Ethnicity and Metabolic Syndrome: Implications for Assessment, Management and Prevention
Abstract
:1. Introduction
2. Assessment
3. Treatment
3.1. Comprehensive Lifestyle Interventions
3.2. Nutritional Interventions
3.3. Physical Activity Interventions
4. Prevention
5. Other Considerations
6. Future Directions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ballantyne, C.M.; Hoogeveen, R.C.; McNeill, A.M.; Heiss, G.; Schmidt, M.I.; Duncan, B.B.; Pankow, J.S. Metabolic syndrome risk for cardiovascular disease and diabetes in the ARIC study. Int. J. Obes. (Lond.) 2008, 32 (Suppl. S2), S21–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, P.B.; Carrick-Ranson, G.; Stinear, J.W.; Reading, S.A.; Dalleck, L.C. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep. 2017, 7, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14, E24. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Mai, Z.; Zhou, S.; Liu, Y.; Li, S.; Zhao, Z.; Duan, X.; Cai, C.; Deng, T.; Zhu, W.; et al. Prevalence of metabolic syndrome in China: An up-dated cross-sectional study. PLoS ONE 2018, 13, e0196012. [Google Scholar] [CrossRef]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef]
- Anand, S.S.; Yi, Q.; Gerstein, H.; Lonn, E.; Jacobs, R.; Vuksan, V.; Teo, K.; Davis, B.; Montague, P.; Yusuf, S. Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation 2003, 108, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.E.; Ma, S.; Wai, D.; Chew, S.K.; Tai, E.S. Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? Diabetes Care 2004, 27, 1182–1186. [Google Scholar] [CrossRef] [Green Version]
- Lear, S.A.; Chen, M.M.; Birmingham, C.L.; Frohlich, J.J. The relationship between simple anthropometric indices and c-reactive protein: Ethnic and gender differences. Metabolism 2003, 52, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Lear, S.A.; Chen, M.M.; Frohlich, J.J.; Birmingham, C.L. The relationship between waist circumference and metabolic risk factors: Cohorts of European and Chinese descent. Metabolism 2002, 51, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Lear, S.A.; Toma, M.; Birmingham, C.L.; Frohlich, J.J. Modification of the relationship between simple anthropometric indices and risk factors by ethnic background. Metabolism 2003, 52, 1295–1301. [Google Scholar] [CrossRef]
- Lear, S.A.; Humphries, K.H.; Kohli, S.; Chockalingam, A.; Frohlich, J.J.; Birmingham, C.L. Visceral adipose tissue accumulation differs according to ethnic background: Results of the Multicultural Community Health Assessment Trial (M-CHAT). Am. J. Clin. Nutr. 2007, 86, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Lear, S.A.; Chockalingam, A.; Kohli, S.; Richardson, C.G.; Humphries, K.H. Elevation in cardiovascular disease risk in South Asians is mediated by differences in visceral adipose tissue. Obesity (Silver Spring) 2012, 20, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.J.; Wang, Z.; Gallagher, D.; Heymsfield, S.B. Comparison of visceral adipose tissue mass in adult African Americans and whites. Obes. Res. 2005, 13, 66–74. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T. Obesity and physical activity among Aboriginal Canadians. Obesity (Silver Spring) 2008, 16, 184–190. [Google Scholar] [CrossRef]
- Turin, T.C.; Saad, N.; Jun, M.; Tonelli, M.; Ma, Z.; Barnabe, C.C.M.; Manns, B.; Hemmelgarn, B. Lifetime risk of diabetes among First Nations and non-First Nations people. CMAJ 2016, 188, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Gautier, J.F.; Milner, M.R.; Elam, E.; Chen, K.; Ravussin, E.; Pratley, R.E. Visceral adipose tissue is not increased in Pima Indians compared with equally obese Caucasians and is not related to insulin action or secretion. Diabetologia 1999, 42, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Gasevic, D.; Kohli, S.; Khan, N.; Lear, S.A. Abdominal Adipose Tissue and Insulin Resistance: The Role of Ethnicity. In Nutrition in the Prevention and Treatment of Abdominal Obesity; Academic Press; Elsivier, Inc.: Waltham, MA, USA, 2014; pp. 125–140. [Google Scholar]
- Lear, S.A.; James, P.T.; Ko, G.T.; Kumanyika, S. Appropriateness of waist circumference and waist-to-hip ratio cutoffs for different ethnic groups. Eur. J. Clin. Nutr. 2010, 64, 42–61. [Google Scholar] [CrossRef] [Green Version]
- Kaneshiro, B.; Geling, O.; Gellert, K.; Millar, L. The challenges of collecting data on race and ethnicity in a diverse, multiethnic state. Hawaii Med. J. 2011, 70, 168–171. [Google Scholar] [PubMed]
