Dietary Patterns of Patients with Chronic Kidney Disease: The Influence of Treatment Modality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sampling
2.2. Data Collection and Variables of Study
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed]
- Barreto, S.M.; Ladeira, R.M.; Duncan, B.B.; Schmidt, M.I.; Lopes, A.A.; Benseñor, I.M.; Chor, D.; Griep, R.H.; Vidigal, P.G.; Ribeiro, A.L.; et al. Chronic kidney disease among adult participants of the ELSA-Brasil cohort: Association with race and socioeconomic position. J. Epidemiol. Community Health 2016, 70, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Ghimire, S.; Castelino, R.L.; Lioufas, N.M.; Peterson, G.M.; Zaidi, S.T. Nonadherence to Medication Therapy in Haemodialysis Patients: A Systematic Review. PLoS ONE 2015, 10, e0144119. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.L.; Fink, J.C.; Ginsberg, J.S.; Yoffe, M.; Zhan, M.; Fink, W.; Woods, C.M.; Diamantidis, C.J. Self-reported Medication Adherence and Adverse Patient Safety Events in CKD. Am. J. Kidney Dis. 2015, 66, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nerbass, F.B.; Correa, D.; Santos, R.G.D.; Kruger, T.S.; Sczip, A.C.; Vieira, M.A.; Morais, J.G. Perceptions of hemodialysis patients about dietary and fluid restrictions. J. Bras. Nefrol. 2017, 39, 154–161. [Google Scholar] [CrossRef]
- Ahrari, S.; Moshki, M.; Bahrami, M. The Relationship Between Social Support and Adherence of Dietary and Fluids Restrictions among Hemodialysis Patients in Iran. J. Caring Sci. 2014, 3, 11–19. [Google Scholar]
- Beerendrakumar, N.; Ramamoorthy, L.; Haridasan, S. Dietary and Fluid Regime Adherence in Chronic Kidney Disease Patients. J. Caring Sci. 2018, 7, 17–20. [Google Scholar] [CrossRef]
- Anderson, C.A.; Nguyen, H.A.; Rifkin, D.E. Nutrition Interventions in Chronic Kidney Disease. Med. Clin. N. Am. 2016, 100, 1265–1283. [Google Scholar] [CrossRef]
- Yan, B.; Su, X.; Xu, B.; Qiao, X.; Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0206134. [Google Scholar] [CrossRef] [PubMed]
- Fouque, D.; Vennegoor, M.; ter Wee, P.; Wanner, C.; Basci, A.; Canaud, B.; Haage, P.; Konner, K.; Kooman, J.; Martin-Malo, A.; et al. EBPG guideline on nutrition. Nephrol. Dial. Transpl. 2007, 22, ii45–ii87. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. Kidney Disease Outcomes Quality Initiative. Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am. J. Kidney Dis. 2000, 35, S1–S140. [Google Scholar]
- KDIGO. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 5–14. [Google Scholar]
- Martins, A.M.; Dias Rodrigues, J.C.; De Oliveira Santin, F.G.; Barbosa Brito, F.O.S.; Bello Moreira, A.S.; Lourenço, R.A.; Avesani, C.M. Food intake assessment of elderly patients on hemodialysis. J. Ren. Nutr. 2015, 25, 321–326. [Google Scholar] [CrossRef]
- Therrien, M.; Byham-Gray, L.; Beto, J. A Review of Dietary Intake Studies in Maintenance Dialysis Patients. J. Ren. Nutr. 2015, 25, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ocké, M.C. Evaluation of methodologies for assessing the overall diet: Dietary quality scores and dietary pattern analysis. Proc. Nutr. Soc. 2013, 72, 191–199. [Google Scholar] [CrossRef]
