Association between Polyunsaturated Fatty Acid and Reactive Oxygen Species Production of Neutrophils in the General Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Self-Administered Questionnaire
2.3. PUFA Levels
2.4. Blood Parameters Including PUFAs
2.5. Neutrophil Functions
2.6. Statistics
3. Results
3.1. Characteristics of the Study Subjects
3.2. Relationship between ROS and PUFAs (Correlation Coefficient)
3.3. Relationship between ROS and PUFAs (Multiple Regression Analysis)
4. Discussion
4.1. Relationship between ROS and PUFAs
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 6 September 2020).
- Inoue, N. Stress and atherosclerotic cardiovascular disease. J. Atheroscler. Thromb. 2014, 21, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmez, I.; Ozyurt, H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem. Int. 2012, 60, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Xia, N.; Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef] [PubMed]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Stagliano, N.E.; Donovan, M.J.; Breitbart, R.E. Ginsburg GS: Atherosclerosis and Cancer. Ann. N. Y. Acad. Sci. 2001, 947, 271–292. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Umemoto, S.; Hiromoto, M.; Toma, Y.; Tomochika, Y.; Aoyagi, S.; Tanaka, M.; Fujii, T.; Matsuzaki, M. Importance of NAD(P)H oxidase–mediated oxidative stress and contractile type smooth muscle myosin heavy chain SM2 at the early stage of atherosclerosis. Circulation 2002, 105, 2288–2295. [Google Scholar] [CrossRef] [Green Version]
- Umeji, K.; Umemoto, S.; Itoh, S.; Tanaka, M.; Kawahara, S.; Fukai, T.; Matsuzaki, M. Comparative effects of pitavastatin and probucol on oxidative stress, Cu/Zn superoxide dismutase, PPAR-γ, and aortic stiffness in hypercholesterolemia. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2522–H2532. [Google Scholar] [CrossRef]
- Belikov, A.V.; Schraven, B.; Simeoni, L. T cells and reactive oxygen species. J. Biomed. Sci. 2015, 22, 85. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Takahashi, I.; Matsuzaka, M.; Yamai, K.; Danjo, K.; Kumagai, T.; Umeda, T.; Itai, K.; Nakaji, S. The relationship between serum selenium concentration and neutrophil function in peripheral blood. Biol. Trace Elem. Res. 2011, 144, 396–406. [Google Scholar] [CrossRef]
- Koga, T.; Umeda, T.; Kojima, A.; Tanabe, M.; Yamamoto, Y.; Takahashi, I.; Iwasaki, H.; Iwane, K.; Matsuzaka, M.; Nakaji, S. Influence of a 3-month training program on muscular damage and neutrophil function in male university freshman judoists. Luminescence 2013, 28, 136–142. [Google Scholar] [CrossRef]
- Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 2003, 15, 247–254. [Google Scholar] [CrossRef]
- Smith, J.A. Neutrophils, host defense, and inflammation: A double-edged sword. J. Leukoc. Biol. 1994, 56, 672–686. [Google Scholar] [CrossRef]
- Nelson, J.R.; True, W.S.; Le, V.; Mason, R.P. Can pleiotropic effects of eicosapentaenoic acid (EPA) impact residual cardiovascular risk? Postgrad. Med. 2017, 129, 822–827. [Google Scholar] [CrossRef]
- Mori, T.A. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease. Fitoterapia 2017, 123, 51–58. [Google Scholar] [CrossRef]
