Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Sample Size and Eligibility Criteria
2.2. Data and Biological Material Collections
2.3. Extraction of Total RNA from Peripheral Blood, Reverse Transcription and qPCR
2.4. Determination of Plasma Redox Status Biomarkers
2.5. Dietary Parameters
2.5.1. 24-h Dietary Recall
2.5.2. Calculation of TACd and DII Scores
2.5.3. Assessment of Nutritional Status
2.6. Search for Medical Records after the End of the Segment
2.7. Statistical Analysis
3. Results
3.1. Characterization of the Study Population
3.2. Throughout the CT There Is a Decrease in the Intake of Antioxidants and an Increase in the DII® Score
3.3. Antioxidant Markers Are Associated with the Transcription of Inflammatory Markers
3.4. Overweight Women with BC Undergoing CT Have Lower Levels of Antioxidant Markers and Higher Levels of Inflammatory Markers When Compared to Non-Overweight
3.5. After the End of the Follow-Up, 16.4% of the Patients Developed Metastases in Three Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Avgerinos:, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Canli, O.; Nicolas, A.M.; Gupta, J.; Finkelmeier, F.; Goncharova, O.; Pesic, M.; Neumann, T.; Horst, D.; Loewer, M.; Sahin, U.; et al. Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis. Cancer Cell 2017, 32, 869–883.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crujeiras, A.B.; Díaz-Lagares, A.; Carreira, M.C.; Amil, M.; Casanueva, F.F. Oxidative stress associated to dysfunctional adipose tissue: A potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic. Res. 2013, 47, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Kolb, R.; Sutterwala, F.S.; Zhang, W. Obesity and cancer: Inflammation bridges the two. Curr. Opin. Pharmacol. 2016, 29, 77–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Ren, Y.; Dai, Z.-J.; Wu, C.; Ji, Y.; Xu, J. IL-6, IL-8 and TNF-alpha levels correlate with disease stage in breast cancer patients. Adv. Clin. Exp. Med. 2017, 26, 421–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obon-Santacana, M.; Romaguera, D.; Gracia-Lavedan, E.; Molinuevo, A.; Molina-Montes, E.; Shivappa, N.; Hébert, J.R.; Tardón, A.; Castaño-Vinyals, G.; Moratalla-Navarro, F.; et al. Dietary Inflammatory Index, Dietary Non-Enzymatic Antioxidant Capacity, and Colorectal and Breast Cancer Risk (MCC-Spain Study). Nutrients 2019, 11, 1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, B.L.; Ballard-Barbash, R.; Bernstein, L.; Baumgartner, R.N.; Neuhouser, M.L.; Wener, M.H.; Baumgartner, K.B.; Gilliland, F.D.; Sorensen, B.E.; McTiernan, A.; et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 2009, 27, 3437–3444. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; Lleonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev. 2013, 12, 376–390. [Google Scholar] [CrossRef]
- Eiro, N.; Vizoso, F.J. Inflammation and cancer. World J. Gastrointest. Surg. 2012, 4, 62–72. [Google Scholar] [CrossRef]
- Suman, S.; Sharma, P.K.; Rai, G.; Mishra, S.; Arora, D.; Gupta, P.; Shukla, Y. Current perspectives of molecular pathways involved in chronic inflammation-mediated breast cancer. Biochem. Biophys. Res. Commun. 2016, 472, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Zimta, A.A.; Berindan-Neagoe, I.; Tigu, A.B.; Muntean, M.; Cenariu, D.; Slaby, O. Molecular Links between Central Obesity and Breast Cancer. Int. J. Mol. Sci. 2019, 20, 5364. [Google Scholar] [CrossRef] [Green Version]
- Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat. Immunol. 2011, 12, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Germano, G.; Allavena, P.; Mantovani, A. Cytokines as a key component of cancer-related inflammation. Cytokine 2008, 43, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.S. Interleukin-1: Therapeutic potential for solid tumors. Cancer Investig. 1993, 11, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Changkija, B.; Konwar, R. Role of interleukin-10 in breast cancer. Breast Cancer Res. Treat. 2012, 133, 11–21. [Google Scholar]
- Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumor Biol. 2016, 37, 4281–4291. [Google Scholar] [CrossRef]
- He, C.; Tamimi, R.M.; Hankinson, S.E.; Hunter, D.J.; Han, J. A prospective study of genetic polymorphism in MPO, antioxidant status, and breast cancer risk. Breast Cancer Res. Treat. 2008, 113, 585–594. [Google Scholar] [CrossRef]
