Dietary Strategies for Weight Loss Maintenance
Abstract
:1. Introduction
2. Systematic Review and Meta-Analysis of Dietary Strategies for Weight Loss Maintenance
2.1. Methods
2.1.1. Search Strategy and In-/Exclusion Criteria
2.1.2. Data Extraction
2.1.3. Quality Assessment
2.1.4. Data Synthesis and Statistical Analysis
2.1.5. Publication Bias
2.2. Results
3. Other Potential Dietary Strategies for Weight Loss Maintenance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anton, S.D.; Hida, A.; Heekin, K.; Sowalsky, K.; Karabetian, C.; Mutchie, H.; Leeuwenburgh, C.; Manini, T.M.; Barnett, T.E. Effects of Popular Diets without Specific Calorie Targets on Weight Loss Outcomes: Systematic Review of Findings from Clinical Trials. Nutrients 2017, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.C.; Kanters, S.; Bandayrel, K.; Wu, P.; Naji, F.; Siemieniuk, R.A.; Ball, G.D.; Busse, J.W.; Thorlund, K.; Guyatt, G.; et al. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA 2014, 312, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Konz, E.C.; Frederich, R.C.; Wood, C.L. Long-term weight-loss maintenance: A meta-analysis of US studies. Am. J. Clin. Nutr. 2001, 74, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Barte, J.C.M.; Ter Bogt, N.C.W.; Bogers, R.P.; Teixeira, P.J.; Blissmer, B.; Mori, T.A.; Bemelmans, W.J.E. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obes. Rev. 2010, 11, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Vink, R.G.; Roumans, N.J.T.; Arkenbosch, L.A.J.; Mariman, E.C.M.; Van Baak, M.A. The effect of rate of weight loss on long-term weight regain in adults with overweight and obesity. Obesity 2016, 24, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, J.W.; Brantley, P.J.; Champagne, C.M.; Vollmer, W.M.; Stevens, V.J.; Funk, K.; Dalcin, A.T.; Jerome, G.J.; Myers, V.H.; Tyson, C.; et al. The Impact of Continued Intervention on Weight: Five-Year Results from the Weight Loss Maintenance Trial. Obesity 2016, 24, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Pekkarinen, T.; Kaukua, J.; Mustajoki, P. Long-Term Weight Maintenance after a 17-Week Weight Loss Intervention with or without a One-Year Maintenance Program: A Randomized Controlled Trial. J. Obes. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Apolzan, J.W.; Venditti, E.M.; Edelstein, S.L.; Knowler, W.C.; Dabelea, D.; Boyko, E.J.; Pi-Sunyer, X.; Kalyani, R.R.; Franks, P.W.; Srikanthan, P.; et al. Diabetes Prevention Program Research G Long-Term Weight Loss With Metformin or Lifestyle Intervention in the Diabetes Prevention Program Outcomes Study. Ann. Intern. Med. 2019, 170, 682–690. [Google Scholar] [CrossRef]
- Tsukinoki, R.; Okamura, T.; Okuda, N.; Kadota, A.; Murakami, Y.; Yanagita, M.; Miyamatsu, N.; Miura, K.; Ueshima, H. One-year weight loss maintenance outcomes following a worksite-based weight reduction program among Japanese men with cardiovascular risk factors. J. Occup. Health 2019, 61, 189–196. [Google Scholar] [CrossRef]
- Look, A.R.G. Eight-year weight losses with an intensive lifestyle intervention: The look AHEAD study. Obesity 2014, 22, 5–13. [Google Scholar]
- Look, A.R.G.; Wing, R.R. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: Four-year results of the Look AHEAD trial. Arch. Intern. Med. 2010, 170, 1566–1575. [Google Scholar]
