Hepatoprotection by Traditional Essence of Ginseng against Carbon Tetrachloride—Induced Liver Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals and Treatment
2.3. Clinical Biochemical and Hematological Profile Assay
2.4. Hepatic Antioxidant Levels
2.5. Hepatic Lipid Profile Assay
2.6. Pathological Examination of Liver Tissues
2.7. Statistics Analysis
3. Results
3.1. Content of Ginsenoside Rg2 in TEG
3.2. Effects of TEG on Blood Parameters in Rats with CCl4—Induced Liver Damage
3.3. TEG Effects on Hepatic Antioxidative Parameters in Rats with CCl4—Induced Liver Damage
3.4. Effects of TEG on Hepatic Lipid Profiles in Rats with CCl4—Induced Liver Damage
3.5. Effects of TEG on Weight of Liver Changes in Rats with CCl4—Induced Liver Damage
3.6. Subacute Histopathology Evaluation and Effect of TEG against CCl4—Induced Hepatotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, X.; Manautou, J.E. Molecular mechanisms underlying chemical liver injury. Expert Rev. Mol. Med. 2012, 14, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, L.; Graaf, W.; Nibourg, A.A.; Heger, M.; Bennink, J.; Stieger, B.; Gulik, T.M. Physiological and biochemical basis of clinical liver function tests: A review. Ann. Surg. 2013, 257, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.W.D.; Boll, M.; Stampfl, A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicologicalmodel. Crit. Rev. Toxicol. 2003, 33, 105–136. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, B.; Ugazio, G.; Raick, A.N. Choline-deficiency fatty liver: Relation of plasma phospholipids to liver triglycerides. Am. J. Physiol. 1966, 210, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Zhao, J.; You, J.; Li, J.; Ma, H.; Chen, X. Factors influencing cultivated ginseng (Panax ginseng CA Meyer) bioactive compounds. PLoS ONE 2019, 14, e0223763. [Google Scholar] [CrossRef]
- Kitts, D.D.; Hu, C. Efficacy and safety of ginseng. Public Health Nutr. 2000, 3, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.C.; Zhu, J.; Benkrima, L.; Luo, M.; Sun, L.; Sain, S.; Kont, K.; Yu, Y.; Carcasson, C. A comparative evaluation of ginsenosides in commercial ginseng products and tissue culture samples using HPLC. J. Herbs Spices Med. Plants 1996, 3, 41–50. [Google Scholar] [CrossRef]
- Yang, C.S.; Ko, S.R.; Cho, B.G.; Shin, D.M.; Yuk, J.M.; Li, S.; Kim, J.M.; Evans, R.M.; Jun, J.S.; Song, D.K.; et al. The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock. J. Cell. Mol. Med. 2008, 12, 1739–1753. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Xu, D.; Du, X.X.; Ran, C.L.; Xu, L.; Ren, S.J.; Tang, Y.T.; Li, Z.Y.; Chang, L.H.; Zhi, X.Y.; et al. Protective effects of salidroside against carbon tetrachloride (CCl4)-induced liver injury by initiating mitochondria to resist oxidative stress in mice. Int. J. Mol. Sci. 2019, 20, 3187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Liu, A.; Zhou, Y.; San, X.; Jin, T.; Jin, Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol. 2008, 115, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Chiu, W.C.; Chuang, H.L.; Tang, D.W.; Lee, Z.M.; Wei, L.; Chen, F.A.; Huang, C.C. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients 2015, 7, 905–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, A.A. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem. Toxicol. 2010, 48, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.C.; Huang, Y.L.; Chen, Y.L.; Peng, H.C.; Liao, W.H.; Chuang, H.L.; Chen, J.R.; Yang, S.C. Synbiotics reduce ethanol-induced hepatic steatosis and inflammation by improving intestinal permeability and microbiota in rats. Food Funct. 2015, 6, 1692–1700. [Google Scholar] [CrossRef]
- Ghadir, M.R.; Riahin, A.A.; Havaspour, A.; Nooranipour, M.; Habibinejad, A.A. The relationship between lipid profile and severity of liver damage in cirrhotic patients. Hepat. Mon. 2010, 10, 285. [Google Scholar]