- Borges, C.A.; Rinaldi, A.E.; Conde, W.L.; Mainardi, G.M.; Behar, D.; Slater, B. Dietary patterns: A literature review of the methodological characteristics of the main step of the multivariate analyzes. Rev. Bras. Epidemiol. 2015, 18, 837–857. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Ramos, C.I.; Nerbass, F.B.; Cuppari, L. Diet Quality of Chronic Kidney Disease Patients and the Impact of Nutritional Counseling. J. Ren. Nutr. 2018, 28, 403–410. [Google Scholar] [CrossRef]
- Martins, A.M.; Bello Moreira, A.S.; Canella, D.S.; Rodrigues, J.; Santin, F.; Wanderley, B.; Lourenço, R.A.; Avesani, C.M. Elderly patients on hemodialysis have worse dietary quality and higher consumption of ultraprocessed food than elderly without chronic kidney disease. Nutrition 2017, 41, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Smyth, A.; Griffin, M.; Yusuf, S.; Mann, J.F.; Reddan, D.; Canavan, M.; Newell, J.; O’Donnell, M. Diet and Major Renal Outcomes: A Prospective Cohort Study. The NIH-AARP Diet and Health Study. J. Ren. Nutr. 2016, 26, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Wai, S.N.; Kelly, J.T.; Johnson, D.W.; Campbell, K.L. Dietary Patterns and Clinical Outcomes in Chronic Kidney Disease: The CKD.QLD Nutrition Study. J. Ren. Nutr. 2017, 27, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Santin, F.; Canella, D.S.; Avesani, C.M. Food consumption in chronic kidney disease: Association with sociodemographic and geographical variables and comparison with healthy individuals. J. Ren. Nutr. 2019, 29, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Szwarcwald, C.L.; Malta, D.C.; Pereira, C.A.; Vieira, M.L.; Conde, W.L.; Souza Júnior, P.R.; Damacena, G.N.; Azevedo, L.O.; Azevedo, E.; Silva, G.; et al. National Health Survey in Brazil: Design and methodology of application. Cien. Saude Colet. 2014, 19, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Souza-Junior, P.R.B.; Freitas, M.P.S.; Antonaci, G.A.; Szwarcwald, C.L. Sampling Design for the National Health Survey, Brazil 2013. Epidemiol. Serv. Saúde 2015, 24, 207–216. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística–IBGE. Diretoria de Pesquisas. Coordenação de Trabalho e Rendimento. Pesquisa Nacional de Saúde 2013: Percepção do estado de saúde, estilos de vida, doenças crônicas—Brasil, Grandes Regiões e Unidades da Federação; IBGE: Rio de Janeiro, Brazil, 2014.
- Ministério da Saúde. Secretaria de Vigilância em Saúde. Secretaria de Gestão Estratégica e Participativa. Vigitel Brasil 2016–Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: Estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2016; Ministério da Saúde: Brasília, Brasil, 2017.
- Mendes, L.L.; Campos, S.F.; Malta, D.M.; Bernal, R.T.I.; De Sá, N.N.B.; Velásquez-Meléndez, G. Validity and reliability of foods and beverages intake obtained by telephone survey in Belo Horizonte, Brazil. Rev. Bras. Epidemio. 2011, 14, 80–89. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moura, E.C.; Jaime, P.C.; Claro, R.M. Validade de indicadores do consumo de alimentos e bebidas obtidos por inquérito telefônico. Rev. Saúde Pública 2008, 42, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.C.M.D.; Gonzaga, L.A.A.; Martens, I.B.G.; Moura, E.C. Validação de indicadores do consumo de alimentos e bebidas obtidos por inquérito telefônico em Belém, Pará, Brasil. Cad. Saude Publica 2008, 26, 2379–2388. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark IV. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NY, USA, 2009. [Google Scholar]