- Cockbain, A.J.; Toogood, G.J.; Hull, M.A. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 2012, 61, 135–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Harris, W.S.; Mozaffarian, D.; Rimm, E.; Kris-Etherton, P.; Rudel, L.L.; Appel, L.J.; Engler, M.M.; Engler, M.B.; Sacks, F. Omega-6 Fatty Acids and Risk for Cardiovascular Disease A Science Advisory From the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 2009, 119, 902–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, M.; Kawamoto, T.; Tamura, R. Predictive value of serum dihomo-γ-linolenic acid level and estimated Δ-5 desaturase activity in patients with hepatic steatosis. Obes. Res. Clin. Pract. 2017, 11, 34–43. [Google Scholar] [CrossRef]
- Kim, O.Y.; Lim, H.H.; Lee, M.J.; Kim, J.Y.; Lee, J.H. Association of fatty acid composition in serum phospholipids with metabolic syndrome and arterial stiffness. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, X.; Zhao, P.; Yang, Z.; Yan, C.; Guo, B.; Qian, S.Y. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2. Free Radic. Biol. Med. 2016, 96, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Int. J. Surg. 2007, 335, 806–808. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, I.; Umeda, T.; Mashiko, T.; Chinda, D.; Oyama, T.; Sugawara, K.; Nakaji, S. Effects of rugby sevens matches on human neutrophil-related non-specific immunity. Br. J. Sports Med. 2007, 41, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Kovalenko, E.I.; Boyko, A.A.; Semenkov, V.F.; Lutsenko, G.V.; Grechikhina, M.V.; Kanevskiy, L.M.; Azhikina, T.L.; Telford, W.G.; Sapozhnikov, A.M. ROS production, intracellular HSP70 levels and their relationship in human neutrophils: Effects of age. Oncotarget 2014, 5, 11800–11812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butcher, S.K.; Chahal, H.; Nayak, L.; Sinclair, A.; Henriquez, N.V.; Sapey, E.; O’Mahony, D.; Lord, J.M. Senescence in innate immune responses: Reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J. Leukoc. Biol. 2001, 70, 881–886. [Google Scholar] [CrossRef]
- Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Wonisch, W.; Falk, A.; Sundl, I.; Winklhofer-Roob, B.M.; Lindschinger, M. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male 2012, 15, 159–165. [Google Scholar] [CrossRef]
- White, R.E.; Gerrity, R.; Barman, S.A.; Han, G. Estrogen and oxidative stress: A novel mechanism that may increase the risk for cardiovascular disease in women. Steroids 2010, 75, 788–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donohue, J.F. Ageing, smoking and oxidative stress. Thorax 2006, 61, 461–462. [Google Scholar] [CrossRef] [Green Version]
- Pompeia, C.; Freitas, J.J.S.; Kim, J.S.; Zyngier, S.B.; Curi, R. Arachidonic acid cytotoxicity in leukocytes: Implications of oxidative stress and eicosanoid synthesis. Biol. Cell 2002, 94, 251–265. [Google Scholar] [CrossRef]
- Mytilineou, C.; Kramer, B.C.; Yabut, J.A. Glutathione depletion and oxidative stress. Parkinsonism. Relat. Disord. 2002, 8, 385–387. [Google Scholar] [CrossRef]
- Suzuki, Y.J.; Forman, H.J.; Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med. 1997, 22, 269–285. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, J.; Yang, X.; Wu, E.; Qian, S.Y. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil׳s cytotoxicity. Redox Biol. 2014, 2, 608–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladini, G.; Di Pasqua, L.G.; Berardo, C.; Siciliano, V.; Richelmi, P.; Mannucci, B.; Croce, A.C.; Rizzo, V.; Perlini, S.; Vairetti, M.; et al. Fatty acid desaturase involvement in non-alcoholic fatty liver disease rat models: Oxidative stress versus metalloproteinases. Nutrients 2019, 11, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, T.; Hirota, S.; Hirayama, T.; Adachi, N.; Hagiwara, C.; Iwama, N.; Kamachi, K.; Araki, E.; Kawashima, H.; Kiso, Y. Age-related changes of dietary intake and blood eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid levels in Japanese men and women. Prostaglandins Leukot. Essent. Fatty Acids 2011, 84, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kuriki, K.; Nagaya, T.; Tokudome, Y.; Imaeda, N.; Fujiwara, N.; Sato, J.; Goto, C.; Ikeda, M.; Maki, S.; Tajima, K.; et al. Plasma concentrations of (n-3) highly unsaturated fatty acids are good biomarkers of relative dietary fatty acid intakes: A cross-sectional study. J. Nutr. 2003, 133, 3643–3650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, D.; Miles, E.A.; Banerjee, T.; Wells, S.J.; Roynette, C.E.; Wahle, K.W.; Calder, P.C. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: A comparison of young and older men. Am. J. Clin. Nutr. 2006, 83, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 841676. [Google Scholar] [CrossRef]
Male | Female | |||||
---|---|---|---|---|---|---|
20–44 Years | 44–64 Years | ≥65 Years | 20–44 Years | 44–64 Years | ≥65 Years | |
Age (year) | 34.3 ± 5.7 * | 54.3 ± 5.9 ** | 70.4 ± 5.6 *** | 35.3 ± 5.9 † | 55.8 ± 5.6 †† | 70.9 ± 5.3 ††† |
Height (cm) | 172.7 ± 5.4 * | 169.2 ± 5.8 ** | 163.1 ± 8.4 *** | 159.4 ± 5.4 † | 156.1 ± 5.2 †† | 151.0 ± 5.1 ††† |
Weight (kg) | 70.1 ± 11.8 | 68.0 ± 8.8 ** | 62.0 ± 8.4 *** | 54.5 ± 10.1 | 53.8 ± 7.8 | 51.9 ± 7.9 ††† |
BMI | 23.4 ± 3.6 | 23.7 ± 2.7 | 23.3 ± 2.9 | 21.4 ± 4.0 | 22.0 ± 3.1 | 22.7 ± 3.1 ††† |
AA (μg/dL) | 234.1 ± 56.4 | 236.2 ± 59.6 ** | 202.4 ± 47.1 *** | 209.1 ± 40.5 † | 226.7 ± 47.7 †† | 206.4 ± 46.1 |
DGLA (μg/dL) | 50.5 ± 15.7 | 53.4 ± 16.8 ** | 39.4 ± 13.3 *** | 40.4 ± 14.6 † | 45.6 ± 13.8 †† | 41.3 ± 12.9 |
AA/DGLA | 4.88 ± 1.27 | 4.66 ± 1.28 ** | 5.50 ± 1.53 *** | 5.60 ± 1.62 | 5.29 ± 1.51 | 5.31 ± 1.46 |
EPA (μg/dL) | 50.0 ± 26.5 * | 82.1 ± 45.9 ** | 125.9 ± 62.5 *** | 43.1 ± 22.8 † | 82.6 ± 43.6 †† | 117.6 ± 61.6 ††† |
DHA (μg/dL) | 127.4 ± 45.5 * | 163.5 ± 53.7 ** | 189.8 ± 64.3 *** | 118.1 ± 36.2 † | 161.3 ± 48.1 †† | 194.0 ± 44.9 ††† |
BROS (×103) | 3.20 ± 3.40 | 4.10 ± 5.95 | 4.05 ± 6.95 | 3.28 ± 3.83 | 3.41 ± 6.69 | 3.34 ± 3.06 |
SROS (×106) | 7.52 ± 3.75 | 7.46 ± 3.24 | 7.67 ± 3.55 | 6.74 ± 3.28 † | 5.81 ± 2.30 | 5.91 ± 2.91 ††† |
AA | DGLA | AA/DGLA | EPA | DHA | ||
---|---|---|---|---|---|---|
Male | ||||||
young | r | 0.171 * | 0.135 | −0.045 | 0.175 * | 0.163 |
p value | 0.047 | 0.117 | 0.600 | 0.041 | 0.058 | |
middle age | r | −0.140 | −0.090 | −0.012 | −0.022 | −0.073 |
p value | 0.109 | 0.300 | 0.891 | 0.802 | 0.404 | |
old | r | −0.015 | −0.083 | 0.101 | 0.091 | 0.045 |
p value | 0.892 | 0.458 | 0.365 | 0.416 | 0.686 | |
Female | ||||||
young | r | 0.220 ** | 0.081 | 0.041 | −0.054 | −0.030 |
p value | 0.005 | 0.308 | 0.606 | 0.496 | 0.703 | |
middle age | r | 0.162 * | 0.054 | 0.065 | 0.142 * | 0.097 |
p value | 0.014 | 0.417 | 0.328 | 0.032 | 0.146 | |
old | r | 0.041 | −0.034 | 0.041 | 0.178 * | 0.061 |
p value | 0.612 | 0.669 | 0.612 | 0.025 | 0.445 |
AA | DGLA | AA/DGLA | EPA | DHA | ||
---|---|---|---|---|---|---|
Male | ||||||
young-age | r | 0.121 | 0.201 * | −0.154 | 0.022 | 0.081 |
p value | 0.161 | 0.019 | 0.074 | 0.799 | 0.347 | |