- Aspinall, P.J. Concepts, terminology and classifications for the "mixed" ethnic or racial group in the United Kingdom. J. Epidemiol. Community Health 2010, 64, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Orchard, T.J.; Temprosa, M.; Goldberg, R.; Haffner, S.; Ratner, R.; Marcovina, S.; Fowler, S. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: The Diabetes Prevention Program randomized trial. Ann. Intern. Med. 2005, 142, 611–619. [Google Scholar] [CrossRef]
- Yamaoka, K.; Tango, T. Effects of lifestyle modification on metabolic syndrome: A systematic review and meta-analysis. BMC Med. 2012, 10, 138. [Google Scholar] [CrossRef]
- Church, T.S.; Earnest, C.P.; Skinner, J.S.; Blair, S.N. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: A randomized controlled trial. JAMA 2007, 297, 2081–2091. [Google Scholar] [CrossRef] [Green Version]
- Earnest, C.P.; Johannsen, N.M.; Swift, D.L.; Lavie, C.J.; Blair, S.N.; Church, T.S. Dose effect of cardiorespiratory exercise on metabolic syndrome in postmenopausal women. Am. J. Cardiol. 2013, 111, 1805–1811. [Google Scholar] [CrossRef] [Green Version]
- Haufe, S.; Kerling, A.; Protte, G.; Bayerle, P.; Stenner, H.T.; Rolff, S.; Sundermeier, T.; Kuck, M.; Ensslen, R.; Nachbar, L.; et al. Telemonitoring-supported exercise training, metabolic syndrome severity, and work ability in company employees: A randomised controlled trial. Lancet Public Health 2019, 4, e343–e352. [Google Scholar] [CrossRef] [Green Version]
- Tomeleri, C.M.; Souza, M.F.; Burini, R.C.; Cavaglieri, C.R.; Ribeiro, A.S.; Antunes, M.; Nunes, J.P.; Venturini, D.; Barbosa, D.S.; Sardinha, L.B.; et al. Resistance training reduces metabolic syndrome and inflammatory markers in older women: A randomized controlled trial. J. Diabetes 2018, 10, 328–337. [Google Scholar] [CrossRef]
- Earnest, C.P.; Johannsen, N.M.; Swift, D.L.; Gillison, F.B.; Mikus, C.R.; Lucia, A.; Kramer, K.; Lavie, C.J.; Church, T.S. Aerobic and strength training in concomitant metabolic syndrome and type 2 diabetes. Med. Sci. Sports Exerc. 2014, 46, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Tjonna, A.E.; Ramos, J.S.; Pressler, A.; Halle, M.; Jungbluth, K.; Ermacora, E.; Salvesen, O.; Rodrigues, J.; Bueno, C.R., Jr.; Munk, P.S.; et al. EX-MET study: Exercise in prevention on of metabolic syndrome—A randomized multicenter trial: Rational and design. BMC Public Health 2018, 18, 437. [Google Scholar] [CrossRef] [PubMed]
- Babio, N.; Toledo, E.; Estruch, R.; Ros, E.; Martinez-Gonzalez, M.A.; Castaner, O.; Bullo, M.; Corella, D.; Aros, F.; Gomez-Gracia, E.; et al. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ 2014, 186, E649–E657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Ioannidis, J.P.A. PREDIMED trial of Mediterranean diet: Retracted, republished, still trusted? BMJ 2019, 364, l341. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Retraction and Republication: Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2018, 378, 2441–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehteshami, M.; Shakerhosseini, R.; Sedaghat, F.; Hedayati, M.; Eini-Zinab, H.; Hekmatdoost, A. The Effect of Gluten Free Diet on Components of Metabolic Syndrome: A Randomized Clinical Trial. Asian Pac. J. Cancer Prev. APJCP 2018, 19, 2979–2984. [Google Scholar] [CrossRef] [PubMed]
- Gupta Jain, S.; Puri, S.; Misra, A.; Gulati, S.; Mani, K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: A randomized double -blind control trial. Lipids Health Dis. 2017, 16, 113. [Google Scholar] [CrossRef]
- Wu, H.; Pan, A.; Yu, Z.; Qi, Q.; Lu, L.; Zhang, G.; Yu, D.; Zong, G.; Zhou, Y.; Chen, X.; et al. Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J. Nutr. 2010, 140, 1937–1942. [Google Scholar] [CrossRef] [Green Version]
- Alfawaz, H.A.; Wani, K.; Alnaami, A.M.; Al-Saleh, Y.; Aljohani, N.J.; Al-Attas, O.S.; Alokail, M.S.; Kumar, S.; Al-Daghri, N.M. Effects of Different Dietary and Lifestyle Modification Therapies on Metabolic Syndrome in Prediabetic Arab Patients: A 12-Month Longitudinal Study. Nutrients 2018, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Dunkley, A.J.; Davies, M.J.; Stone, M.A.; Taub, N.A.; Troughton, J.; Yates, T.; Khunti, K. The Reversal Intervention for Metabolic Syndrome (TRIMS) study: Rationale, design, and baseline data. Trials 2011, 12, 107. [Google Scholar] [CrossRef] [Green Version]
