Eating Competence Is Associated with Lower Prevalence of Obesity and Better Insulin Sensitivity in Finnish Adults with Increased Risk for Type 2 Diabetes: The StopDia Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Procedure and Participants
2.3. Measurements
2.3.1. Assessments Based on the StopDia Digital Questionnaire: Eating Competence
2.3.2. Sociodemographic Factors, Medical History and the FINDRISC
2.3.3. Dietary Patterns
2.3.4. Sleeping, Smoking and Physical Activity
2.3.5. Anthropometric and Clinical Measurements
2.3.6. Biochemical Measurements
2.3.7. Assessments of Type 2 Diabetes, Insulin Sensitivity and Secretion and Metabolic Syndrome
2.4. Statistical Analyses
3. Results
3.1. Eating Competence, Sociodemographics and Lifestyle Patterns of Study Participants
3.2. Eating Competence and Metabolic Risk Factors
3.3. Subcomponents of Eating Competence and Metabolic Risk Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gillies, C.L.; Abrams, K.R.; Lambert, P.C.; Cooper, N.J.; Sutton, A.J.; Hsu, R.T.; Khunti, K. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: Systematic review and meta-analysis. BMJ 2007, 334, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef]
- Jenum, A.K.; Brekke, I.; Mdala, I.; Muilwijk, M.; Ramachandran, A.; Kjøllesdal, M.; Andersen, E.; Richardsen, K.R.; Douglas, A.; Cezard, G.; et al. Effects of dietary and physical activity interventions on the risk of type 2 diabetes in South Asians: Meta-analysis of individual participant data from randomised controlled trials. Diabetologia 2019, 62, 1337–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, J.; Peltonen, M.; Eriksson, J.G.; Ilanne-Parikka, P.; Aunola, S.; Keinänen-Kiukaanniemi, S.; Uusitupa, M.; Tuomilehto, J. Improved lifestyle and decreased diabetes risk over 13 years: Long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia 2013, 56, 284–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satter, E. Eating Competence: Definition and Evidence for the Satter Eating Competence Model. J. Nutr. Educ. Behav. 2007, 39, S142–S153. [Google Scholar] [CrossRef] [PubMed]
- Lohse, B.; Satter, E.; Horacek, T.; Gebreselassie, T.; Oakland, M.J. Measuring Eating Competence: Psychometric Properties and Validity of the ecSatter Inventory. J. Nutr. Educ. Behav. 2007, 39, S154–S166. [Google Scholar] [CrossRef]
- Krall, J.S.; Lohse, B. Validation of a measure of the Satter eating competence model with low-income females. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Lohse, B. The Satter Eating Competence Inventory for Low-income persons is a valid measure of eating competence for persons of higher socioeconomic position. Appetite 2015, 87, 223–228. [Google Scholar] [CrossRef]
- Psota, T.L.; Lohse, B.; West, S.G. Associations between Eating Competence and Cardiovascular Disease Biomarkers. J. Nutr. Educ. Behav. 2007, 39, S171–S178. [Google Scholar] [CrossRef]
- Lohse, B.; Psota, T.; Estruch, R.; Zazpe, I.; Sorli, J.V.; Salas-Salvado, J.; Serra, M.; Krall, J.S.; Marquez, F.; Ros, E. Eating Competence of Elderly Spanish Adults Is Associated with a Healthy Diet and a Favorable Cardiovascular Disease Risk Profile. J. Nutr. 2010, 140, 1322–1327. [Google Scholar] [CrossRef] [Green Version]