- Drotman, R.B.; Lawhorn, G.T. Serum enzymes as indicators of chemically induced liver damage. Drug Chem. Toxicol. 1978, 1, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Shyur, L.F.; Huang, C.C.; Hsu, Y.Y.; Cheng, Y.W.; Yang, S.D. A sesquiterpenol extract potently suppresses inflammation in macrophages and mice skin and prevents chronic liver damage in mice through JNK-dependent HO-1 expression. Phytochemistry 2011, 72, 391–399. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Liver enzymes, metabolomics and genome-wide association studies: From systems biology to the personalized medicine. World J. Gastroenterol. 2015, 21, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Li, F.S.; Weng, J.K. Demystifying traditional herbal medicine with modern approach. Nat. Plants 2017, 3, 17109. [Google Scholar] [CrossRef]
- Jadon, A.; Bhadauria, M.; Shukla, S. Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J. Ethnopharmacol. 2007, 109, 214–218. [Google Scholar] [CrossRef]
- Naik, S.R.; Panda, V.S. Antioxidant and hepatoprotective effects of Ginkgo biloba phytosomes in carbon tetrachloride-induced liver injury in rodents. Liver Int. 2007, 27, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Gum, S.I.; Jo, S.J.; Ahn, S.H.; Kim, S.G.; Kim, J.T.; Shin, H.M.; Cho, M.K. The potent protective effect of wild ginseng (Panax ginseng CA Meyer) against benzo [α] pyrene-induced toxicity through metabolic regulation of CYP1A1 and GSTs. J. Ethnopharmacol. 2007, 112, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Demir, I.; Kiymaz, N.; Gudu, B.O.; Turkoz, Y.; Gul, M.; Dogan, Z.; Demirtas, S. Study of the neuroprotective effect of ginseng on superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels in experimental diffuse head trauma. Acta Neurochir. 2013, 155, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Filburn, C.R.; Klotz, L.O.; Zweier, J.L.; Sollott, S.J. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 2000, 192, 1001–1014. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Giordano, S.; Zhang, J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem. J. 2012, 441, 523–540. [Google Scholar] [CrossRef] [Green Version]
- Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. [Google Scholar] [CrossRef]
- Ulicná, O.; Greksák, M.; Vancová, O.; Zlatos, L.; Galbavý, S.; Bozek, P.; Nakano, M. Hepatoprotective effect of rooibos tea (Aspalathus linearis) on CCl4-induced liver damage in rats. Physiol. Res. 2003, 52, 461–466. [Google Scholar]
- Ferrer, I.; Friguls, B.; Dalfo, E.; Justicia, C.; Planas, A.M. Caspase- ´dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol. Appl. Neurobiol. 2003, 29, 472–481. [Google Scholar] [CrossRef]
- Greco, R.; Amantea, D.; Blandini, F.; Nappi, G.; Bagetta, G.; Corasaniti, M.T.; Tassorelli, C. Neuroprotective effect of nitroglycerin in a rodent model of ischemic stroke: Evaluation of Bcl-2 expression. Int. Rev. Neurobiol. 2007, 82, 423–435. [Google Scholar]
- Li, N.; Liu, B.; Dluzen, D.E.; Jin, Y. Protective effects of ginsenoside Rg(2) against glutamate-induced neurotoxicity in PC12 cells. J. Ethnopharmacol. 2007, 111, 458–463. [Google Scholar] [CrossRef]
- Tachikawa, E.; Kudo, K.; Kashimoto, T.; Takahashi, E. Ginseng saponins reduce acetylcholine-evoked Na+ influx and catecholamine secretion in bovine adrenal chromaffin cells. J. Pharmacol. Exp. Ther. 1995, 273, 629–636. [Google Scholar] [PubMed]
- Miyashita, T.; Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995, 80, 293–299. [Google Scholar] [PubMed] [Green Version]