- Dash, C.; Makambi, K.; Wallington, S.F.; Sheppard, V.; Taylor, T.R.; Hicks, J.S.; Adams-Campbell, L.L. An exercise trial targeting African-American women with metabolic syndrome and at high risk for breast cancer: Rationale, design, and methods. Contemp. Clin. Trials 2015, 43, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Tomita, K.; Matsushita, Y.; Ichikawa, F.; Yamamoto, M.; Nagafuchi, Y.; Kakumoto, Y.; Mizoue, T. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: Randomized controlled trial. J. Occup. Health 2012, 54, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Agurs-Collins, T.D.; Kumanyika, S.K.; Ten Have, T.R.; Adams-Campbell, L.L. A randomized controlled trial of weight reduction and exercise for diabetes management in older African-American subjects. Diabetes Care 1997, 20, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Ard, J.D.; Carson, T.L.; Shikany, J.M.; Li, Y.; Hardy, C.M.; Robinson, J.C.; Williams, A.G.; Baskin, M.L. Weight loss and improved metabolic outcomes amongst rural African American women in the Deep South: Six-month outcomes from a community-based randomized trial. J. Intern. Med. 2017, 282, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, P.; Wang, J.; An, Y.; Gong, Q.; Gregg, E.W.; Yang, W.; Zhang, B.; Shuai, Y.; Hong, J.; et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. Lancet Diabetes Endocrinol. 2014, 2, 474–480. [Google Scholar] [CrossRef]
- O’Brien, M.J.; Perez, A.; Scanlan, A.B.; Alos, V.A.; Whitaker, R.C.; Foster, G.D.; Ackermann, R.T.; Ciolino, J.D.; Homko, C. PREVENT-DM Comparative Effectiveness Trial of Lifestyle Intervention and Metformin. Am. J. Prev. Med. 2017, 52, 788–797. [Google Scholar] [CrossRef]
- Saboya, P.P.; Bodanese, L.C.; Zimmermann, P.R.; Gustavo, A.D.; Macagnan, F.E.; Feoli, A.P.; Oliveira, M.D. Lifestyle Intervention on Metabolic Syndrome and its Impact on Quality of Life: A Randomized Controlled Trial. Arq. Bras. Cardiol. 2017, 108, 60–69. [Google Scholar] [CrossRef]
- Jiang, L.; Manson, S.M.; Beals, J.; Henderson, W.G.; Huang, H.; Acton, K.J.; Roubideaux, Y. Translating the Diabetes Prevention Program into American Indian and Alaska Native communities: Results from the Special Diabetes Program for Indians Diabetes Prevention demonstration project. Diabetes Care 2013, 36, 2027–2034. [Google Scholar] [CrossRef] [Green Version]
- Zilberman-Kravits, D.; Meyerstein, N.; Abu-Rabia, Y.; Wiznitzer, A.; Harman-Boehm, I. The Impact of a Cultural Lifestyle Intervention on Metabolic Parameters After Gestational Diabetes Mellitus A Randomized Controlled Trial. Matern. Child Health J. 2018, 22, 803–811. [Google Scholar] [CrossRef]
- Bhopal, R.S.; Douglas, A.; Wallia, S.; Forbes, J.F.; Lean, M.E.; Gill, J.M.; McKnight, J.A.; Sattar, N.; Sheikh, A.; Wild, S.H.; et al. Effect of a lifestyle intervention on weight change in south Asian individuals in the UK at high risk of type 2 diabetes: A family-cluster randomised controlled trial. Lancet Diabetes Endocrinol. 2014, 2, 218–227. [Google Scholar] [CrossRef]
- Bajerska, J.; Chmurzynska, A.; Muzsik, A.; Krzyzanowska, P.; Madry, E.; Malinowska, A.M.; Walkowiak, J. Weight loss and metabolic health effects from energy-restricted Mediterranean and Central-European diets in postmenopausal women: A randomized controlled trial. Sci. Rep. 2018, 8, 11170. [Google Scholar] [CrossRef]
- Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; Cuzick, J.; Jebb, S.A.; Martin, B.; Cutler, R.G.; et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. (Lond.) 2011, 35, 714–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundfor, T.M.; Svendsen, M.; Tonstad, S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: A randomized 1-year trial. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 698–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volek, J.S.; Phinney, S.D.; Forsythe, C.E.; Quann, E.E.; Wood, R.J.; Puglisi, M.J.; Kraemer, W.J.; Bibus, D.M.; Fernandez, M.L.; Feinman, R.D. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009, 44, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Mills, K.T.; Yao, L.; Demanelis, K.; Eloustaz, M.; Yancy, W.S., Jr.; Kelly, T.N.; He, J.; Bazzano, L.A. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 2012, 176 (Suppl. S7), S44–S54. [Google Scholar] [CrossRef] [Green Version]
- Svetkey, L.P.; Erlinger, T.P.; Vollmer, W.M.; Feldstein, A.; Cooper, L.S.; Appel, L.J.; Ard, J.D.; Elmer, P.J.; Harsha, D.; Stevens, V.J. Effect of lifestyle modifications on blood pressure by race, sex, hypertension status, and age. J. Hum. Hypertens. 2005, 19, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Svetkey, L.P.; Simons-Morton, D.; Vollmer, W.M.; Appel, L.J.; Conlin, P.R.; Ryan, D.H.; Ard, J.; Kennedy, B.M. Effects of dietary patterns on blood pressure: Subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH) randomized clinical trial. Arch. Intern. Med. 1999, 159, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, N.; Park, Y.H.; Kang, M.S.; Kim, Y.; Ha, G.K.; Kim, H.R.; Yates, A.A.; Caballero, B. A randomized trial on the effects of 2010 Dietary Guidelines for Americans and Korean diet patterns on cardiovascular risk factors in overweight and obese adults. J. Acad. Nutr. Diet. 2015, 115, 1083–1092. [Google Scholar] [CrossRef]