- Aller, E.E.J.G.; Larsen, T.M.; Claus, H.; Lindroos, A.K.; Kafatos, A.; Pfeiffer, A.F.H.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunešová, M.; Stender, S.; et al. Weight loss maintenance in overweight subjects on ad libitum diets with high or low protein content and glycemic index: The Diogenes trial 12-month results. Int. J. Obes. 2014, 38, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Claessens, M.; Van Baak, M.A.; Monsheimer, S.; Saris, W.H.M. The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors. Int. J. Obes. 2009, 33, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delbridge, E.A.; Prendergast, L.A.; Pritchard, J.E.; Proietto, J. One-year weight maintenance after significant weight loss in healthy overweight and obese subjects: Does diet composition matter? Am. J. Clin. Nutr. 2009, 90, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Westerterp-Plantenga, M.S. Green tea catechin plus caffeine supplementation to a high-protein diet has no additional effect on body weight maintenance after weight loss. Am. J. Clin. Nutr. 2009, 89, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjolbaek, L.; Sorensen, L.B.; Sondertoft, N.B.; Rasmussen, C.K.; Lorenzen, J.K.; Serena, A.; Astrup, A.; Larsen, L.H. Protein supplements after weight loss do not improve weight maintenance compared with recommended dietary protein intake despite beneficial effects on appetite sensation and energy expenditure: A randomized, controlled, double-blinded trial. Am. J. Clin. Nutr. 2017, 106, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.M.; Dalskov, S.M.; Van Baak, M.; Jebb, S.A.; Papadaki, A.; Pfeiffer, A.F.H.; Martínez, J.A.; Handjieva-Darlenska, T.; Kunesová, M.; Pihlsgård, M.; et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010, 363, 2102–2113. [Google Scholar] [CrossRef]
- Lejeune, M.P.; Kovacs, E.M.; Westerterp-Plantenga, M.S. Additional protein intake limits weight regain after weight loss in humans. Br. J. Nutr. 2005, 93, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Westerterp-Plantenga, M.S.; Lejeune, M.P.; Nijs, I.; van Ooijen, M.; Kovacs, E.M. High protein intake sustains weight maintenance after body weight loss in humans. Int. J. Obes. 2004, 28, 57–64. [Google Scholar] [CrossRef]
- Philippou, E.; Neary, N.M.; Chaudhri, O.; Brynes, A.E.; Dornhorst, A.; Leeds, A.R.; Hickson, M.; Frost, G.S. The effect of dietary glycemic index on weight maintenance in overweight subjects: A pilot study. Obesity 2009, 17, 396–401. [Google Scholar] [CrossRef]
- Bajerska, J.; Mildner-Szkudlarz, S.; Walkowiak, J. Effects of rye bread enriched with green tea extract on weight maintenance and the characteristics of metabolic syndrome following weight loss: A pilot study. J. Med. Food 2015, 18, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, E.M.; Lejeune, M.P.; Nijs, I. Westerterp-Plantenga MS. Effects of green tea on weight maintenance after body-weight loss. Br. J. Nutr. 2004, 91, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.; Pelletier, X.; Ross, A.B.; Thielecke, F. A High Rate of Non-Compliance Confounds the Study of Whole Grains and Weight Maintenance in a Randomised Intervention Trial-The Case for Greater Use of Dietary Biomarkers in Nutrition Intervention Studies. Nutrients 2017, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Pasman, W.J.; Westerterp-Plantenga, M.S.; Muls, E.; Vansant, G.; van Ree, J.; Saris, W.H. The effectiveness of long-term fibre supplementation on weight maintenance in weight-reduced women. Int. J. Obes. 1997, 21, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Kamphuis, M.M.; Lejeune, M.P.; Saris, W.H.; Westerterp-Plantenga, M.S. The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. Int. J. Obes. 2003, 27, 840–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, T.M.; Toubro, S.; Gudmundsen, O.; Astrup, A. Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am. J. Clin. Nutr. 2006, 83, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Due, A.; Larsen, T.M.; Mu, H.; Hermansen, K.; Stender, S.; Astrup, A. Comparison of 3 ad libitum diets for weight-loss maintenance, risk of cardiovascular disease, and diabetes: A 6-mo randomized, controlled trial. Am. J. Clin. Nutr. 2008, 88, 1232–1241. [Google Scholar]
