The Effect of Walnut Consumption on n-3 Fatty Acid Profile of Healthy People Living in a Non-Mediterranean West Balkan Country, a Small Scale Randomized Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Walnut Samples
2.1.1. Determination of Fatty Acids in Walnuts Total Lipids
2.1.2. Determination of Macronutrients in Walnuts
2.1.3. Mineral Composition of Walnuts
2.2. Assessment of Dietary Intake of Walnuts and n-3 Fatty Acids
2.3. Study Participants and Collection of Blood Samples.
2.3.1. Anthropometric and Blood Pressure Measurements
2.3.2. Determination of Fatty Acids in Plasma Phospholipids of Study Subjects
2.4. Statistical Analysis
3. Results
3.1. Content of Macronutrients, Minerals, and Fatty Acids in Walnuts
3.2. Consumption of Walnuts and Total n-3 Fatty Acid Intake of Study Participants
3.3. Analysis of Plasma Phospholipid Fatty Acid Composition
3.4. The Effects of Walnut Consumption on Anthropometric and Biochemical Parameters and Plasma Phospholipid Fatty Acids
4. Discussion
5. Conclusions
Study Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Popovic, T.; Arsic, A.; Debeljak-Martacic, J.; Petrovic-Oggiano, G.; Gurinovic, M.; Vucic, V.; Glibetic, M. Traditional food in serbia: Sources, recipes and fatty acids profiles. Food Feed Res. 2014, 41, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Holt, R.R.; Yim, S.J.; Shearer, G.C.; Hackman, R.M.; Djurica, D.; Newman, J.W.; Shindel, A.W.; Keen, C.L. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. J. Nutr. Biochem. 2015, 26, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, H.; Zhang, Y.; Shen, Y.; Su, H.; Jin, J.; Jin, Q.; Wang, X. Characterization of positional distribution of fatty acids and triacylglycerol molecular compositions of marine fish oils rich in omega-3 polyunsaturated fatty acids. Biomed. Res. Int. 2018, 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Nuts and CVD. Br. J. Nutr. 2015, 113, S111–S120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toner, C.D. Communicating clinical research to reduce cancer risk through diet: Walnuts as a case example. Nutr. Res. Pract. 2014, 8, 347–351. [Google Scholar] [CrossRef]
- Incidence and Mortality of Acute Coronary Syndrome in Serbia in 2013 in Serbian Acute Coronary Syndrome; Registry Report No. 6. 2013; Institute of Public Health of Serbia: Belgrade, Serbia, 2013.
- Sanchez-Gonzalez, C.; Ciudad, C.J.; Noe, V.; Izquierdo-Pulido, M. Health benefits of walnut polyphenols: An exploration beyond their lipid profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 3373–3383. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Gao, L.; Thakur, A.; Siu, P.M.; Lai, C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci. 2017, 24, 50. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, C.E.; Fulgoni, V.L.; Nicklas, T.A. Tree nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010. Nutr. J. 2015, 14, 64. [Google Scholar] [CrossRef] [Green Version]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Levis, K.; Mozaffarin, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranić, M.; Konić-Ristić, A.; Takić, M.; Glibetić, M.; Pavlović, Z.; Pavlović, M.; Dimitrijević-Branković, S. Nutrient profile of black coffee consumed in Serbia: Filling a gap in the food composition database. J. Food Compos. Anal. 2015, 40, 61–69. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Association of Official Analytical Chemists. In Official Methods of Analysis Chemists, 17th ed.; AOAC, Method 999.11; AOAC: Washington, DC, USA, 2000.
- Association of Official Analytical Chemists. In Official Methods of Analysis Chemists, 17th ed.; AOAC, Method 923.03; AOAC: Washington, DC, USA, 2000.
- Association of Official Analytical Chemists. In Official Methods of Analysis Chemists, 17th ed.; AOAC, Method 955.04; AOAC: Washington, DC, USA, 2000.
- Association of Official Analytical Chemists. In Official Methods of Analysis Chemists, 17th ed.; AOAC, Method 963.15; AOAC: Washington, DC, USA, 2000.
- Gurinovic, M.; Milesevic, J.; Kadvan, A.; Djekic-Ivankovic, M.; Debeljak-Martacic, J.; Takic, M.; Nikolić, M.; Ranković, S.; Finglas, P.; Glibetic, M. Establishment and advances in the online Serbian s gfood and recipe data base harmonized with EuroFIRTM standards. Food Chem. 2016, 193, 30–38. [Google Scholar] [CrossRef]
- Gurinovic, M.; Milesevic, J.; Kadvan, A.; Nikolic, M.; Zekovic, M.; Djekic-Ivankovic, M.; Dupouy, E.; Finglas, P.; Glibetic, M. Development, features and application of DIET ASSESS & PLAN (DAP) software in supporting public health nutrition research in central eastern european countries (CEEC). Food Chem. 2018, 238, 186–194. [Google Scholar]
- European Food Safety Authority (EFSA). Guidance on the EU menu methodology. EFSA J. 2014, 12, 1–77. [Google Scholar] [CrossRef] [Green Version]
- SPADE. Statistical Program to Assess Habitual Dietary Exposure User’s Manual Colophon. Available online: https://rivm.nl/en/Documents_and_publications/Common_and_Present/Publications/SPADE_manual_version_2_2/Download/SPADE_Manualversion2_2.pdf (accessed on 2 January 2020).