- Machado, A.D.; Anjos, F.S.N.D.; Domingos, M.A.M.; Molina, M.D.C.B.; Marchioni, D.M.L.; Benseñor, I.J.M.; Titan, S.M.O. Dietary intake of non-dialysis chronic kidney disease patients: The PROGREDIR study. A cross-sectional study. Sao Paulo Med. J. 2018, 136, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Taber, D.J.; Fleming, J.N.; Fominaya, C.E.; Gebregziabher, M.; Hunt, K.J.; Srinivas, T.R.; Baliga, P.K.; McGillicuddy, J.W.; Egede, L.E. The Impact of Health Care Appointment Non-Adherence on Graft Outcomes in Kidney Transplantation. Am. J. Nephrol. 2017, 45, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.A.; Roderick, P.; Mullee, M.; Mason, J.C.; Peveler, R.C. Frequency and impact of nonadherence to immunosuppressants after renal transplantation: A systematic review. Transplantation 2004, 77, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Scheel, J.; Reber, S.; Stoessel, L.; Waldmann, E.; Jank, S.; Eckardt, K.U.; Grundmann, F.; Vitinius, F.; de Zwaan, M.; Bertram, A.; et al. Patient-reported non-adherence and immunosuppressant trough levels are associated with rejection after renal transplantation. BMC Nephrol. 2017, 18, 107. [Google Scholar] [CrossRef] [PubMed]
- Paterson, E.N.; Neville, C.E.; Silvestri, G.; Montgomery, S.; Moore, E.; Silvestri, V.; Cardwell, C.R.; MacGillivray, T.J.; Maxwell, A.P.; Woodside, J.V.; et al. Dietary patterns and chronic kidney disease: A cross-sectional association in the Irish Nun Eye Study. Sci. Rep. 2018, 8, 6654. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2018, 37, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Momenan, M.; Yuzbashian, E.; Mirmiran, P.; Azizi, F. Dietary pattern and incidence of chronic kidney disease among adults: A population-based study. Nutr. Metab. 2018, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, C.M.; Young, B.A.; Katz, R.; Tucker, K.L.; Carithers, T.C.; Norwood, A.F.; Correa, A. Patterns of Beverages Consumed and Risk of Incident Kidney Disease. Clin. J. Am. Soc. Nephrol. 2019, 14, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Muntner, P.; Rizk, D.V.; McClellan, W.M.; Warnock, D.G.; Newby, P.K.; Judd, S.E. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: A cohort study. Am. J. Kidney Dis. 2014, 64, 204–213. [Google Scholar] [CrossRef]
- Saglimbene, V.M.; Wong, G.; Ruospo, M.; Palmer, S.C.; Garcia-Larsen, V.; Natale, P.; Teixeira-Pinto, A.; Campbell, K.L.; Carrero, J.J.; Stenvinkel, P.; et al. Fruit and Vegetable Intake and Mortality in Adults undergoing Maintenance Hemodialysis. Clin. J. Am. Soc. Nephrol. 2019, 14, 250–260. [Google Scholar] [CrossRef] [Green Version]
Food Intake Markers | |
---|---|
Questions Used to Determine Frequency of Consumption | Food Items |
“How many days a week do you usually eat/drink (name of food/beverage)? (a) ____ days (b) Never or less than once a week” | Fruit Fresh fruit juice Vegetables (raw or cooked) Beans Milk Sugar-sweetened beverages (soft drinks or artificial juice) Sweets Red meat (pork, veal, beef, or lamb) Chicken Fish Replacement of meals with snacks |
“Considering freshly prepared food and industrialized food, do you think your salt intake is: (a) very high; (b) high; (c) appropriate; (d) low; (e) very low?” | Excess salt |
“How often do you usually drink alcoholic beverages? (a) never; (b) once or more per month; (c) less than once a month” | Alcoholic beverages |