- Due, A.; Larsen, T.M.; Mu, H.; Hermansen, K.; Stender, S.; Toubro, S.; Allison, D.B.; Astrup, A. The effect of three different ad libitum diets for weight loss maintenance: A randomized 18-month trial. Eur. J. Nutr. 2017, 56, 727–738. [Google Scholar] [CrossRef]
- Hauner, H.; Petzinna, D.; Sommerauer, B.; Toplak, H. Effect of acarbose on weight maintenance after dietary weight loss in obese subjects. Diabetes Obes. Metab. 2001, 3, 423–427. [Google Scholar] [CrossRef]
- Lejeune, M.P.; Kovacs, E.M.; Westerterp-Plantenga, M.S. Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. Br. J. Nutr. 2003, 90, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Schirmer, M.A.; Phinney, S.D. Gamma-linolenate reduces weight regain in formerly obese humans. J. Nutr. 2007, 137, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Pasman, W.J.; Westerterp-Plantenga, M.S.; Saris, W.H. The effectiveness of long-term supplementation of carbohydrate, chromium, fibre and caffeine on weight maintenance. Int. J. Obes. 1997, 21, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Raben, A.; Geiker, N. The role of higher protein diets in weight control and obesity-related comorbidities. Int. J. Obes. 2015, 39, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Blachier, F.; Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Audebert, M.; Khodorova, N.; Andriamihaja, M.; Airinei, G.; Benamouzig, R.; et al. High-protein diets for weight management: Interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group. Clin. Nutr. 2019, 38, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Van Baak, M.A.; Mariman, E.C.M. Mechanisms of weight regain after weight loss the role of adipose tissue. Nat. Rev. Endocrinol. 2019, 15, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Caires, R.; Sierra-Valdez, F.J.; Millet, J.R.M.; Herwig, J.D.; Roan, E.; Vasquez, V.; Cordero-Morales, J.F. Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling. Cell Rep. 2017, 21, 246–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuda, O.; Rossmeisl, M.; Kopecky, J. Omega-3 fatty acids and adipose tissue biology. Mol. Asp. Med. 2018, 64, 147–160. [Google Scholar] [CrossRef]
- Spencer, M.; Finlin, B.S.; Unal, R.; Zhu, B.; Morris, A.J.; Shipp, L.R.; Lee, J.; Walton, R.G.; Adu, A.; Erfani, R.; et al. Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes 2013, 62, 1709–1717. [Google Scholar] [CrossRef]
- Meydani, M.; Hasan, S.T. Dietary polyphenols and obesity. Nutrients 2010, 2, 737–751. [Google Scholar] [CrossRef]
- Most, J.; Timmers, S.; Warnke, I.; Jocken, J.W.; van Boekschoten, M.; de Groot, P.; Bendik, I.; Schrauwen, P.; Goossens, G.H.; Blaak, E.E. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 215–227. [Google Scholar] [CrossRef]
- Van Hul, M.; Cani, P.D. Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Curr. Nutr. Rep. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Song, Z.; Weng, J.; Fantus, I.G. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E201–E205. [Google Scholar] [CrossRef] [PubMed]
- McMorrow, A.M.; Connaughton, R.M.; Magalhaes, T.R.; McGillicuddy, F.C.; Hughes, M.F.; Cheishvili, D.; Morine, M.J.; Ennis, S.; Healy, M.L.; Roche, E.F.; et al. Personalized Cardio-Metabolic Responses to an Anti-Inflammatory Nutrition Intervention in Obese Adolescents: A Randomized Controlled Crossover Trial. Mol. Nutr. Food Res. 2018, 62, e1701008. [Google Scholar] [CrossRef] [PubMed]