- Freisling, H.; Noh, H.; Slimani, N.; Chajes, V.; May, A.M.; Peeters, P.H.; Weiderpass, E.; Cross, A.J.; Skeie, G.; Jenab, M.; et al. Nut intake and 5-year changes in body weight and obesity risk in adults: Results from the epic-panacea study. Eur. J. Nutr. 2018, 57, 2399–2408. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Waist Circumference and Waist-Hip Ratio: Report of a Who Expert Consultation; World Health Organisation: Geneva, Switzerland, 2011. [Google Scholar]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and bmi for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the eighth joint national committee (jnc 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- EuroFIR Food Explorer. 2013. Available online: http://www.eurofir.org/foodexplorer/ (accessed on 16 May 2018).
- Zwarts, L.; Savage, G.P.; McNeil, D.L. Fatty acid content of new zeland-grown walnuts (Juglans regia L.). Int. J. Food Sci. Nutr. 1999, 50, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. Ω-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83, 1526S–1535S. [Google Scholar] [CrossRef]
- Marangoni, F.; Colombo, C.; Martiello, A.; Poli, A.; Poaletti, R.; Galli, C. Levels of the n-3 fatty acid eicosapentaenoic acid in addition to those of alpha linolenic acid are significantly raised in blood lipids by the intake of four walnuts a day in humans. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Guasch-Ferré, M.; Hu, F.B.; Sánchez-Tainta, A.; Bulló, M.; Serra-Mir, M.; López-Sabater, C.; Sorlí, J.V.; Arós, F.; Fiol, M.; et al. Dietary α-Linolenic acid, marine ω-3 fatty acids, and mortality in a population with high fish consumption: Findings from the prevención con Dieta Mediterránea (Predimed) study. J. Am. Heart Assoc. 2016, 5, e002543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2008, 17, 131–134. [Google Scholar] [PubMed]
- Djuricic, I.; Kotur-Stevuljevic, J.; Miljkovic, M.; Kerkez, M.; Djordjevic, V.; Djurasic, L.J.; Sobajic, S. Effect of nutritionally relevant doses of long chain N-3 pufa on lipid status, oxidative stress and inflammatory markers in on average middle-aged Serbian population. J. Med. Biochem. 2015, 34, 304–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, A.A.; Shakya-Shrestha, S.; Lentjes, M.A.; Wareham, N.J.; Khaw, K.T. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of α-linolenic acid to long-chain n-3 polyunsaturated fatty acids: Results from the EPIC-Norfolk cohort. Am. J. Clin. Nutr. 2010, 92, 1040–1051. [Google Scholar]
- Knezevic, T. Zdravlje Stanovnika Srbije; Analiticka Studija 1997–2007; Institut Za Javno Zdravlje Srbije Beograd: Beograd, Serbia, 2008. [Google Scholar]
- Menotti, A.; Puddu, P.E.; Tolonen, H.; Adachi, H.; Kafatos, A.; Kromhout, D. Age at death of major cardiovascular diseases in 13 cohorts. The seven countries study of cardiovascular diseases 45-year follow-up. Acta Cardiol. 2018, 74, 66–72. [Google Scholar] [CrossRef]
- Hayes, D.; Angove, M.J.; Tucci, J.; Dennis, C. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Crit. Rev. Food Sci. Nutr. 2016, 10, 1231–1241. [Google Scholar] [CrossRef]
- Bitok, E.; Jaceldo-Siegl, K.; Rajaram, S.; Serra-Mir, M.; Roth, I.; Feitas-Simoes, T.; Ros, E.; Sabaté, J. Favourable nutrient intake and displacement with long-term walnut supplementation among elderly: Results of a randomised trial. Br. J. Nutr. 2017, 118, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Minihane, A.M. Impact of genotype on EPA and DHA status and responsiveness to increased intakes. Nutrients 2016, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baer, D.J.; Gebauer, S.K.; Novotny, J.A. Walnuts consumed by healthy adults provide less available energy than predicted by the atwater factors. J. Nutr. 2016, 146, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Ndanuko, R.N.; Tapsell, L.C.; Charlton, K.E.; Batterham, M.J. Effect of individualised dietary advice for weight loss supplemented with walnuts on blood pressure: The Health Track study. Eur. J. Clin. Nutr. 2018, 72, 894–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteagudo, C.; Mariscal-Arcas, M.; Rivas, A.; Lorenzo-Tovar, M.L.; Tur, J.A.; Olea-Serrano, F. Proposal of Mediterranean diet serving score. PLoS ONE 2015, 10, e0128594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Macronutrient | Mean (SD) |