- Lee, J.D.; Cai, Q.; Shu, X.O.; Nechuta, S.J. The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk and Prognosis: A Systematic Review of the Epidemiologic Literature. J. Women’s Health 2017, 26, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Carioca, A.A.F.; Verde, S.M.M.L.; Luzia, L.A.; Rondó, P.H.C.; Latorre, M.R.D.O.; Ellery, T.H.D.P.; Damasceno, N.R.T. Association of oxidative stress biomarkers with adiposity and clinical staging in women with breast cancer. Eur. J. Clin. Nutr. 2015, 69, 1256–1261. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Prospective study of dietary inflammatory index and risk of breast cancer in Swedish women. Br. J. Cancer 2015, 113, 1099–1103. [Google Scholar] [CrossRef] [Green Version]
- Moradi, S.; Issah, A.; Mohammadi, H.; Mirzaei, K. Associations between dietary inflammatory index and incidence of breast and prostate cancer: A systematic review and meta-analysis. Nutrition 2018, 55–56, 168–178. [Google Scholar] [CrossRef]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Blair, C.K.; Prizment, A.E.; Jacobs, D.R.; Hébert, J.R. Prospective study of the dietary inflammatory index and risk of breast cancer in postmenopausal women. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.R.; Willett, W.C.; Vaidya, R.L.; Michels, K.B. An Adolescent and Early Adulthood Dietary Pattern Associated with Inflammation and the Incidence of Breast Cancer. Cancer Res. 2017, 77, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- Datta, M.; Coussens, L.M.; Nishikawa, H.; Hodi, F.S.; Jain, R.K. Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.B.; Tjønneland, A.; Stripp, C.; Olsen, A.; Christensen, J.; Overvad, K.; Dragsted, L.O.; Thomsen, B. Intake of vitamins A, C, and E from diet and supplements and breast cancer in postmenopausal women. Cancer Causes Control 2003, 14, 695–704. [Google Scholar] [CrossRef]
- Pantavos, A.; Ruiter, R.; Feskens, E.J.; De Keyser, C.E.; Hofman, A.; Stricker, B.H.; Franco, O.H.; Jong, J.C.K.-D. Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: The Rotterdam Study. Int. J. Cancer 2015, 136, 2178–2186. [Google Scholar] [CrossRef] [PubMed]
- Calaf, G.M.; Ponce-Cusi, R.; Carrion, F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol. Rep. 2018, 40, 2381–2388. [Google Scholar] [CrossRef]
- Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 2018, 37, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Vilela, D.D.; Peixoto, L.G.; Teixeira, R.R.; Baptista, N.B.; Caixeta, D.C.; De Souza, A.V.; Machado, H.L.; Pereira, M.N.; Sabino-Silva, R.; Espindola, F.S. The Role of Metformin in Controlling Oxidative Stress in Muscle of Diabetic Rats. Oxid. Med. Cell. Longev. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Position of the American Dietetic association: Fat replacers. J. Am. Diet Assoc. 2005, 105, 266–275. [CrossRef] [PubMed]
- Core of studies and research in food. In Brazilian Food Composition Table; Campinas State University, Nepa-Unicamp: Campinas, Brazil, 2011.
- Nusser, S.M.; Carriquiry, A.L.; Dodd, K.W.; Fuller, W.A. A semiparametric transformation approach to estimating usual daily intake distributions. J. Am. Stat. Assoc. 1996, 91. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. 4), 1220S–1228S. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- Souza, M.A.N. Capacidade Antioxidante Total da Dieta e Depressão em Idosos: Um Estudo de Base Populacional em Viçosa (MG); Federal University of Viçosa (MG—Brazil): Viçosa, Brazil, 2016; p. 78. [Google Scholar]
- Torres, T.; Farah, A. Coffee, mate, acai and beans are the main contributors to the antioxidant capacity of Brazilian’s diet. Eur. J. Nutr. 2017, 56, 1523–1533. [Google Scholar] [CrossRef]
- Leao, D.P.; Franca, A.S.; Oliveira, L.S.; Bastos, R.; Coimbra, M.A. Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chem. 2017, 225, 146–153. [Google Scholar] [CrossRef]
- Della Betta, F.; Nehring, P.; Seraglio, S.K.T.; Schulz, M.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Phenolic Compounds Determined by LC-MS/MS and in vitro Antioxidant Capacity of Brazilian Fruits in Two Edible Ripening Stages. Plant Foods Hum. Nutr. 2018, 73, 302–307. [Google Scholar] [CrossRef]
- Physical status: The use and interpretation of anthropometry, Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452.