- Kasher-Meron, M.; Youn, D.Y.; Zong, H.; Pessin, J.E. Lipolysis Defect in White Adipose Tissue and Rapid Weight Regain. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E185–E193. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Heeren, J.; Scheja, L. Regulation of immunometabolism in adipose tissue. Semin. Immunopathol. 2018, 40, 189–202. [Google Scholar] [CrossRef]
- Sanchez, M.; Darimont, C.; Drapeau, V.; Emady-Azar, S.; Lepage, M.; Rezzonico, E.; Ngom-Bru, C.; Berger, B.; Philippe, L.; Ammon-Zuffrey, C.; et al. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Br. J. Nutr. 2014, 111, 1507–1519. [Google Scholar] [CrossRef]
- Tabung, F.K.; Satija, A.; Fung, T.T.; Clinton, S.K.; Giovannucci, E.L. Long-Term Change in both Dietary Insulinemic and Inflammatory Potential Is Associated with Weight Gain in Adult Women and Men. J. Nutr. 2019, 149, 804–815. [Google Scholar] [CrossRef]
- Muhammad, H.F.L.; Vink, R.G.; Roumans, N.J.T.; Arkenbosch, L.A.J.; Mariman, E.C.; van Baak, M.A. Dietary Intake after Weight Loss and the Risk of Weight Regain: Macronutrient Composition and Inflammatory Properties of the Diet. Nutrients 2017, 9, 1205. [Google Scholar] [CrossRef]
- Ramallal, R.; Toledo, E.; Martinez, J.A.; Shivappa, N.; Hebert, J.R.; Martinez-Gonzalez, M.A.; Ruiz-Canela, M. Inflammatory potential of diet, weight gain, and incidence of overweight/obesity: The SUN cohort. Obesity 2017, 25, 997–1005. [Google Scholar] [CrossRef] [Green Version]
Author | Year | Country | Participants | Intervention Characteristics | Main Conclusion Authors | |||||
---|---|---|---|---|---|---|---|---|---|---|
Total Number | Sex | Age | Diagnostic Criteria | Diet | Duration | Dropout n (%) | ||||
Aller | 2014 | Netherlands and Denmark | 256 | 40% male | 27–59 year | BMI ≥ 27 kg/m2 | five diet groups: lower protein/lower glycemic index (GI); higher protein/lower GI; lower protein/higher GI; higher protein/higher GI; control | 12 months | 117 (45%) | higher protein content improves weight loss maintenance |
Bajerska | 2015 | Poland | 55 | men and women # | 49–65 year | BMI 30–50 kg/m2 | rye bread with green tea extract vs. rye bread | 12 weeks | 0 (0%) | green tea consumption did not improve weight loss maintenance |
Claessens | 2009 | Netherlands | 5 | 35% male | 30–60 year | BMI ≥ 27 kg/m2 | High-protein plus whey or casein supplements vs. high-carbohydrate plus maltodextrin supplements | 12 weeks | 6 (11%) | low-fat, high-casein, or high-whey protein diets are more effective for weight loss maintenance than low-fat, high-carbohydrate diets |
Delbridge | 2009 | Australia | 141 | 50% male | 18–75 year | BMI ≥ 27 kg/m2 | higher protein vs. lower protein diet | 12 months | 59 (42%) | the protein or carbohydrate content of the diet had no effect on weight loss maintenance |
Due | 2008 | Denmark | 131 | 42% male | 18–35 year | BMI ≥ 28 kg/m2 | high-MUFA vs. low-fat vs. control diet | 6 months | 25 (19%) | diet composition had no major effect on preventing weight regain |
Due | 2017 | Denmark | 131 | 42% male | 18–35 year | BMI ≥ 28 kg/m2 | high-MUFA vs. low-fat vs. control diet | 18 months | 58 (44%) | weight regain did not differ among the diets |
Hauner | 2001 | Germany | 110 | 20% male | 21–66 year | BMI 32–38 kg/m2 | acarbose vs. placebo capsules | 26 weeks | 35 (32%) | no benefit of acarbose to stabilise weight reduction |
Hursel | 2009 | Netherlands | 80 | men and women # | 18–60 year | BMI 25–35 kg/m2 | high-protein diet plus EGCG/caffeine vs. high-protein diet plus placebo vs. normal-protein diet plus EGCG/caffeine vs. normal -protein diet plus placebo | 13 weeks | 0 (0%) | both EGCG/caffeine and higher protein improved weight maintenance independently |
