hip ratio c | 0.8 (0.1) | 0.8 (0.1) | 0.8 (0.1) | <0.01 |
Smoking, n (%) | <0.01 | |||
Never-smoker | 1232 (51) | 650 (54) | 582 (48) | |
Past smoker | 1033 (43) | 501 (41) | 532 (44) | |
Current smoker | 163 (7) | 63 (5) | 100 (8) | |
CHD risk factors | ||||
Family history, n (% yes) | ||||
Myocardial infarction | 1383 (57) | 647 (53) | 736 (61) | <0.01 |
Diabetes | 829 (34) | 441 (36) | 388 (32) | 0.03 |
Stroke | 986 (41) | 473 (39) | 513 (42) | 0.11 |
Medication use, n (%) d | 364 (15) | 123 (10) | 241 (20) | <0.01 |
Hormone usage, n (%) | <0.01 | |||
Current Estrogen + Progesterone | 355 (15) | 205 (17) | 150 (12) | |
Current Estrogen alone | 555 (23) | 295 (24) | 260 (21) | |
Past Users | 375 (15) | 175 (14) | 200 (17) | |
Never Used | 1143 (47) | 539 (44) | 604 (50) | |
Hypertension, n (%) | <0.01 | |||
Never hypertensive | 1409 (58) | 824 (68) | 585 (48) | |
Untreated hypertensive | 237 (10) | 96 (8) | 141 (12) | |
Treated hypertensive | 782 (32) | 294 (24) | 488 (40) | |
Diabetes, n (% yes) | 197 (8) | 46 (4) | 151 (12) | <0.01 |
Hypercholesterolemia, n (% yes) | 380 (16) | 176 (14) | 204 (17) | 0.14 |
Hysterectomy, n (% yes) | 1000 (41) | 500 (40) | 500 (40) | Matched |
Dietary factors | ||||
Alcohol, g/day c | 0.9 (6.5) | 1.0 (7.0) | 0.6 (6.2) | 0.02 |
Percent calories from carbohydrates c | 52.2 (13.4) | 52.8 (9.4) | 51.2 (10.0) | <0.01 |
Percent calories from protein c | 16.8 (4.2) | 16.9 (4.2) | 16.8 (4.2) | 0.63 |
Total energy, Kcal/day c | 1506.4 (728.3) | 1531.3 (702.4) | 1482.2 (752.6) | 0.84 |
Fish, servings/day b | 0.3 (0.2) | 0.3 (0.2) | 0.2 (0.2) | 0.28 |
Dairy products, servings/day b | 1.9 (1.5) | 1.9 (1.4) | 1.9 (1.5) | 0.53 |
Butter, teaspoons/day b | 0.2 (0.5) | 0.2 (0.5) | 0.3 (0.6) | <0.01 |
Margarine, teaspoons/day b | 0.2 (0.5) | 0.2 (0.5) | 0.2 (0.5) | 0.41 |
Olive/Canola oil, teaspoons/day b | 0.1 (0.2) | 0.1 (0.2) | 0.1 (0.3) | 0.57 |
Other vegetable oils, teaspoons/day b | 0.1 (0.2) | 0.0 (0.1) | 0.1 (0.2) | 0.28 |
Red meat, servings/day b | 0.6 (0.5) | 0.6 (0.5) | 0.7 (0.6) | <0.01 |
Carbohydrates, g/day b | 202.5 (76.1) | 204.2 (72.3) | 200.8 (79.7) | 0.27 |
Plasma Phospholipid Fatty Acids | Mean (SD) | Model 1 a | Model 2 b | |
---|---|---|---|---|
Mol % | OR (95% CIs) | OR (95% CIs) | OR (99% CIs) | |
SFA | 46.09 (1.29) | 1.19 (1.11, 1.28) | 1.20 (1.10, 1.30) | 1.20 (1.08, 1.34) |
Long-chain SFA c | 44.74 (1.37) | 1.17 (1.09, 1.25) | 1.18 (1.09, 1.28) | 1.18 (1.07, 1.31) |
Very-long-chain SFA d | 1.35 (0.46) | 1.00 (0.80, 1.26) | 1.00 (0.77, 1.30) | 1.00 (0.71, 1.41) |
MUFA | 11.77 (1.64) | 0.96 (0.91, 1.01) | 0.98 (0.93, 1.04) | 0.98 (0.91, 1.06) |
PUFA n-3 | 5.14 (1.58) | 0.89 (0.84, 0.94) | 0.93 (0.88, 0.99) | 0.93 (0.86, 1.01) |
PUFA n-6 | 36.31 (2.46) | 1.03 (0.99, 1.06) | 1.00 (0.96, 1.03) | 1.00 (0.95, 1.05) |
TFA | 0.69 (0.34) | 1.06 (0.84, 1.33) | 1.01 (0.78, 1.31) | 1.01 (0.72, 1.42) |
Plasma Phospholipid Fatty Acids | Model 1 a | Model 2 b | |
---|---|---|---|
OR (95% CIs) | OR (95% CIs) | OR (99% CIs) | |
PUFA n-6↓ PUFA n-3 ↑ (1 moL %) | 0.85 (0.80, 0.90) | 0.90 (0.84, 0.96) | 0.90 (0.83, 0.98) |
TFA↓ PUFA n-3 ↑ (1 moL %) | 0.72 (0.55, 0.94) | 0.74 (0.56, 0.99) | 0.74 (0.51, 1.09) |
TFA↓ PUFA n-6 ↑ (1 moL %) | 0.84 (0.64, 1.11) | 0.82 (0.61, 1.11) | 0.82 (0.56, 1.22) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Matthan, N.R.; Manson, J.E.; Howard, B.V.; Tinker, L.F.; Neuhouser, M.L.; Van Horn, L.V.; Rossouw, J.E.; Allison, M.A.; Martin, L.W.; et al. Plasma Phospholipid Fatty Acids and Coronary Heart Disease Risk: A Matched Case-Control Study within the Women’s Health Initiative Observational Study. Nutrients 2019, 11, 1672. https://doi.org/10.3390/nu11071672
Liu Q, Matthan NR, Manson JE, Howard BV, Tinker LF, Neuhouser ML, Van Horn LV, Rossouw JE, Allison MA, Martin LW, et al. Plasma Phospholipid Fatty Acids and Coronary Heart Disease Risk: A Matched Case-Control Study within the Women’s Health Initiative Observational Study. Nutrients. 2019; 11(7):1672. https://doi.org/10.3390/nu11071672
Chicago/Turabian StyleLiu, Qing, Nirupa R. Matthan, JoAnn E. Manson, Barbara V. Howard, Lesley F. Tinker, Marian L. Neuhouser, Linda V. Van Horn, Jacques E. Rossouw, Matthew A. Allison, Lisa W. Martin, and et al. 2019. "Plasma Phospholipid Fatty Acids and Coronary Heart Disease Risk: A Matched Case-Control Study within the Women’s Health Initiative Observational Study" Nutrients 11, no. 7: 1672. https://doi.org/10.3390/nu11071672
APA StyleLiu, Q., Matthan, N. R., Manson, J. E., Howard, B. V., Tinker, L. F., Neuhouser, M. L., Van Horn, L. V., Rossouw, J. E., Allison, M. A., Martin, L. W., Li, W., Snetselaar, L. G., Wang, L., Lichtenstein, A. H., & Eaton, C. B. (2019). Plasma Phospholipid Fatty Acids and Coronary Heart Disease Risk: A Matched Case-Control Study within the Women’s Health Initiative Observational Study. Nutrients, 11(7), 1672. https://doi.org/10.3390/nu11071672