- Obesity: Preventing and managing the global epidemic, Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253.
- Lipschitz, D.A. Screening for nutritional status in the elderly. Prim. Care 1994, 21, 55–67. [Google Scholar] [PubMed]
- Kanbayashi, C.; Iwata, H. Current approach and future perspective for ductal carcinoma in situ of the breast. Jpn. J. Clin. Oncol. 2017, 47, 671–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiano, P.; Molina-Montes, E.; Molinuevo, A.; Sánchez, M.J.; Romaguera, D.; Gracia, E.; Martín, V.; Castaño-Vinyals, G.; Pérez-Gómez, B.; Moreno, V.; et al. Association study of dietary non-enzymatic antioxidant capacity (NEAC) and colorectal cancer risk in the Spanish Multicase-Control Cancer (MCC-Spain) study. Eur. J. Nutr. 2019, 58, 2229–2242. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, P.; Lajous, M.; Macdonald, C.; Fagherazzi, G.; Bonnet, F.; Boutron-Ruault, M. High dietary total antioxidant capacity is associated with a reduced risk of hypertension in French women. Nutr. J. 2019, 18, 31. [Google Scholar] [CrossRef]
- Rockenbach, G.; Di Pietro, P.F.; Ambrosi, C.; Boaventura, B.C.B.; Vieira, F.G.K.; Crippa, C.G.; Da Silva, E.L.; Fausto, M.A. Dietary intake and oxidative stress in breast cancer: Before and after treatments. Nutr. Hosp. 2012, 26, 737–744. [Google Scholar]
- Custodio, I.D.D.; Marinho, E.D.C.; Gontijo, C.A.; Pereira, T.S.S.; Paiva, C.E.; Maia, Y.C.P. Impact of Chemotherapy on Diet and Nutritional Status of Women with Breast Cancer: A Prospective Study. PLoS ONE 2016, 11, e0157113. [Google Scholar] [CrossRef]
- Custodio, I.D.D.; Franco, F.D.P.; Marinho, E.D.C.; Pereira, T.S.S.; Lima, M.T.M.; Molina, M.D.C.B.; Shivappa, N.; Hébert, J.R.; Paiva, C.E.; Maia, Y.C.D.P. Prospective Analysis of Food Consumption and Nutritional Status and the Impact on the Dietary Inflammatory Index in Women with Breast Cancer during Chemotherapy. Nutrients 2019, 11, 2160. [Google Scholar] [CrossRef] [Green Version]
- Marinho, E.D.C.; Custódio, I.D.D.; Ferreira, I.B.; Crispim, C.A.; Paiva, C.E.; Maia, Y.C.P. Impact of chemotherapy on perceptions related to food intake in women with breast cancer: A prospective study. PLoS ONE 2017, 12, e0187573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikulina, M.A.; Andersen, H.U.; Karlsen, A.E.; Darville, M.I.; Eizirik, D.L.; Mandrup-Poulsen, T. Glutathione depletion inhibits IL-1 beta-stimulated nitric oxide production by reducing inducible nitric oxide synthase gene expression. Cytokine 2000, 12, 1391–1394. [Google Scholar] [CrossRef]