- Lohse, B.; Bailey, R.L.; Krall, J.S.; Wall, D.E.; Mitchell, D.C. Diet quality is related to eating competence in cross-sectional sample of low-income females surveyed in Pennsylvania. Appetite 2012, 58, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Lohse, B.; Krall, J.S.; Psota, T.; Kris-Etherton, P. Impact of a Weight Management Intervention on Eating Competence: Importance of Measurement Interval in Protocol Design. Am. J. Health Promot. 2018, 32, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Quick, V.; Shoff, S.; Lohse, B.; White, A.; Horacek, T.; Greene, G. Relationships of eating competence, sleep behaviors and quality, and overweight status among college students. Eat. Behav. 2015, 19, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohse, B.; Arnold, K.; Wamboldt, P. Evaluation of About Being Active, an online lesson about physical activity shows that perception of being physically active is higher in eating competent low-income women. BMC Womens Health 2013, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Greene, G.W.; Schembre, S.M.; White, A.A.; Hoerr, S.L.; Lohse, B.; Shoff, S.; Horacek, T.; Riebe, D.; Patterson, J.; Phillips, B.W.; et al. Identifying Clusters of College Students at Elevated Health Risk Based on Eating and Exercise Behaviors and Psychosocial Determinants of Body Weight. J. Am. Diet. Assoc. 2011, 111, 394–400. [Google Scholar] [CrossRef]
- Pihlajamäki, J.; Männikkö, R.; Tilles-Tirkkonen, T.; Karhunen, L.; Kolehmainen, M.; Schwab, U.; Lintu, N.; Paananen, J.; Järvenpää, R.; Harjumaa, M.; et al. Digitally supported program for type 2 diabetes risk identification and risk reduction in real-world setting: Protocol for the StopDia model and randomized controlled trial. BMC Public Health 2019, 19, 255. [Google Scholar] [CrossRef] [Green Version]
- Lindström, J.; Tuomilehto, J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Stotts, J.L.; Lohse, B. Reliability of the ecSatter Inventory as a Tool to Measure Eating Competence. J. Nutr. Educ. Behav. 2007, 39, S167–S170. [Google Scholar] [CrossRef]
- Godleski, S.; Lohse, B.; Krall, J.S. Satter Eating Competence Inventory Subscale Restructure After Confirmatory Factor Analysis. J. Nutr. Educ. Behav. 2019, 51, 1003–1010. [Google Scholar] [CrossRef]
- Hemiö, K.; Pölönen, A.; Ahonen, K.; Kosola, M.; Viitasalo, K.; Lindström, J. A simple tool for diet evaluation in primary health care: Validation of a 16-item food intake questionnaire. Int. J. Environ. Res. Public Health 2014, 11, 2683–2697. [Google Scholar] [CrossRef] [Green Version]
- VRN Valtion Ravitsemusneuvottelukunta. Terveyttä Ruoasta—Suomalaiset Ravitsemussuositukset 2014; VRN Valtion Ravitsemusneuvottelukunta: Helsinki, Finland, 2018. [Google Scholar]
- Partinen, M.; Gislason, T. Gislason Basic Nordic Sleep Questionnaire (BNSQ): A quantitated measure of subjective sleep complaints. J. Sleep Res. 1995, 4, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Borodulin, K.; Saarikoski, L.; Lund, L.; Juolevi, A.; Grönholm, M.; Helldán, A.; Peltonen, M.; Laatikainen, T.; Vartiainen, E. Kansallinen FINRISKI 2012—Terveystutkimus—Osa 1: Tutkimuksen Toteutus ja Menetelmät; Juvenes Print—Suomen Yliopistopaino Oy: Tampere, Finland, 2013; pp. 80–92. [Google Scholar]