- Zhao, X.; Yin, X.; Li, X.; Yan, L.L.; Lam, C.T.; Li, S.; He, F.; Xie, W.; Sang, B.; Luobu, G.; et al. Using a low-sodium, high-potassium salt substitute to reduce blood pressure among Tibetans with high blood pressure: A patient-blinded randomized controlled trial. PLoS ONE 2014, 9, e110131. [Google Scholar] [CrossRef] [Green Version]
- Gulati, S.; Misra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: A 24-wk, randomized control trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef]
- Mohan, V.; Gayathri, R.; Jaacks, L.M.; Lakshmipriya, N.; Anjana, R.M.; Spiegelman, D.; Jeevan, R.G.; Balasubramaniam, K.K.; Shobana, S.; Jayanthan, M.; et al. Cashew Nut Consumption Increases HDL Cholesterol and Reduces Systolic Blood Pressure in Asian Indians with Type 2 Diabetes: A 12-Week Randomized Controlled Trial. J. Nutr. 2018, 148, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shookri, A.; Khor, G.L.; Chan, Y.M.; Loke, S.C.; Al-Maskari, M. Effectiveness of medical nutrition treatment delivered by dietitians on glycaemic outcomes and lipid profiles of Arab, Omani patients with Type 2 diabetes. Diabet Med. 2012, 29, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Ziemer, D.C.; Berkowitz, K.J.; Panayioto, R.M.; El-Kebbi, I.M.; Musey, V.C.; Anderson, L.A.; Wanko, N.S.; Fowke, M.L.; Brazier, C.W.; Dunbar, V.G.; et al. A simple meal plan emphasizing healthy food choices is as effective as an exchange-based meal plan for urban African Americans with type 2 diabetes. Diabetes Care 2003, 26, 1719–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.R.; Tan, P.Y. Effect of an individualised high-protein, energy-restricted diet on anthropometric and cardio-metabolic parameters in overweight and obese Malaysian adults: A 6-month randomised controlled study. Br. J. Nutr. 2019, 121, 1002–1017. [Google Scholar] [CrossRef]
- Gulati, S.; Misra, A.; Tiwari, R.; Sharma, M.; Pandey, R.M.; Yadav, C.P. Effect of high-protein meal replacement on weight and cardiometabolic profile in overweight/obese Asian Indians in North India. Br. J. Nutr. 2017, 117, 1531–1540. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Yang, Q.; Li, X.; Yang, J.; Wang, J.; Shi, L.; Chen, Y.; Zhu, S. The Effect of Protein-Enriched Meal Replacement on Waist Circumference Reduction among Overweight and Obese Chinese with Hyperlipidemia. J. Am. Coll. Nutr. 2016, 35, 236–244. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Ye, X.; Li, H.; Chen, X.; Tang, L.; Feng, Y.; Shai, I.; Stampfer, M.J.; Hu, F.B.; et al. Effects of a low-carbohydrate diet on weight loss and cardiometabolic profile in Chinese women: A randomised controlled feeding trial. Br. J. Nutr. 2013, 110, 1444–1453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, L.; Song, P.; Wang, C.; Man, Q.; Meng, L.; Cai, J.; Kurilich, A. Randomized controlled trial of oatmeal consumption versus noodle consumption on blood lipids of urban Chinese adults with hypercholesterolemia. Nutr. J. 2012, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Patade, A.; Devareddy, L.; Lucas, E.A.; Korlagunta, K.; Daggy, B.P.; Arjmandi, B.H. Flaxseed reduces total and LDL cholesterol concentrations in Native American postmenopausal women. J. Womens Health (2002) 2008, 17, 355–366. [Google Scholar] [CrossRef]
- Brooking, L.A.; Williams, S.M.; Mann, J.I. Effects of macronutrient composition of the diet on body fat in indigenous people at high risk of type 2 diabetes. Diabetes Res. Clin. Pract. 2012, 96, 40–46. [Google Scholar] [CrossRef]
- Andersen, E.; Hostmark, A.T.; Anderssen, S.A. Effect of a physical activity intervention on the metabolic syndrome in Pakistani immigrant men: A randomized controlled trial. J. Immigr. Minor. Health 2012, 14, 738–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesser, I.A.; Singer, J.; Hoogbruin, A.; Mackey, D.C.; Katzmarzyk, P.T.; Sohal, P.; Leipsic, J.; Lear, S.A. Effectiveness of Exercise on Visceral Adipose Tissue in Older South Asian Women. Med. Sci. Sports Exerc. 2016, 48, 1371–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.A.; Gowda, U.; Smith, B.J.; Renzaho, A.M.N. Systematic Review of the Effect of Lifestyle Interventions on the Components of the Metabolic Syndrome in South Asian Migrants. J. Immigr. Minor. Health 2018, 20, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Akazawa, N.; Maeda, S. Regular aerobic exercise and blood pressure in East Asians: A meta-analysis of randomized controlled trials. Clin. Exp. Hypertens. (NY 1993) 2018, 40, 378–389. [Google Scholar] [CrossRef]