---|---|
Carbohydrate | 8.10 (0.22) |
Protein | 16.21 (0.05) |
Fat | 68.38 (0.04) |
Water | 3.60 (0.02) |
Ash | 1.84 (0.01) |
Fiber | 1.86 (0.11) |
Fatty Acid | 16:0 | 16:1 | 18:0 | 18:1, n-9 | 18:1, n-7 | 18:2, n-6 | 18:3, n-3 |
---|---|---|---|---|---|---|---|
Serbia | 7.03 (0.25) | 0.11 (0.05) | 2.75 (0.26) | 14.47 (1.17) | 1.34 (0.39) | 63.15 (0.93) | 11.15 (0.71) |
Mineral | Cu (mg/100 g) | Mn (mg/100 g) | Fe (mg/100 g) | Zn (mg/100 g) | Ni (mg/100 g) | Cr (µg/100 g) | Na (mg/100 g) | K (mg/100 g) | Ca (mg/100 g) | Mg (mg/100 g) |
---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | 1.29 (0.29) | 3.45 (1.28) | 2.20 (0.11) | 4.52 (3.63) | 0.29 (0.16) | 0.022 (0.02) | 14.2 (1.90) | 438.2 (60.90) | 113.5 (42.30) | 147.2 (15.50) |
Fatty Acids (%) | Mean (SD) |
---|---|
SFA | 46.9 (5.00) |
MUFA | 10.8 (1.30) |
PUFA | 41.8 (2.90) |
n-3 | 3.6 (1.10) |
n-6 | 38.3 (2.80) |
n-6/n-3 | 11.6 (3.60) |
Baseline | End of Intervention | p-Value | |
---|---|---|---|
Sex; n = 18 | |||
Men | 9 | 9 | |
Women | 9 | 9 | |
Age (years) | 47.1 ± 5.06 | ||
BMI (kg/m2) | 27.73 ± 3.5 | 27.14 ± 3.49 | 0.0064 ** |
WC (cm) | 91.75 ± 13.62 | 89.50 ± 13 | 0.1473 ns |
FAT MASS (kg) | 32.98 ± 8.54 | 31.36 ± 8.51 | 0.0006 *** |
Lean mass (FFM) (kg) | 48.15 ± 17.55 | 49.80 ± 17.72 | 0.0033 ** |
% Water | 48.48 ± 5.31 | 49.63 ± 5.39 | 0.0008 *** |
SBP (mmHg) | 137.50 ± 17.00 | 128.3 ± 13.74 | 0.0015 ** |
DBP (mmHg) | 76.00 ± 20 | 74.00 ± 19.25 | 0.0793 ns |
Fatty Acids (%) | Before Treatment MEDIAN (IQR) | After Treatment MEDIAN (IQR) | p Value |
---|---|---|---|
ALA | 0.107 (0.064–0.142) | 0.163 (0.130–0.190) | 0.005 ** |
EPA | 0.342 (0.230–0.450) | 0.440 (0.300–0.590) | 0.010 |
DHA | 2.494 (2.001–3.777) | 2.811 (2.467–3.978) | 0.094 |
n-3 | 3.426 (3.054–5.207) | 3.895(3.621–5.391) | 0.029 |
n-6 | 38.723 (37.391–41.644) | 39.221 (37.262–40.491) | 0.601 |
n-6/n-3 | 11.53 (7.503–12.510) | 9.534 (7.511–11.080) | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović-Oggiano, G.; Debeljak-Martačić, J.; Ranković, S.; Pokimica, B.; Mirić, A.; Glibetić, M.; Popović, T. The Effect of Walnut Consumption on n-3 Fatty Acid Profile of Healthy People Living in a Non-Mediterranean West Balkan Country, a Small Scale Randomized Study. Nutrients 2020, 12, 192. https://doi.org/10.3390/nu12010192
Petrović-Oggiano G, Debeljak-Martačić J, Ranković S, Pokimica B, Mirić A, Glibetić M, Popović T. The Effect of Walnut Consumption on n-3 Fatty Acid Profile of Healthy People Living in a Non-Mediterranean West Balkan Country, a Small Scale Randomized Study. Nutrients. 2020; 12(1):192. https://doi.org/10.3390/nu12010192
Chicago/Turabian StylePetrović-Oggiano, Gordana, Jasmina Debeljak-Martačić, Slavica Ranković, Biljana Pokimica, Alma Mirić, Maria Glibetić, and Tamara Popović. 2020. "The Effect of Walnut Consumption on n-3 Fatty Acid Profile of Healthy People Living in a Non-Mediterranean West Balkan Country, a Small Scale Randomized Study" Nutrients 12, no. 1: 192. https://doi.org/10.3390/nu12010192
APA StylePetrović-Oggiano, G., Debeljak-Martačić, J., Ranković, S., Pokimica, B., Mirić, A., Glibetić, M., & Popović, T. (2020). The Effect of Walnut Consumption on n-3 Fatty Acid Profile of Healthy People Living in a Non-Mediterranean West Balkan Country, a Small Scale Randomized Study. Nutrients, 12(1), 192. https://doi.org/10.3390/nu12010192