- Badid, N.; Ahmed, F.Z.B.; Merzouk, H.; Belbraouet, S.; Mokhtari, N.; Merzouk, H.; Benhabib, R.; Hamzaoui, D.; Narce, M. Oxidant/antioxidant status, lipids and hormonal profile in overweight women with breast cancer. Pathol. Oncol. Res. 2010, 16, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, C.; Gramignano, G.; Floris, C.; Murenu, G.; Sollai, G.; Macciò, A. Role of inflammation and oxidative stress in post-menopausal oestrogen-dependent breast cancer. J. Cell. Mol. Med. 2014, 18, 2519–2529. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Yang, R.; Rao, Y.; Du, Y.; Kalembo, F.W. Risk factors for breast cancer and expression of insulin-like growth factor-2 (IGF-2) in women with breast cancer in Wuhan City, China. PLoS ONE 2012, 7, e36497. [Google Scholar] [CrossRef]
- Vance, V.; Hanning, R.M.; Mourtzakis, M.; McCargar, L. Weight gain in breast cancer survivors: Prevalence, pattern and health consequences. Obes. Rev. 2011, 12, 282–294. [Google Scholar] [CrossRef]
- Kwok, A.; Palermo, C.; Boltong, A. Dietary experiences and support needs of women who gain weight following chemotherapy for breast cancer. Supportive Care Cancer 2015, 23, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Tredan, O.; Bajard, A.; Meunier, A.; Roux, P.; Fiorletta, I.; Gargi, T.; Bachelot, T.; Guastalla, J.-P.; Lallemand, Y.; Faure, C.; et al. Body weight change in women receiving adjuvant chemotherapy for breast cancer: A French prospective study. Clin. Nutr. 2010, 29, 187–191. [Google Scholar] [CrossRef]
- Kim, S.; Taylor, J.A.; Milne, G.L.; Sandler, D.P. Association between urinary prostaglandin E2 metabolite and breast cancer risk: A prospective, case-cohort study of postmenopausal women. Cancer Prev. Res. 2013, 6, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, Q.; Sun, B.; Meng, X.; Li, L.; Yang, L.; Cong, Y.; Liu, J.; Xuan, L.; Huang, Y.; et al. Low BMI is correlated with increased TGF-beta and IL-10 mRNA levels in the peripheral blood of breast cancer patients. IUBMB Life 2018, 70, 237–245. [Google Scholar] [CrossRef] [Green Version]
- George, S.M.; Neuhouser, M.L.; Mayne, S.T.; Irwin, M.L.; Albanes, D.; Gail, M.H.; Alfano, C.M.; Bernstein, L.; McTiernan, A.; Reedy, J.; et al. Postdiagnosis diet quality is inversely related to a biomarker of inflammation among breast cancer survivors. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2220–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, M.; Pandeya, N.; Byrnes, G.; Renehan, A.G.; Stevens, G.A.; Ezzati, M.; Ferlay, J.; Miranda, J.J.; Romieu, I.; Dikshit, R.; et al. Global burden of cancer attributable to high body-mass index in 2012: A population-based study. Lancet Oncol. 2015, 16, 36–46. [Google Scholar] [CrossRef]
- Abranches, M.V.; Mendes, M.C.S.; Pena, G.D.G.; Maia, Y.C.D.P.; Ribeiro, S.M.R.; Franceschini, S.D.C.C.; De Paula, S.O.; De Freitas, R.N.; Peluzio, M.C.G. Antioxidant vitamins and cytokines are altered in breast cancer. Eur. J. Cancer Prev. 2011, 20, 403–410. [Google Scholar] [CrossRef]