- Matsuo, T.; So, R.; Shimojo, N.; Tanaka, K. Effect of aerobic exercise training followed by a low-calorie diet on metabolic syndrome risk factors in men. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 832–838. [Google Scholar] [CrossRef]
- Choi, Y.S.; Song, R.; Ku, B.J. Effects of a T’ai Chi-Based Health Promotion Program on Metabolic Syndrome Markers, Health Behaviors, and Quality of Life in Middle-Aged Male Office Workers: A Randomized Trial. J. Altern. Complement. Med. 2017, 23, 949–956. [Google Scholar] [CrossRef]
- Adams-Campbell, L.L.; Dash, C.; Kim, B.H.; Hicks, J.; Makambi, K.; Hagberg, J. Cardiorespiratory Fitness and Metabolic Syndrome in Postmenopausal African-American Women. Int. J. Sports Med. 2016, 37, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Vella, C.A.; Zubia, R.Y.; Ontiveros, D.; Cruz, M.L. Physical activity, cardiorespiratory fitness, and metabolic syndrome in young Mexican and Mexican-American women. Appl. Physiol. Nutr. Metab. 2009, 34, 10–17. [Google Scholar] [CrossRef]
- Liu, J.; Young, T.K.; Zinman, B.; Harris, S.B.; Connelly, P.W.; Hanley, A.J. Lifestyle variables, non-traditional cardiovascular risk factors, and the metabolic syndrome in an Aboriginal Canadian population. Obesity (Silver Spring) 2006, 14, 500–508. [Google Scholar] [CrossRef]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef]
- Bankoski, A.; Harris, T.B.; McClain, J.J.; Brychta, R.J.; Caserotti, P.; Chen, K.Y.; Berrigan, D.; Troiano, R.P.; Koster, A. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care 2011, 34, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemes, I.R.; Sui, X.; Fernandes, R.A.; Blair, S.N.; Turi-Lynch, B.C.; Codogno, J.S.; Monteiro, H.L. Association of sedentary behavior and metabolic syndrome. Public Health 2019, 167, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.Y.; Kim, J.; Cho, K.H.; Choi, Y.; Choi, J.; Shin, J.; Park, E.C. Associations of sitting time and occupation with metabolic syndrome in South Korean adults: A cross-sectional study. BMC Public Health 2016, 16, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compernolle, S.; DeSmet, A.; Poppe, L.; Crombez, G.; De Bourdeaudhuij, I.; Cardon, G.; van der Ploeg, H.P.; Van Dyck, D. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 63. [Google Scholar] [CrossRef]
- Balducci, S.; D’Errico, V.; Haxhi, J.; Sacchetti, M.; Orlando, G.; Cardelli, P.; Vitale, M.; Bollanti, L.; Conti, F.; Zanuso, S.; et al. Effect of a Behavioral Intervention Strategy on Sustained Change in Physical Activity and Sedentary Behavior in Patients With Type 2 Diabetes: The IDES_2 Randomized Clinical Trial. JAMA 2019, 321, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Pandit, K.; Goswami, S.; Ghosh, S.; Mukhopadhyay, P.; Chowdhury, S. Metabolic syndrome in South Asians. Indian J. Endocrinol. Metab. 2012, 16, 44–55. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Seo, E.H.; Kim, H.; Kwon, O. Association between Total Sugar Intake and Metabolic Syndrome in Middle-Aged Korean Men and Women. Nutrients 2019, 11, 2042. [Google Scholar] [CrossRef] [Green Version]
- Colchero, M.A.; Rivera-Dommarco, J.; Popkin, B.M.; Ng, S.W. In Mexico, Evidence Of Sustained Consumer Response Two Years After Implementing A Sugar-Sweetened Beverage Tax. Health Aff. (Proj. Hope) 2017, 36, 564–571. [Google Scholar] [CrossRef]
- Lee, M.M.; Falbe, J.; Schillinger, D.; Basu, S.; McCulloch, C.E.; Madsen, K.A. Sugar-Sweetened Beverage Consumption 3 Years After the Berkeley, California, Sugar-Sweetened Beverage Tax. Am. J. Public Health 2019, 109, 637–639. [Google Scholar] [CrossRef]
- Nakamura, R.; Mirelman, A.J.; Cuadrado, C.; Silva-Illanes, N.; Dunstan, J.; Suhrcke, M. Evaluating the 2014 sugar-sweetened beverage tax in Chile: An observational study in urban areas. PLoS Med. 2018, 15, e1002596. [Google Scholar] [CrossRef] [PubMed]
- Papas, M.A.; Alberg, A.J.; Ewing, R.; Helzlsouer, K.J.; Gary, T.L.; Klassen, A.C. The built environment and obesity. Epidemiol. Rev. 2007, 29, 129–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, G.L.; Creatore, M.I.; Luo, J.; Fazli, G.S.; Johns, A.; Rosella, L.C.; Glazier, R.H.; Moineddin, R.; Gozdyra, P.; Austin, P.C. Neighbourhood walkability and the incidence of diabetes: An inverse probability of treatment weighting analysis. J. Epidemiol. Community Health 2019, 73, 287–294. [Google Scholar] [CrossRef]