- Borodulin, K.; Laatikainen, T.; Lahti-Koski, M.; Jousilahti, P.; Lakka, T.A. Association of age and education with different types of leisure-time physical activity among 4437 Finnish adults. J. Phys. Act. Health 2008, 5, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Borodulin, K.; Kärki, A.; Laatikainen, T.; Peltonen, M.; Luoto, R. Daily Sedentary Time and Risk of Cardiovascular Disease: The National FINRISK 2002 Study. J. Phys. Act. Health 2015, 12, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Lakka, T.A.; Salonen, J.T. Intra-person variability of various physical activity assessments in the Kuopio Ischaemic Heart Disease Risk Factor Study. Int. J. Epidemiol. 1992, 21, 467–472. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Stancakova, A.; Javorsky, M.; Kuulasmaa, T.; Haffner, S.M.; Kuusisto, J.; Laakso, M. Changes in Insulin Sensitivity and Insulin Release in Relation to Glycemia and Glucose Tolerance in 6414 Finnish Men. Diabetes 2009, 58, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Li, C.; Gong, Y.; Fang, F.; Tian, H.; Li, J.; Cheng, X. Assessment of Insulin Resistance in Subjects with Normal Glucose Tolerance, Hyperinsulinemia with Normal Blood Glucose Tolerance, Impaired Glucose Tolerance, and Newly Diagnosed Type 2 Diabetes (Prediabetes Insulin Resistance Research). J. Diabetes Res. 2016, 2016, 9270768. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Järvelä-Reijonen, E.; Karhunen, L.; Sairanen, E.; Rantala, S.; Laitinen, J.; Puttonen, S.; Peuhkuri, K.; Hallikainen, M.; Juvonen, K.; Myllymäki, T.; et al. High perceived stress is associated with unfavorable eating behavior in overweight and obese Finns of working age. Appetite 2016, 103, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundqvist, A.; Männistö, S.; Jousilahti, P.; Kaartinen, N.; Mäki, P.; Borodulin, K. Lihavuus. In Terveys, Toimintakyky ja Hyvinvointi Suomessa—FinTerveys 2017—Tutkimus; Koponen, P., Borodulin, K., Lundqvist, A., Sääksjärvi, K., Koskinen, S., Eds.; Terveyden ja Hyvinvoinnin Laitos: Helsinki, Finland, 2018; pp. 45–49. [Google Scholar]
- Ley, S.H.; Ardisson Korat, A.V.; Sun, Q.; Tobias, D.K.; Zhang, C.; Qi, L.; Willett, W.C.; Manson, J.E.; Hu, F.B. Contribution of the Nurses’ Health Studies to Uncovering Risk Factors for Type 2 Diabetes: Diet, Lifestyle, Biomarkers, and Genetics. Am. J. Public Health 2016, 106, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Paulweber, B.; Valensi, P.; Lindström, J.; Lalic, N.; Greaves, C.; McKee, M.; Kissimova-Skarbek, K.; Liatis, S.; Cosson, E.; Szendroedi, J.; et al. A European Evidence-Based Guideline for the Prevention of Type 2 Diabetes. Horm. Metab. Res. 2010, 42, S3–S36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef]
- Lee, D.H.; Keum, N.; Hu, F.B.; Orav, E.J.; Rimm, E.B.; Willett, W.C.; Giovannucci, E.L. Comparison of the association of predicted fat mass, body mass index, and other obesity indicators with type 2 diabetes risk: Two large prospective studies in US men and women. Eur. J. Epidemiol. 2018, 33, 1113–1123. [Google Scholar] [CrossRef]
- Clifford, D.; Keeler, L.A.; Gray, K.; Steingrube, A.; Morris, M.N. Weight Attitudes Predict Eating Competence among College Students. Fam. Consum. Sci. Res. J. 2010, 39, 184–193. [Google Scholar] [CrossRef]
- Færch, K.; Borch-Johnsen, K.; Holst, J.J.; Vaag, A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: Does it matter for prevention and treatment of type 2 diabetes? Diabetologia 2009, 52, 1714–1723. [Google Scholar] [CrossRef] [Green Version]
- Laakso, M. Biomarkers for type 2 diabetes. Mol. Metab. 2019, 27, S139–S146. [Google Scholar] [CrossRef]
- Valsta, L.; Kaartinen, N.; Tapanainen, H.; Männistö, S.; Sääksjärvi, K. Nutrition in Finland—The National FinDiet 2017 Survey; Institute for Health and Welfare (THL): Helsinki, Finland, 2018.