- Halliwell, B. The antioxidant paradox: Less paradoxical now? Br. J. Clin. Pharmacol. 2013, 75, 637–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, A.Y.; Cai, X.; Thoene, K.; Obi, N.; Jaskulski, S.; Behrens, S.; Flesch-Janys, D.; Chang-Claude, J. Antioxidant supplementation and breast cancer prognosis in postmenopausal women undergoing chemotherapy and radiation therapy. Am. J. Clin. Nutr. 2019, 109, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiti, A.K. Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells. Pharm. J. 2010, 10, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Bennett, B.; Zielonka, J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol. 2018, 15, 347–362. [Google Scholar] [CrossRef]
- Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015, 27, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Semenza, G.L. Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 2017, 36, 252–259. [Google Scholar] [CrossRef]
- Kuo, M.T. Redox regulation of multidrug resistance in cancer chemotherapy: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2009, 11, 99–133. [Google Scholar] [CrossRef] [Green Version]
- Fiaschi, T.; Chiarugi, P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. Int. J. Cell Biol. 2012, 2012, 762825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017, 104, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Chua, D.; Tan, N.S. Reactive oxygen species: A volatile driver of field cancerization and metastasis. Mol. Cancer 2019, 18, 65. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n (%) |
---|---|
Age (years) mean (SD, min-max) | 51.5 (29–66 ± 10.1) |
Marital Status | |
Single | 9 (16.4) |
Married | 27 (49) |
Widow | 7 (12.7) |
Divorced/Separated | 6 (10.9) |
Other | 6 (10.9) |
Years of Schooling | |
<8 years | 18 (32.7) |
8 to 11 years | 24 (43.6) |
>11 years | 12 (21.8) |
NR | 1 (1.8) |
Menopause | |
No | 21 (38.1) |
Yes | 34 (61.8) |
Tumor Subtype | |
Ductal carcinoma | 53 (96.4) |
Lobular carcinoma | 2 (3.6) |
Clinical Stage | |
0 | 1 (1.8) |
IA | 10 (18.1) |
IIA | 12 (21.8) |
IIB | 14 (25.4) |
IIIA | 6 (10.9) |
IIIB | 8 (14.5) |
IV | 1 (1.8) |
NR | 3 (5.4) |
Histological Grade | |
G1 | 7 (12.7) |
G2 | 32 (58.2) |
G3 | 12 (21.8) |
NR | 4 (7.3) |
Molecular Subtypes | |
ER−, PR−, HER2− and CK5/6+ and/or EGFR+ | 11 (20) |
ER−, PR− and HER2+ | 7 (12.7) |
ER+ and/or PR+, HER2− and Ki-67 < 14% | 14 (25.4) |
ER+ and/or PR+, HER2− and Ki-67 ≥ 14% | 18 (32.7) |
ER+ and/or PR+, HER2+ | 5 (9.1) |
Previous Hormonal Therapy | |
No | 48 (87.3) |
Yes | 7 (12.7) |
Surgery | |
Radical Mastectomy | 7 (12.7) |
Conservative Surgery | 25 (45.4) |
Others | 23 (41.8) |
Chemotherapy Protocol | |
AC → Docetaxel (T) | 33 (60) |
AC → Paclitaxel (P) | 8 (14.5) |
FAC | 9 (16.4) |
CMF | 5 (9.1) |
Nutritional Status | Age Group | T0 | T1 | T2 | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Low weight | 29–59 | 1 | 1.8 | 1 | 1.8 | 0 | 0.0 |