- Li, F.; Harmer, P.; Cardinal, B.J.; Bosworth, M.; Johnson-Shelton, D. Obesity and the built environment: Does the density of neighborhood fast-food outlets matter? Am. J. Health Promot. 2009, 23, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malambo, P.; Kengne, A.P.; De Villiers, A.; Lambert, E.V.; Puoane, T. Built Environment, Selected Risk Factors and Major Cardiovascular Disease Outcomes: A Systematic Review. PLoS ONE 2016, 11, e0166846. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Moore, K.A.; Clarke, P.J.; Rodriguez, D.A.; Evenson, K.R.; Brines, S.J.; Zagorski, M.A.; Diez Roux, A.V. Changes in the built environment and changes in the amount of walking over time: Longitudinal results from the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 2014, 180, 799–809. [Google Scholar] [CrossRef]
- Sun, G.; Oreskovic, N.M.; Lin, H. How do changes to the built environment influence walking behaviors? A longitudinal study within a university campus in Hong Kong. Int. J. Health Geogr. 2014, 13, 28. [Google Scholar] [CrossRef] [Green Version]
- Morland, K.; Wing, S.; Diez Roux, A. The contextual effect of the local food environment on residents’ diets: The atherosclerosis risk in communities study. Am. J. Public Health 2002, 92, 1761–1767. [Google Scholar] [CrossRef]
- Mackenbach, J.D.; Burgoine, T.; Lakerveld, J.; Forouhi, N.G.; Griffin, S.J.; Wareham, N.J.; Monsivais, P. Accessibility and Affordability of Supermarkets: Associations With the DASH Diet. Am. J. Prev. Med. 2017, 53, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Moudon, A.V.; Kim, S.Y.; Hurvitz, P.M.; Drewnowski, A. Health Implications of Adults’ Eating at and Living near Fast Food or Quick Service Restaurants. Nutr. Diabetes 2015, 5, e171. [Google Scholar] [CrossRef] [Green Version]
- Inagami, S.; Cohen, D.A.; Brown, A.F.; Asch, S.M. Body mass index, neighborhood fast food and restaurant concentration, and car ownership. J. Urban Health 2009, 86, 683–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Aggarwal, A.; Hurvitz, P.M.; Monsivais, P.; Moudon, A.V. Obesity and supermarket access: Proximity or price? Am. J. Public Health 2012, 102, e74–e80. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Speakman, J.R. Higher densities of fast-food and full-service restaurants are not associated with obesity prevalence. Am. J. Clin. Nutr. 2017, 106, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Burgoine, T.; Forouhi, N.G.; Griffin, S.J.; Brage, S.; Wareham, N.J.; Monsivais, P. Does neighborhood fast-food outlet exposure amplify inequalities in diet and obesity? A cross-sectional study. Am. J. Clin. Nutr. 2016, 103, 1540–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubowitz, T.; Ghosh-Dastidar, M.; Cohen, D.A.; Beckman, R.; Steiner, E.D.; Hunter, G.P.; Florez, K.R.; Huang, C.; Vaughan, C.A.; Sloan, J.C.; et al. Diet And Perceptions Change With Supermarket Introduction In A Food Desert, But Not Because Of Supermarket Use. Health Aff. (Proj. Hope) 2015, 34, 1858–1868. [Google Scholar] [CrossRef] [Green Version]
- Karlamangla, A.S.; Merkin, S.S.; Crimmins, E.M.; Seeman, T.E. Socioeconomic and ethnic disparities in cardiovascular risk in the United States, 2001–2006. Ann. Epidemiol. 2010, 20, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Yu, J.; Chen, R.; Gao, J.; Ding, R.; Fu, Y.; Zhang, L.; Hu, D. Socioeconomic status and metabolic syndrome in the general population of China: A cross-sectional study. BMC Public Health 2012, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- Block, J.P.; Scribner, R.A.; DeSalvo, K.B. Fast food, race/ethnicity, and income: A geographic analysis. Am. J. Prev. Med. 2004, 27, 211–217. [Google Scholar]
- Burgoine, T.; Sarkar, C.; Webster, C.J.; Monsivais, P. Examining the interaction of fast-food outlet exposure and income on diet and obesity: Evidence from 51,361 UK Biobank participants. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 71. [Google Scholar] [CrossRef] [Green Version]
- Palafox, B.; McKee, M.; Balabanova, D.; AlHabib, K.F.; Avezum, A.J.; Bahonar, A.; Ismail, N.; Chifamba, J.; Chow, C.K.; Corsi, D.J.; et al. Wealth and cardiovascular health: A cross-sectional study of wealth-related inequalities in the awareness, treatment and control of hypertension in high-, middle- and low-income countries. Int. J. Equity Health 2016, 15, 199. [Google Scholar] [CrossRef] [Green Version]