Variables | All (n = 839) | Untreated CKD (n = 294) | Nondialysis Dependent (n = 480) | Dialysis Dependent (n = 48) | Renal Transplant (n = 17) |
---|---|---|---|---|---|
Sociodemographic Variables | Weighted % or Mean | Weighted % or Mean | Weighted % or Mean | Weighted % or Mean | Weighted % or Mean |
Gender | |||||
Male | 44.9 (39.6; 50.2) | 50.6 (41.7; 59.5) | 36.9 (30.1; 44.3) | 85.3 (72.2; 92.8) | 48.7 (23.0; 75.2) |
Age (in years) | 53.5 (51.6; 55.4) * | 53.6 (51.0;56.2) * | 53.2 (50.4; 55.9) * | 57.0 (49.7; 64.3) * | 50.3 (43.1; 57.6) * |
Education level | |||||
No primary school | 21.0 (16.8; 26.1) | 19.2 (13.2; 26.9) | 22.2 (16.5; 29.2) | 26.7 (9.5; 55.8) | 3.6 (0.9; 13.7) |
Incomplete primary school | 35.8 (31.0; 40.9) | 34.7 (26.9; 43.5) | 38.1 (31.5; 45.2) | 27.1 (11.6; 51.4) | 14.0 (3.2; 44.7) |
Complete primary school but incomplete secondary school | 12.6 (9.8; 16.2) | 13.9 (9.2; 20.4) | 10.4 (7.1; 15.0) | 11.0 (4.2; 25.9) | 61.5 (33.9; 83.3) |
Complete secondary school | 19.8 (16.1; 24.2) | 22.4 (15.7; 30.9) | 19.1 (14.2; 25.1) | 13.1 (5.5; 27.9) | 14.3 (3.3; 45.2) |
Incomplete or complete university | 10.8 (7.9; 14.3) | 9.8 (5.3; 17.4) | 10.2 (6.9; 14.7) | 22.1 (9.1; 44.7) | 6.6 (1.7; 22.5) |
Race/Skin color | |||||
White | 52.7 (47.2; 58.2) | 60.2 (52.0; 67.9) | 49.8 (42.2; 57.5) | 32.7 (16.7; 54.0) | 62.4 (33.4; 84.6) |
Black | 9.6 (6.4; 14.1) | 10.3 (6.1; 16.8) | 9.3 (5.1; 16.2) | 12.2 (2.4; 44.2) | 0 |
Yellow | 1.1 (0.4; 2.9) | 1.0 (0.2; 3.9) | 0.5 (0.2; 1.2) | 8.9 (1.6; 38.0) | 0 |
Mixed race | 36.1 (31.1; 41.3) | 28.5 (22.1; 35.9) | 39.8 (32.9; 47.2) | 44.2 (23.6; 66.9) | 37.6 (15.4; 66.6) |
Indigenous | 0.5 (0.1; 2.0) | 0 | 0.1 (0.0; 4.1) | 2.0 (0.3; 13.2) | 0 |
Location of residence | |||||
Urban | 86.5 (82.8; 89.4) | 88.1 (82.3; 92.1) | 86.0 (80.7; 90.0) | 86.4 (67.6; 95.1) | 72.1 (40.1; 90.9) |
Rural | 13.5 (10.6; 17.2) | 11.9 (7.9; 17.7) | 14.0 (10.0; 19.3) | 13.6 (4.9; 32.4) | 27.9 (9.1; 59.9) |
Brazilian geographical regions | |||||
North | 6.2 (4.8; 8.0) | 4.9 (3.4; 7.2) | 7.5 (5.4; 10.4) | 2.8 (1.0; 7.8) | 0 |
Northeast | 21.6 (17.5; 26.3) | 14.7 (10.6; 20.1) | 25.1 (19.0; 32.3) | 28.6 (14.5; 48.7) | 22.5 (7.8; 50.1) |
Southeast | 41.6 (35.9; 47.5) | 45.3 (36.6; 54.4) | 38.8 (31.1; 47.1) | 37.4 (17.0; 63.5) | 65.9 (39.1; 85.4) |
South | 22.3 (17.9; 27.4) | 25.3 (18.4; 33.7) | 21.1 (15.1; 28.7) | 19.8 (7.7; 42.3) | 8.3 (2.1; 27.9) |
Midwest | 8.4 (6.5; 10.8) | 9.7 (6.3; 14.7) | 7.4 (5.4; 10.2) | 11.4 (3.9; 29.5) | 3.2 (0.4; 20.5) |
Anthropometric Variables | n = 836 | n = 293 | n = 478 | n = 48 | n = 17 |
Body weight (kg) | 71.3 (69.7;73.0) * | 74.2 (71.5; 77.0) * | 69.5 (67.3; 71,8) * | 71.2 (64.0; 78.4) * | 71.9 (63.4; 80,4) * |
Body mass index (kg/m2) | 27.1 (26.5;27.6) * | 27.5 (26.7; 28.4) * | 26.9 (26.2; 27.6) * | 25.5 (23.4; 27.6) * | 27.2 (25.1; 29.2) * |
Comorbidity | |||||
Diabetes | n = 780 | n = 242 | n = 444 | n = 45 | n = 17 |
Yes | 16.3 (12.7; 20.8) | 16.0 (10.2; 24.3) | 13.5 (9.6; 18.6) | 37.7 (17.1; 64.0) | 42.3 (18.0; 71.1) |
Hypertension | n = 836 | n = 293 | n = 478 | n = 48 | n = 17 |
Yes | 43.2 (37.7; 48.8) | 37.9 (30.1; 46.4) | 43.3 (35.8; 51.2) | 60.0 (37.8; 78.7) | 78.9 (56.0; 91.7) |
Cardiovascular disease | n = 839 | n = 294 | n = 480 | n = 48 | n = 17 |
Yes | 18.0 (14.0; 22.8) | 20.2 (14.1; 28.1) | 15.1 (9.9; 22.2) | 28.1 (13.9; 48.6) | 34.2 (13.1; 64.3) |
Food Intake Markers | Prevalence (%) of Consumption Frequency | Mean (95% CI) | ||||