60–66 | 2 | 3.6 | 2 | 3.6 | 2 | 3.6 | |
Eutrophy | 29–59 | 12 | 21.8 | 12 | 21.8 | 13 | 23.6 |
60–66 | 9 | 16.4 | 9 | 16.4 | 10 | 18.2 | |
Overweight | 29–59 | 9 | 16.4 | 9 | 16.4 | 10 | 18.2 |
60–66 | 7 | 12.7 | 7 | 12.7 | 6 | 10.9 | |
Grade I obesity | 29–59 | 6 | 10.9 | 7 | 12.7 | 6 | 10.9 |
Grade II obesity | 29–59 | 6 | 10.9 | 5 | 9.1 | 5 | 9.1 |
Grade III obesity | 29–59 | 3 | 5.5 | 3 | 5.5 | 3 | 5.5 |
Antioxidant Nutrients | T0 | T1 | T2 | p | |||
---|---|---|---|---|---|---|---|
Mean ± SD | Median (p25–p75) | Mean ± SD | Median (p25–p75) | Mean ± SD | Median (p25–p75) | ||
Vitamin A (UI) | 8521.6 ± 3932.9 | 7933.8 (5816.7–10280.3) a | 9791.7 ± 6248.8 | 7379.7 (5698.8–11217.7) a | 7517.5 ± 4550.8 | 6048.6 (4737.2–9799.5) b | 0.004 ᶷ |
Beta-carotene (mcg) | 4673.1 ± 1840.5 | 4552.7 (3340.0–5710.6) a | 4893.2 ± 3259.9 | 3852.0 (2903.4–5920.4) a | 3571.4 ± 2184.3 | 3050.8 (2285.8–4282.7) b | <0.001 ᶷ |
Vitamin D (mcg) | 5.9 ± 4.0 | 4.8 (3.4–6.7) a | 4.1 ± 2.6 | 3.4 (2.0–5.0) b | 3.7 ± 2.4 | 3.1 (1.8–4.9) b | <0.001 ᶷ |
Vitamin C (mg) | 130.3 ± 66.6 | 119.5 (83.8–159.2) a | 141.1 ± 66.8 | 123.5 (88.2–192.1) a | 80.4 ± 41.4 | 69.7 (51.2–101.2) b | <0.001 ᶷ |
Magnesium (mg) | 216.4 ± 36.3 | 208.5 (191.6–227.6) a | 183.9 ± 35.9 | 175.2 (156.5–202.5) b | 179.0 ± 38.0 | 170.2 (156.6–195.2) b | <0.001 ᶷ |
Iron (mg) | 10.3 ± 1.2 | 10.3 (9.3–11.0) a | 8.9 ± 1.5 | 8.9 (8.1–9.7) b | 9.0 ± 1.5 | 9.0 (7.8–9.9) b | <0.001 ᶷ |
Zinc (mg) | 8.2 ± 1.2 a | 8.0 (7.3–8.7) | 7.7 ± 1.2 b | 7.7 (6.5–8.5) | 7.4 ± 1.5 b | 7.3 (6.5–8.4) | 0.009 ᶿ |
Selenium (mcg) | 108.9 ± 55.6 | 96.1 (86.8–112.6) a | 93.2 ± 23.5 | 89.1 (77.1–103.8) b | 85.4 ± 12.2 | 85.7 (76.4–93.2) b | <0.001 ᶷ |
Omega-6 (g) | 10.1 ± 1.4 | 10.2 (9.1–11.1) a | 9.2 ± 1.5 | 8.9 (8.0–10.2) b | 8.8 ± 1.1 | 8.6 (8.1–9.8) b | <0.001 ᶷ |
Omega-3 (g) | 1.8 ± 0.3 | 1.7 (1.5–1.9) a | 1.3 ± 0.3 | 1.3 (1.2–1.4) b | 1.4 ± 0.3 | 1.4 (1.2–1.5) b | <0.001 ᶷ |
Isoflavones (mg) | 0.9 ± 0.7 | 0.7 (0.5–1.1) a | 1.8 ± 5.2 | 0.7 (0.3–1.1) a | 0.2 ± 0.1 | 0.2 (0.1–0.3) b | <0.001 ᶷ |
Copper (mg) | 1.2 ± 0.6 | 1.0 (0.9–1.3) a,b | 1.2 ± 0.5 | 1.1 (0.9–1.4) a | 1.2 ± 1.2 | 0.8 (0.7–1.3) b | 0.02 ᶷ |
Glutamic Acid (g) | 11.0 ± 0.7 | 11.0 (10.7–11.3) a | 9.9 ± 1.3 | 10.0 (9.0–10.5) b | 10.2 ± 1.1 | 10.3 (9.4–10.8) b | <0.001 ᶷ |
Glycine (g) | 2.8 ± 0.1 | 2.9 (2.7–2.9) a | 2.5 ± 0.4 | 2.5 (2.2–2.8) b | 2.5 ± 0.5 | 2.4 (2.1–2.8) b | <0.001 ᶷ |
Lutein + Zeaxanthin (mcg) | 5300.6 ± 3376.6 | 4519.8 (3325.3–5609.5) a | 2078.1 ± 1746.5 | 1769.1 (954.7–2222.1) b | 3835.1 ± 2854.2 | 3170.8 (1850.5–4776.2) c | <0.001 ᶷ |
Manganese (mg) | 8.0 ± 4.6 | 6.9 (4.9–9.1) a | 17.1 ± 19.1 | 12.6 (6.6–19.3) b | 8.9 ± 19.1 | 4.2 (2.3–7.0) c | <0.001 ᶷ |
Daidzein (mg) | 0.4 ± 0.6 | 0.2 (0.1–0.4) a | 0.4 ± 0.9 | 0.1 (0.1–0.3) b | 0.07 ± 0.03 | 0.07 (0.05–0.09) c | <0.001 ᶷ |