- Victor, R.G.; Lynch, K.; Li, N.; Blyler, C.; Muhammad, E.; Handler, J.; Brettler, J.; Rashid, M.; Hsu, B.; Foxx-Drew, D.; et al. A Cluster-Randomized Trial of Blood-Pressure Reduction in Black Barbershops. N. Engl. J. Med. 2018, 378, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Carter-Edwards, L.; Lindquist, R.; Redmond, N.; Turner, C.M.; Harding, C.; Oliver, J.; West, L.B.; Ravenell, J.; Shikany, J.M. Designing Faith-Based Blood Pressure Interventions to Reach Young Black Men. Am. J. Prev. Med. 2018, 55, S49–S58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.L.; Wilson, M.G.; Robertson, M.M.; Padilla, H.M.; Zuercher, H.; Vandenberg, R.; Corso, P.; Lorig, K.; Laurent, D.D.; DeJoy, D.M. Impact of a Translated Disease Self-Management Program on Employee Health and Productivity: Six-Month Findings from a Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2018, 15, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastava, U.; Fatma, M.; Mohan, S.; Singh, P.; Misra, A. Randomized Control Trial for Reduction of Body Weight, Body Fat Patterning, and Cardiometabolic Risk Factors in Overweight Worksite Employees in Delhi, India. J. Diabetes Res. 2017, 2017, 7254174. [Google Scholar] [CrossRef] [Green Version]
- Parra-Medina, D.; Wilcox, S.; Salinas, J.; Addy, C.; Fore, E.; Poston, M.; Wilson, D.K. Results of the Heart Healthy and Ethnically Relevant Lifestyle trial: A cardiovascular risk reduction intervention for African American women attending community health centers. Am. J. Public Health 2011, 101, 1914–1921. [Google Scholar] [CrossRef]
- McCurley, J.L.; Gutierrez, A.P.; Gallo, L.C. Diabetes Prevention in U.S. Hispanic Adults: A Systematic Review of Culturally Tailored Interventions. Am. J. Prev. Med. 2017, 52, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Vincent, D.; McEwen, M.M.; Hepworth, J.T.; Stump, C.S. The effects of a community-based, culturally tailored diabetes prevention intervention for high-risk adults of Mexican descent. Diabetes Educ. 2014, 40, 202–213. [Google Scholar] [CrossRef]
- Kandula, N.R.; Dave, S.; De Chavez, P.J.; Bharucha, H.; Patel, Y.; Seguil, P.; Kumar, S.; Baker, D.W.; Spring, B.; Siddique, J. Translating a heart disease lifestyle intervention into the community: The South Asian Heart Lifestyle Intervention (SAHELI) study; a randomized control trial. BMC Public Health 2015, 15, 1064. [Google Scholar] [CrossRef] [Green Version]
- Telle-Hjellset, V.; Raberg Kjollesdal, M.K.; Bjorge, B.; Holmboe-Ottesen, G.; Wandel, M.; Birkeland, K.I.; Eriksen, H.R.; Hostmark, A.T. The InnvaDiab-DE-PLAN study: A randomised controlled trial with a culturally adapted education programme improved the risk profile for type 2 diabetes in Pakistani immigrant women. Br. J. Nutr. 2013, 109, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Wijesuriya, M.; Fountoulakis, N.; Guess, N.; Banneheka, S.; Vasantharajah, L.; Gulliford, M.; Viberti, G.; Gnudi, L.; Karalliedde, J. A pragmatic lifestyle modification programme reduces the incidence of predictors of cardio-metabolic disease and dysglycaemia in a young healthy urban South Asian population: A randomised controlled trial. BMC Med. 2017, 15, 146. [Google Scholar] [CrossRef] [Green Version]
- Schulz, A.J.; Israel, B.A.; Mentz, G.B.; Bernal, C.; Caver, D.; DeMajo, R.; Diaz, G.; Gamboa, C.; Gaines, C.; Hoston, B.; et al. Effectiveness of a walking group intervention to promote physical activity and cardiovascular health in predominantly non-Hispanic black and Hispanic urban neighborhoods: Findings from the walk your heart to health intervention. Health Educ. Behav. 2015, 42, 380–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, E.R., 3rd; Cooper, L.A.; Carson, K.A.; Wang, N.Y.; Appel, L.J.; Gayles, D.; Charleston, J.; White, K.; You, N.; Weng, Y.; et al. A Dietary Intervention in Urban African Americans: Results of the “Five Plus Nuts and Beans” Randomized Trial. Am. J. Prev. Med. 2016, 50, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.H.; Chen, M.C.; Chien, N.H.; Lin, H.F. Effectiveness of community-based exercise intervention programme in obese adults with metabolic syndrome. J. Clin. Nurs. 2016, 25, 2579–2589. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.D.; James, A.P.; Lee, A.H.; Jancey, J.; Howat, P.A.; Thi Phuong Mai, L. Effectiveness of a Community-Based Physical Activity and Nutrition Behavior Intervention on Features of the Metabolic Syndrome: A Cluster-Randomized Controlled Trial. Metab. Syndr. Relat. Disord. 2017, 15, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F.; Mirmiran, P.; Momenan, A.A.; Hadaegh, F.; Habibi Moeini, A.; Hosseini, F.; Zahediasl, S.; Ghanbarian, A.; Hosseinpanah, F. The effect of community-based education for lifestyle intervention on the prevalence of metabolic syndrome and its components: Tehran lipid and glucose study. Int. J. Endocrinol. Metab. 2013, 11, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalili, D.; Asgari, S.; Lotfaliany, M.; Zafari, N.; Hadaegh, F.; Momenan, A.A.; Nowroozpoor, A.; Hosseini-Esfahani, F.; Mirmiran, P.; Amiri, P.; et al. Long-Term Effectiveness of a Lifestyle Intervention: A Pragmatic Community Trial to Prevent Metabolic Syndrome. Am. J. Prev. Med. 2019, 56, 437–446. [Google Scholar] [CrossRef]