- Murakami, K.; Livingstone, M.B.E. Associations between meal and snack frequency and diet quality and adiposity measures in British adults: Findings from the National Diet and Nutrition Survey. Public Health Nutr. 2016, 19, 1624–1634. [Google Scholar] [CrossRef] [Green Version]
- Farshchi, H.R.; Taylor, M.A.; Macdonald, I.A. Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur. J. Clin. Nutr. 2004, 58, 1071–1077. [Google Scholar] [CrossRef]
- Bi, H.; Gan, Y.; Yang, C.; Chen, Y.; Tong, X.; Lu, Z. Breakfast skipping and the risk of type 2 diabetes: A meta-analysis of observational studies. Public Health Nutr. 2015, 18, 3013–3019. [Google Scholar] [CrossRef] [PubMed]
- Jon Schoenfeld, B.; Albert Aragon, A.; Krieger, J.W. Effects of meal frequency on weight loss and body composition: A meta-analysis. Nutr. Rev. 2015, 73, 69–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | ECPs (n = 1159, 37%) | NECPs (n = 1988, 63%) | p Value |
---|---|---|---|
Age, years (mean ± SD) | 57.5 ± 9 | 53.6 ± 10 | <0.001 |
Sex, female | 909 (78) | 1587 (80) | 0.350 |
Study region | |||
Northern Savo | 333 (29) | 600 (30) | |
Southern Karelia | 357 (31) | 565 (28) | |
Päijät-Häme | 469 (41) | 823 (41) | 0.351 |
Native country (Finland) | 1155 (100) | 1959 (99) | 0.003 |
Marital status | |||
Married/cohabiting | 879 (76) | 1455 (73) | |
Unmarried/divorced/widowed | 280 (24) | 533 (27) | 0.101 |
Annual household gross income | |||
€0–44,999 | 451 (39) | 885 (45) | |
≥€45,000 | 708 (61) | 1103 (56) | 0.002 |
Education level | |||
Low | 88 (7.6) | 154 (7.7) | |
Medium | 287 (24.8) | 578 (29.1) | |
High | 784 (67.6) | 1256 (63.2) | 0.027 |
Family history of type 2 diabetes (yes) | 917 (79) | 1564 (79) | 0.767 |
Use of drugs | |||
Antihypertensive drugs (yes) | 410 (35) | 670 (34) | 0.340 |
Lipid-lowering drugs (yes) | 228 (20) | 312 (16) | 0.004 |
Classifications by plasma glucose a | |||
Normal glucose tolerance | 478 (42) | 819 (43) | |
Isolated impaired fasting glucose | 406 (36) | 635 (33) | |
Isolated impaired glucose tolerance | 51 (5) | 102 (5) | |
Combined IFG/IGT | 146 (13) | 248 (13) | |
New type 2 diabetes | 57 (5) | 119 (6) | 0.394 |
FINDRISC b (mean ± SD) | 15.8 ± 4 | 15.9 ± 4 | 0.853 |
Variable | ECPs (n = 1159, 37%) | NECPs (n = 1988, 63%) | p Value |
---|---|---|---|
Current smoker, n (%) | 63 (5) | 182 (9) | <0.001 |
Physical activity, h/week | 10.7 ± 10.6 a | 8.8 ± 9.1 b | <0.001 |
Sleep on weekdays, h/day | 8.0 ± 1.0 a | 7.8 ± 1.1 b | <0.001 |
Sleep quality (score range 0–10) | 8.8 ± 1.7 a | 8.5 ± 1.9 b | <0.001 |
Having main meals every weekday c, n (%) | 546 (47) | 569 (29) | <0.001 |