middle-aged | r | 0.090 | 0.266 ** | −0.253 ** | −0.134 | 0.019 |
p value | 0.300 | 0.002 | 0.003 | 0.124 | 0.829 | |
old-age | r | −0.012 | 0.082 | −0.169 | 0.001 | −0.019 |
p value | 0.914 | 0.462 | 0.129 | 0.995 | 0.868 | |
Female | ||||||
young-age | r | 0.169 * | 0.291 ** | −0.231 ** | −0.006 | 0.061 |
p value | 0.033 | 0.000 | 0.003 | 0.939 | 0.446 | |
middle-aged | r | 0.124 | 0.191 ** | −0.123 | 0.038 | 0.142 * |
p value | 0.062 | 0.004 | 0.063 | 0.566 | 0.032 | |
old-age | r | 0.140 | 0.185 * | −0.143 | −0.044 | 0.069 |
p value | 0.080 | 0.020 | 0.073 | 0.585 | 0.389 |
Male | Female | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Young-Age | Middle-Aged | Old-Age | Young-Age | Middle-Aged | Old-Age | |||||||
β | p | β | p | β | p | β | p | β | p | β | p | |
AA | 0.173 | 0.047 * | −0.126 | 0.159 | 0.003 | 0.978 | 0.128 | 0.128 | 0.122 | 0.200 | 0.259 | 0.076 |
DGLA | 0.076 | 0.408 | −0.051 | 0.566 | −0.016 | 0.894 | 0.141 | 0.138 | −0.085 | 0.423 | −0.015 | 0.915 |
AA/DGLA | 0.046 | 0.616 | −0.054 | 0.539 | 0.006 | 0.962 | −0.003 | 0.973 | 0.196 | 0.053 | 0.152 | 0.277 |
EPA | 0.187 | 0.035 * | −0.040 | 0.654 | 0.052 | 0.644 | 0.031 | 0.710 | 0.210 | 0.031 * | 0.190 | 0.192 |
DHA | 0.102 | 0.258 | −0.103 | 0.229 | 0.050 | 0.657 | −0.075 | 0.940 | 0.108 | 0.281 | 0.260 | 0.068 |
Male | Female | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Young-Age | Middle-Aged | Old-Age | Young-Age | Middle-Aged | Old-Age | |||||||
β | p | β | p | β | p | β | p | β | p | β | p | |
AA | 0.092 | 0.274 | 0.059 | 0.517 | 0.003 | 0.979 | 0.145 | 0.068 | 0.185 | 0.042 * | 0.215 | 0.129 |
DGLA | 0.098 | 0.269 | 0.225 | 0.012 * | 0.095 | 0.427 | 0.279 | 0.002 * | 0.236 | 0.019 * | 0.156 | 0.258 |
AA/DGLA | −0.056 | 0.521 | −0.222 | 0.012 * | −0.158 | 0.164 | −0.059 | 0.483 | −0.100 | 0.305 | −0.082 | 0.545 |
EPA | −0.010 | 0.912 | −0.100 | 0.270 | 0.017 | 0.880 | 0.019 | 0.806 | 0.062 | 0.507 | −0.020 | 0.889 |
DHA | 0.041 | 0.635 | 0.066 | 0.451 | −0.061 | 0.587 | 0.153 | 0.053 | 0.145 | 0.130 | 0.222 | 0.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, N.; Sawada, K.; Takahashi, I.; Matsuda, M.; Fukui, S.; Tokuyasu, H.; Shimizu, H.; Yokoyama, J.; Akaike, A.; Nakaji, S. Association between Polyunsaturated Fatty Acid and Reactive Oxygen Species Production of Neutrophils in the General Population. Nutrients 2020, 12, 3222. https://doi.org/10.3390/nu12113222
Suzuki N, Sawada K, Takahashi I, Matsuda M, Fukui S, Tokuyasu H, Shimizu H, Yokoyama J, Akaike A, Nakaji S. Association between Polyunsaturated Fatty Acid and Reactive Oxygen Species Production of Neutrophils in the General Population. Nutrients. 2020; 12(11):3222. https://doi.org/10.3390/nu12113222
Chicago/Turabian StyleSuzuki, Nobuaki, Kaori Sawada, Ippei Takahashi, Motoko Matsuda, Shinji Fukui, Hidemasa Tokuyasu, Hiroyasu Shimizu, Junichi Yokoyama, Arata Akaike, and Shigeyuki Nakaji. 2020. "Association between Polyunsaturated Fatty Acid and Reactive Oxygen Species Production of Neutrophils in the General Population" Nutrients 12, no. 11: 3222. https://doi.org/10.3390/nu12113222
APA StyleSuzuki, N., Sawada, K., Takahashi, I., Matsuda, M., Fukui, S., Tokuyasu, H., Shimizu, H., Yokoyama, J., Akaike, A., & Nakaji, S. (2020). Association between Polyunsaturated Fatty Acid and Reactive Oxygen Species Production of Neutrophils in the General Population. Nutrients, 12(11), 3222. https://doi.org/10.3390/nu12113222