- Shariful Islam, S.M.; Farmer, A.J.; Bobrow, K.; Maddison, R.; Whittaker, R.; Pfaeffli Dale, L.A.; Lechner, A.; Lear, S.; Eapen, Z.; Niessen, L.W.; et al. Mobile phone text-messaging interventions aimed to prevent cardiovascular diseases (Text2PreventCVD): Systematic review and individual patient data meta-analysis. Open Heart 2019, 6, e001017. [Google Scholar] [CrossRef]
- Kim, E.K.; Kwak, S.H.; Jung, H.S.; Koo, B.K.; Moon, M.K.; Lim, S.; Jang, H.C.; Park, K.S.; Cho, Y.M. The Effect of a Smartphone-Based, Patient-Centered Diabetes Care System in Patients With Type 2 Diabetes: A Randomized, Controlled Trial for 24 Weeks. Diabetes Care 2019, 42, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, A.N.; Louise, J.; Horsfall, M.; Bilsborough, S.A.; Hendriks, J.; McGavigan, A.D.; Selvanayagam, J.B.; Chew, D.P. International Mobile-Health Intervention on Physical Activity, Sitting, and Weight: The Stepathlon Cardiovascular Health Study. J. Am. Coll. Cardiol. 2016, 67, 2453–2463. [Google Scholar] [CrossRef]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef]
- Liu, R.; So, L.; Mohan, S.; Khan, N.; King, K.; Quan, H. Cardiovascular risk factors in ethnic populations within Canada: Results from national cross-sectional surveys. Open Med. 2010, 4, e143–e153. [Google Scholar] [PubMed]
- Williams, E.D.; Stamatakis, E.; Chandola, T.; Hamer, M. Physical activity behaviour and coronary heart disease mortality among South Asian people in the UK: An observational longitudinal study. Heart 2011, 97, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.; Murray, E.; Kinra, S. Heath beliefs of UK South Asians related to lifestyle diseases: A review of qualitative literature. J. Obes. 2013, 2013, 827674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huston, P.; McFarlane, B. Health benefits of tai chi: What is the evidence? Can. Fam. Physician 2016, 62, 881–890. [Google Scholar] [PubMed]
- Vlaar, E.M.A.; Nierkens, V.; Nicolaou, M.; Middelkoop, B.J.C.; Busschers, W.B.; Stronks, K.; van Valkengoed, I.G.M. Effectiveness of a targeted lifestyle intervention in primary care on diet and physical activity among South Asians at risk for diabetes: 2-year results of a randomised controlled trial in the Netherlands. BMJ Open 2017, 7, e012221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, L. Broken trust drives native health disparities. CMAJ 2015, 187, E9–E10. [Google Scholar] [CrossRef] [Green Version]
- Kirkendoll, K.; Clark, P.C.; Grossniklaus, D.; Igho-Pemu, P.; Mullis, R.; Dunbar, S.B. Metabolic syndrome in African Americans: Views on making lifestyle changes. J. Transcult. Nurs. 2010, 21, 104–113. [Google Scholar] [CrossRef]
Measure | Threshold |
---|---|
Elevated triglycerides | ≥1.70 mmol/L * |
Reduced HDL-C | ≤1.00 mmol/L (males) * ≤1.30 mmol/L (females) * |
Elevated blood pressure | Systolic ≥ 130 mmHg and/or Diastolic ≥ 85 mmHg * |
Elevated fasting glucose | ≥5.6 mmol/L * |
Elevated waist circumference | See population-specific thresholds in Table 2 |
Population | Men | Women |
---|---|---|
Central/South American, Chinese, Japanese, South Asian | ≥90 cm | ≥80 cm |
Mediterranean, Middle East, Sub-Saharan African | ≥94 cm | ≥80 cm |
Europid (includes Canada, Europe and United States) * | ≥102 cm (≥94 cm) | ≥88 cm (≥88 cm) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lear, S.A.; Gasevic, D. Ethnicity and Metabolic Syndrome: Implications for Assessment, Management and Prevention. Nutrients 2020, 12, 15. https://doi.org/10.3390/nu12010015
Lear SA, Gasevic D. Ethnicity and Metabolic Syndrome: Implications for Assessment, Management and Prevention. Nutrients. 2020; 12(1):15. https://doi.org/10.3390/nu12010015
Chicago/Turabian StyleLear, Scott A., and Danijela Gasevic. 2020. "Ethnicity and Metabolic Syndrome: Implications for Assessment, Management and Prevention" Nutrients 12, no. 1: 15. https://doi.org/10.3390/nu12010015
APA StyleLear, S. A., & Gasevic, D. (2020). Ethnicity and Metabolic Syndrome: Implications for Assessment, Management and Prevention. Nutrients, 12(1), 15. https://doi.org/10.3390/nu12010015