Vegetarian dishes/week | 1.9 ± 2.1 | 1.6 ± 1.9 | 0.003 |
Eating fast food <1 portion/week, n (%) | 946 (82) | 1379 (69) | <0.001 |
Vegetables, fruit and berries ≥4 portions/day, n (%) | 312 (27) | 362 (18) | <0.001 |
Using mostly oil-based fats d, n (%) | 294 (25) | 430 (22) | 0.016 |
Nuts and seeds ≥4 portions (á 30 g)/week, n (%) | 427 (37) | 499 (25) | <0.001 |
Sweet pastry/pudding/ice cream <4 portions/week, n (%) | 715 (62) | 1088 (55) | <0.001 |
Processed meat products, g/day | 44.6 ± 44 a | 54.3 ± 61 b | <0.001 |
Coffee consumption, dL/day | 2.9 ± 2.2 a | 2.8 ± 2.3 b | 0.130 |
Sugary beverages, dL/day | 0.38 ± 1.2 | 0.45 ± 1.2 b | 0.009 |
Alcohol consumption, g/day | 7.5 ± 12 a | 6.4 ± 11 b | <0.001 |
Variable | ECPs (n = 1130–1159, 37%) | NECPs (n = 1905–1987, 63%) | p Value a | p Value b |
---|---|---|---|---|
Anthropometric measurements | ||||
BMI, kg/m2 | 30.3 ± 5.3 | 31.8 ± 5.6 | <0.001 | <0.001 |
Waist circumference, cm | 100.2 ± 13 | 103.3 ± 14 | <0.001 | <0.001 |
Glucose and insulin metabolism | ||||
Fasting glucose, mmol/L | 5.7 ± 0.7 | 5.7 ± 0.8 | 0.657 | 0.376 |
30 min glucose, OGTT, mmol/L | 8.9 ± 1.7 | 8.8 ± 1.8 | 0.177 | 0.914 |
2 h glucose, OGTT, mmol/L | 6.6 ± 2.2 | 6.7 ± 2.4 | 0.112 | 0.022 |
HbA1c, % | 5.5 ± 0.4 | 5.5 ± 0.4 | 0.024 | 0.627 |
HbA1c, mmol/mol | 36.7 ± 4.4 | 36.4 ± 4.9 | 0.017 | 0.671 |
Fasting insulin, pmol/L | 81.6 ± 52 | 94.3 ± 82 | <0.001 | <0.001 |
30 min insulin, OGTT, pmol/L | 511.7 ± 356 | 555.3 ± 370 | 0.002 | 0.024 |
2 h insulin, OGTT pmol/L | 590.7 ± 596 | 612.8 ± 613 | 0.451 | 0.323 |
Matsuda insulin sensitivity index | 12.9 ± 8 | 12.1 ± 8 | <0.001 | 0.002 |
Disposition index | 420.6 ± 211 | 424.9 ± 213 | 0.820 | 0.387 |
Lipid metabolism and blood pressure | ||||
Total cholesterol, mmol/L | 5.27 ± 1.0 | 5.22 ± 1.0 | 0.335 | 0.983 |
LDL cholesterol, mmol/L | 3.24 ± 0.9 | 3.25 ± 0.8 | 0.436 | 0.346 |
HDL cholesterol, mmol/L | 1.56 ± 0.4 | 1.50 ± 0.4 | <0.001 | 0.023 |
Triglycerides, mmol/L | 1.37 ± 0.7 | 1.45 ± 0.8 | 0.008 | 0.002 |
Diastolic blood pressure, mmHg | 88.1 ± 10 | 88.3 ± 10 | 0.641 | 0.449 |
Systolic blood pressure, mmHg | 141.3 ± 18 | 139.0 ± 18 | 0.001 | 0.510 |
Metabolic Risk Factor | n | Food Attitudes | Contextual Skills | Food Acceptance | Internal Regulation |
---|---|---|---|---|---|
Anthropometric measurements | |||||
BMI, kg/m2 | 3145 | −0.042 | −0.150 *** | 0.026 | 0.014 |
Waist circumference, cm | 3146 | −0.031 | −0.153 *** | 0.008 | 0.029 |
Glucose and insulin metabolism | |||||
Fasting glucose, mmol/L | 3061 | 0.016 | −0.036 | 0.018 | 0.006 |
30 min glucose, OGTT, mmol/L | 3056 | 0.016 | −0.030 | 0.002 | −0.001 |