- Nataraj, A.J.; Trent, J.C., II; Ananthaswamy, H.N. p53 gene mutations and photocarcinogenesis. J. Photochem. Photobiol. C. 1995, 62, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Ma, M.; Jiang, S.; Zhang, X.; Zhang, Y.; Wang, Y. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. EBioMedicine 2019, 40, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Schuppan, D.; Ashfaq-Khan, M.; Yang, A.T.; Kim, Y.O. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol. 2018, 68, 435–451. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Manon-Jensen, T.; Genovese, F.; Kristensen, J.H.; Nielsen, M.J.; Sand, J.M.B.; Hansen, N.U.B.; Bay-Jensen, A.C.; Bager, C.L.; Krag, A.; et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G807–G830. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, G.; Challa, A.K.; Litovsky, S.H.; Devarajan, A.; Wang, D.; Jones, D.P.; Darley-Usmar, V.M.; Rajasekaran, N.S. Enhanced Keap1-Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling in mice. Redox Biol. 2019, 27, 101212. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Xu, W.; Zheng, S. Nrf2 activation is required for curcumin to induce lipocyte phenotype in hepatic stellate cells. Biomed. Pharmacother. 2017, 95, 1–10. [Google Scholar] [CrossRef]
- Rehman, H.; Liu, Q.; Krishnasamy, Y.; Shi, Z.; Ramshesh, V.K.; Haque, K.; Schnellmann, R.G.; Murphy, M.P.; Lemasters, J.J.; Rockey, D.C.; et al. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. J. Physiol. 2016, 8, 14. [Google Scholar]
- Lyu, H.; Wang, H.; Li, L.; Zhu, J.; Chen, F.; Chen, Y.; Liu, C.; Fu, J.; Yang, B.; Zhang, Q.; et al. Hepatocyte-specific deficiency of Nrf2 exacerbates carbon tetrachloride-induced liver fibrosis via aggravated hepatocyte injury and subsequent inflammatory and fibrogenic responses. Free Radic. Biol. Med. 2020, 150, 136–147. [Google Scholar] [CrossRef] [PubMed]
Group | GSH | GPX | GR | SOD | CAT |
---|---|---|---|---|---|
(μM/mg) | (nmol/min/mg) | (nmol/min/mg) | (U/mg) | (nmol/min/mg) | |
CON | 1.61 ± 0.10 b | 11.68 ± 0.62 d | 14.06 ± 0.41 b | 0.082 ± 0.023 b | 33.08 ± 0.48 d |
CCl4 | 1.44 ± 0.06 a | 8.86 ± 0.27 a | 9.18 ± 0.69 a | 0.061 ± 0.005 a | 28.65 ± 0.32 a |
TEG-0.5X | 1.61 ± 0.08 b | 9.71 ± 0.43 b | 14.06 ± 0.57 b | 0.062 ± 0.004 a | 30.87 ± 0.67 b |
TEG-1X | 1.60 ± 0.07 b | 9.75 ± 0.25 b | 14.15 ± 0.68 b | 0.066 ± 0.003 a | 30.84 ± 0.32 b |
TEG-2X | 1.62 ± 0.11 b | 11.11 ± 0.45 c | 14.78 ± 0.49 c | 0.079 ± 0.007 b | 32.09 ± 0.57 c |
Group | Liver | Relative Liver |
---|---|---|
(g) | (%) | |
CON | 13.6 ± 1.2 a | 2.80 ± 0.36 a |
CCl4 | 16.5 ± 2.5 c | 3.62 ± 0.56 c |
TEG-0.5X | 16.6 ± 2.0 c | 3.57 ± 0.47 c |
TEG-1X | 15.6 ± 2.0 bc | 3.28 ± 0.38 bc |
TEG-2X | 14.5 ± 1.4 ab | 2.98 ± 0.29 ab |
Group | Fatty Changes | Bile Duct Hyperplasia | Inflammatory Cell Infiltration | Necrosis | Fibrosis |
---|---|---|---|---|---|
CON | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
CCl4 | 2.38 ± 1.06 c | 2.00 ± 0.53 c | 2.13 ± 0.83 c | 1.75 ± 0.71 c | 1.63 ± 0.74 c |
TEG-0.5X | 1.13 ± 0.83 b | 1.00 ± 0.53 b | 1.63 ± 0.74 b | 1.13 ± 0.35 b | 1.00 ± 0.76 bc |
TEG-1X | 1.13 ± 0.64 b | 1.25 ± 0.46 b | 1.50 ± 0.76 b | 1.00 ± 0.53 b | 1.13 ± 0.64 bc |
TEG-2X | 1.38 ± 0.92 b | 1.00 ± 0.76 b | 1.25 ± 0.46 b | 1.13 ± 0.64 b | 0.75 ± 0.71 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, Y.-J.; Wang, C.-Y.; Lee, M.-C.; Huang, C.-C. Hepatoprotection by Traditional Essence of Ginseng against Carbon Tetrachloride—Induced Liver Damage. Nutrients 2020, 12, 3214. https://doi.org/10.3390/nu12103214
Hsu Y-J, Wang C-Y, Lee M-C, Huang C-C. Hepatoprotection by Traditional Essence of Ginseng against Carbon Tetrachloride—Induced Liver Damage. Nutrients. 2020; 12(10):3214. https://doi.org/10.3390/nu12103214
Chicago/Turabian StyleHsu, Yi-Ju, Chao-Yun Wang, Mon-Chien Lee, and Chi-Chang Huang. 2020. "Hepatoprotection by Traditional Essence of Ginseng against Carbon Tetrachloride—Induced Liver Damage" Nutrients 12, no. 10: 3214. https://doi.org/10.3390/nu12103214
APA StyleHsu, Y. -J., Wang, C. -Y., Lee, M. -C., & Huang, C. -C. (2020). Hepatoprotection by Traditional Essence of Ginseng against Carbon Tetrachloride—Induced Liver Damage. Nutrients, 12(10), 3214. https://doi.org/10.3390/nu12103214