Kamphuis | 2003 | Netherlands | 60 | 43% male | 20–50 year | BMI 25–30 kg/m2 | conjugated linoleic acid (CLA) low dose vs. placebo and CLA high dose vs. placebo | 13 weeks | 6 (10%) | CLA did not result in improved weight loss maintenance |
Kjølbaek | 2017 | Denmark | 189 | men and women # | 18–60 year | BMI 28–40 kg/m2 | whey supplement vs. whey plus calcium supplement vs. soy supplement vs. placebo (maltodextrin) | 24 weeks | 38 (20%) | protein supplementation did not result in improved weight maintenance |
Kovacs | 2004 | Netherlands | 104 | men and women # | 18–60 year | BMI 25–35 kg/m2 | green tea vs. placebo capsules | 13 weeks | 0 (0%) | weight maintenance not affected by green tea |
Kristensen | 2017 | France | 178 | women | 20–50 year | BMI 27–34 kg/m2 | whole grain vs. refined grain foods | 12 weeks | 9 (5%) | no effect of whole grain on weight maintenance, but dietary adherence was low |
Larsen | 2010 | Eight European countries | 773 | men and women # | 18–65 year | BMI 27–45 kg/m2 | five diet groups: lower protein/lower GI; higher protein/lower GI; lower protein/higher GI; higher protein/higher GI; control | 26 weeks | 225 (29%) | higher protein content and lower GI improve maintenance of weight loss |
Larsen | 2006 | Denmark | 101 | men and women # | 18–65 year | BMI 28–35 kg/m2 | conjugated linoleic acid (CLA) or placebo capsules | 52 weeks | 24 (24%) | CLA supplementation does not prevent weight regain |
Lejeune | 2003 | Netherlands | 91 | men and women # | 18–60 year | BMI 25–35 kg/m2 | capsaicin vs. placebo capsules | 12 weeks | 0 (0%) | capsaicin had no limiting effect on weight regain |
Lejeune | 2005 | Netherlands | 103 | men and women # | 18–60 year | BMI 25–35 kg/m2 | protein supplement vs. control (no placebo) | 6 months | 0 (0%) | a higher protein intake improved weight maintenance |
Pasman | 1997 | Netherlands | 39 | women | 41 ± 7 year | obese | fibre supplement vs. control (no placebo) | 14 months | 8 (20%) | no effect of fibre supplementation on weight maintenance |
Pasman | 1997 | Netherlands | 39 | women | 35 ± 7 year | obese | CHO plus chromium-picolinate plus fibre plus caffeine supplementvs. CHO supplement vs. control (no placebo) | 14 months | 6 (15%) | CHO supplementation beneficial for weight maintenance, no additional effect of chromium-picolinate/fibre/caffeine |
Philippou | 2008 | UK | 42 * | ? | 18–65 year | BMI 27–45 kg/m2 | higher GI vs. lower GI diet | 4 months | ? | changing the diet GI does not affect weight maintenance |
Schirmer | 2007 | USA | 50 | 9% male | mean ~50 year | BMI after weight loss <34 kg/m2 | gamma-linolenate (GLA) vs. placebo capsules | 12 months | 20 (40%) ** | GLA reduced weight regain after major weight loss |
Westerterp-Plantenga | 2004 | Netherlands | 148 | men and women # | 44 ± 10 year | BMI 25–35 kg/m2 | protein supplement vs. control (no placebo) | 13 weeks | 0 (0%) | higher protein intake resulted in lower body weight regain |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Baak, M.A.; Mariman, E.C.M. Dietary Strategies for Weight Loss Maintenance. Nutrients 2019, 11, 1916. https://doi.org/10.3390/nu11081916
van Baak MA, Mariman ECM. Dietary Strategies for Weight Loss Maintenance. Nutrients. 2019; 11(8):1916. https://doi.org/10.3390/nu11081916
Chicago/Turabian Stylevan Baak, Marlene A., and Edwin C. M. Mariman. 2019. "Dietary Strategies for Weight Loss Maintenance" Nutrients 11, no. 8: 1916. https://doi.org/10.3390/nu11081916
APA Stylevan Baak, M. A., & Mariman, E. C. M. (2019). Dietary Strategies for Weight Loss Maintenance. Nutrients, 11(8), 1916. https://doi.org/10.3390/nu11081916