2 h glucose, OGTT, mmol/L | 3061 | 0.022 | −0.028 | −0.025 | −0.035 |
HbA1c, % | 3035 | 0.048 * | −0.060 ** | −0.031 | 0.010 |
HbA1c, mmol/mol | 3035 | 0.048 * | −0.060 ** | −0.031 | 0.011 |
Fasting insulin, pmol/L | 3057 | 0.025 | −0.131 *** | <0.001 | 0.018 |
30 min insulin, OGTT, pmol/L | 3055 | <0.001 | −0.084 *** | −0.010 | 0.016 |
2 h insulin, OGTT, pmol/L | 3051 | 0.037 | −0.065 ** | −0.002 | −0.013 |
Matsuda insulin sensitivity index | 3034 | −0.025 | 0.121 *** | 0.003 | 0.027 |
Disposition index | 3034 | −0.031 | 0.049 * | −0.013 | 0.015 |
Lipid metabolism and blood pressure | |||||
Total cholesterol, mmol/L | 3036 | −0.013 | −0.046 * | 0.052 ** | 0.056 ** |
LDL cholesterol, mmol/L | 3037 | −0.014 | −0.052 * | 0.046 * | 0.057 ** |
HDL cholesterol, mmol/L | 3037 | −0.011 | 0.059 ** | 0.021 | −0.013 |
Triglycerides, mmol/L | 3035 | −0.004 | −0.088 *** | −0.016 | 0.035 |
Diastolic blood pressure, mmHg | 3144 | 0.014 | −0.053 * | 0.011 | 0.007 |
Systolic blood pressure, mmHg | 3144 | 0.027 | −0.044 * | 0.023 | 0.019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilles-Tirkkonen, T.; Aittola, K.; Männikkö, R.; Absetz, P.; Kolehmainen, M.; Schwab, U.; Lindström, J.; Lakka, T.; Pihlajamäki, J.; Karhunen, L. Eating Competence Is Associated with Lower Prevalence of Obesity and Better Insulin Sensitivity in Finnish Adults with Increased Risk for Type 2 Diabetes: The StopDia Study. Nutrients 2020, 12, 104. https://doi.org/10.3390/nu12010104
Tilles-Tirkkonen T, Aittola K, Männikkö R, Absetz P, Kolehmainen M, Schwab U, Lindström J, Lakka T, Pihlajamäki J, Karhunen L. Eating Competence Is Associated with Lower Prevalence of Obesity and Better Insulin Sensitivity in Finnish Adults with Increased Risk for Type 2 Diabetes: The StopDia Study. Nutrients. 2020; 12(1):104. https://doi.org/10.3390/nu12010104
Chicago/Turabian StyleTilles-Tirkkonen, Tanja, Kirsikka Aittola, Reija Männikkö, Pilvikki Absetz, Marjukka Kolehmainen, Ursula Schwab, Jaana Lindström, Timo Lakka, Jussi Pihlajamäki, and Leila Karhunen. 2020. "Eating Competence Is Associated with Lower Prevalence of Obesity and Better Insulin Sensitivity in Finnish Adults with Increased Risk for Type 2 Diabetes: The StopDia Study" Nutrients 12, no. 1: 104. https://doi.org/10.3390/nu12010104
APA StyleTilles-Tirkkonen, T., Aittola, K., Männikkö, R., Absetz, P., Kolehmainen, M., Schwab, U., Lindström, J., Lakka, T., Pihlajamäki, J., & Karhunen, L. (2020). Eating Competence Is Associated with Lower Prevalence of Obesity and Better Insulin Sensitivity in Finnish Adults with Increased Risk for Type 2 Diabetes: The StopDia Study. Nutrients, 12(1), 104. https://doi.org/10.3390/nu12010104