---|---|---|---|---|---|---|
Never | 1× or 2× per Week | 3× or 4× per Week | 5× or 6× per Week | Daily | ||
Replacement of meals with snacks | 67.9 | 19.7 | 5.5 | 2.0 | 4.8 | 0.9 (0.7; 1.1) |
Sweet sugar beverages | 45.7 | 25.7 | 10.4 | 6.0 | 12.3 | 1.9 (1.6; 2.1) |
Fish | 43.0 | 44.8 | 9.2 | 1.6 | 1.4 | 1.1 (0.9; 1.2) |
Fresh fruit juice | 41.2 | 21.1 | 13.8 | 10.6 | 13.2 | 2.3 (2.0; 2.6) |
Sweets | 41.1 | 27.8 | 11.3 | 4.4 | 15.3 | 2.1 (1.8; 2.3) |
Milk | 33.0 | 10.7 | 6.4 | 3.3 | 46.4 | 3.8 (3.5; 4.2) |
Red meat | 14.2 | 21.4 | 27.2 | 12.8 | 24.5 | 3.7 (3.4; 3.9) |
Fruits | 12.4 | 20.0 | 18.1 | 12.9 | 36.7 | 4.1 (3.9; 4.4) |
Cooked vegetables | 12.1 | 26.1 | 20.7 | 12.3 | 28.9 | 3.8 (3.5; 4.1) |
Raw vegetables | 11.6 | 17.3 | 19.6 | 11.3 | 40.2 | 4.4 (4.1; 4.6) |
Chicken | 10.1 | 40.6 | 31.5 | 8.1 | 9.7 | 2.8 (2.6; 3.0) |
Beans | 10.1 | 12.5 | 11.3 | 11.4 | 54.7 | 5.0 (4.7; 5.3) |
Alcoholic beverages | 0 | ≤1×/month | >1×/month | |||
72.0 | 10.0 | 18.0 | ||||
Excess salt * | Very high | High | Appropriate | Low | Very low | |
3.5 | 10.5 | 48.3 | 29.8 | 7.9 |
Food Intake Markers | Unhealthy Pattern | Healthy Pattern | Communality |
---|---|---|---|
Red meat | 0.70 | 0.04 | 0.48 |
Sweet sugar beverages | 0.54 | 0.16 | 0.31 |
Alcoholic beverages | 0.41 | 0.03 | 0.17 |
Sweets | 0.38 | 0.05 | 0.15 |
Raw vegetables | 0.16 | 0.76 | 0.60 |
Cooked vegetables | 0.06 | 0.73 | 0.54 |
Milk | 0.09 | 0.41 | 0.18 |
Fruits | 0.16 | 0.63 | 0.42 |
Fresh fruit juice | 0.25 | 0.43 | 0.25 |
Chicken | 0.47 | 0.12 | 0.23 |
Fish | 0.49 | 0.07 | 0.25 |
Excess salt | 0.52 | 0.08 | 0.28 |
Variance explained (%) | 18.3 | 13.8 | |
Cumulative variance (%) | 18.3 | 32.1 | |
Eigenvalues | 2.2 | 1.7 |
Variable | Unhealthy Pattern | Healthy Pattern | ||
---|---|---|---|---|
Crude β-Coefficient | Adjusted β-Coefficient * | Crude β-Coefficient | Adjusted β-Coefficient * | |
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |
Untreated CKD (n = 294) (reference group) | 1 | 1 | 1 | 1 |
Nondialysis dependent (n = 480) | −0.28 ** (−0.42; −0.15) | −0.20 ** (−0.33; −0.06) | −0.05 (−0.18; 0.08) | −0.06 (−0.18; 0.06) |
Dialysis dependent (n = 48) | −0.93 ** (−1.21; −0.65) | −0.80 ** (−1.16; −0.45) | −0.23 (−0.53; 0.06) | −0.17 (−0.40; 0.06) |
Renal transplant (n = 17) | −0.48 (−1.20; 0.23) | −0.55 (−1.13; 0.03) | 0.19 (−0.17; 0.55) | 0.32 ** (0.03; 0.62) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santin, F.; Canella, D.; Borges, C.; Lindholm, B.; Avesani, C.M. Dietary Patterns of Patients with Chronic Kidney Disease: The Influence of Treatment Modality. Nutrients 2019, 11, 1920. https://doi.org/10.3390/nu11081920
Santin F, Canella D, Borges C, Lindholm B, Avesani CM. Dietary Patterns of Patients with Chronic Kidney Disease: The Influence of Treatment Modality. Nutrients. 2019; 11(8):1920. https://doi.org/10.3390/nu11081920
Chicago/Turabian StyleSantin, Fernanda, Daniela Canella, Camila Borges, Bengt Lindholm, and Carla Maria Avesani. 2019. "Dietary Patterns of Patients with Chronic Kidney Disease: The Influence of Treatment Modality" Nutrients 11, no. 8: 1920. https://doi.org/10.3390/nu11081920
APA StyleSantin, F., Canella, D., Borges, C., Lindholm, B., & Avesani, C. M. (2019). Dietary Patterns of Patients with Chronic Kidney Disease: The Influence of Treatment Modality. Nutrients, 11(8), 1920. https://doi.org/10.3390/nu11081920