Genistein (mg) | 0.3 ± 0.3 | 0.2 (0.1–0.4) a | 2.4 ± 11.8 | 0.1 (0.1–0.5) a | 0.04 ± 0.02 | 0.04 (0.03–0.05) b | <0.001 ᶷ |
TACd without coffee (escore) | 7.4 ± 9.9 | 4.1 (2.6–7.6) a | 7.7 ± 10.9 | 4.1 (2.7–7.7) a.b | 4.4 ± 4.9 | 2.8 (1.8–5.2) b | 0.019 ᶷ |
DII | T0 | T1 | T2 | p | |||
---|---|---|---|---|---|---|---|
Mean ± SD | Median (p25–p75) | Mean ± SD | Median (p25–p75) | Mean ± SD | Median (p25–p75) | ||
Score DII | 0.04 ± 1.16 | 0.14 (−0.77–0.74) a | 0.79 ± 1.08 | 0.86 (−0.06–1.64) b | 1.78 ± 1.02 | 1.89 (1.17–2.42) c | <0.001 ᶷ |
Dependent Variables | Higher vs. Lower Antioxidant Level § | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GR | GPx | GSH | |||||||||||||
Lower Antioxidant Level Mean ± SD | Higher Antioxidant Level Mean ± SD | β | p | IC (95%) | Lower Antioxidant Level Mean ± SD | Higher Antioxidant Level Mean ± SD | β | p | IC (95%) | Lower Antioxidant Level Mean ± SD | Higher Antioxidant Level Mean ± SD | β | p | IC (95%) | |
IL-1β | 19.27 ± 4.50 | −9.57 ± 5.08 | 28.84 | <0.001 | 13.14–44.54 | −2.34 ± 4.38 | 12.04 ± 4.31 | −14.37 | 0.037 | −27.89–−0.87 | −1.76 ± 5.99 | 11.47 ± 4.38 | −13.23 | 0.144 | −31.00–4.54 |
IL-6 | 17.48 ± 14.53 | 10.29 ± 13.14 | 7.19 | 0.744 | −35.96–50.34 | 13.97 ± 13.21 | 13.81 ± 14.78 | 0.15 | 0.995 | −43.84–44.14 | 17.26 ± 16.35 | 10.52 ± 13.78 | 6.74 | 0.789 | −42.54–56.02 |
IL-10 | 275.90 ± 146.35 | −107.86 ± 130.76 | 383.77 | 0.085 | −52.44–819.99 | −302.33 ± 133.62 | 470.37 ± 146.06 | −772.70 | 0.001 | −12014.80–−330.60 | 338.12 ± 163.48 | −170.07 ± 138.93 | 508.20 | 0.045 | 10.21–1006.19 |
TNF-α | 32.59 ± 15.72 | −6.96 ± 13.48 | 39.56 | 0.082 | −5.04–84.15 | −24.46 ± 14.30 | 50.08 ± 15.20 | −74.54 | 0.001 | −119.73–−29.36 | 38.26 ± 17.15 | −12.64 ± 14.32 | 50.91 | 0.047 | 0.61–101.21 |
Dependent Variables | Higher vs. Lower Antioxidant Level § | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SOD | CAT | |||||||||
Lower Antioxidant Level Mean ± SD | Higher Antioxidant Level Mean ± SD | β | p | IC (95%) | Lower Antioxidant Level Mean ± SD | Higher Antioxidant Level Mean ± SD | β | p | IC (95%) | |
IL-1β | 5.81 ± 4.22 | 3.89 ± 3.31 | 1.920 | 0.724 | −8.740–12.579 | 0.93 ± 3.33 | 8.77 ± 5.54 | −7.835 | 0.293 | −22.435–6.766 |
IL-6 | 21.02 ± 14.00 | 6.76 ± 10.47 | 14.255 | 0.432 | −21.279–49.788 | 7.01 ± 11.05 | 20.77 ± 16.93 | −13.755 | 0.552 | −59.082–31.572 |
IL-10 | −66.71 ± 141.21 | 234.75 ± 102.66 | −301.469 | 0.099 | −659.986–57.049 | 107.31 ± 111.76 | 60.72 ± 167.61 | 46.589 | 0.841 | −407.473–500.652 |
TNF-α | 0.32 ± 15.83 | 25.30 ± 10.67 | −24.986 | 0.205 | −63.645–13.672 | 12.85 ± 11.52 | 12.78 ± 17.80 | 0.071 | 0.998 | −46.290–46.431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
L. D. Santos, L.; D. D. Custódio, I.; Silva, A.T.F.; C. C. Ferreira, I.; C. Marinho, E.; C. Caixeta, D.; V. Souza, A.; R. Teixeira, R.; Araújo, T.G.; Shivappa, N.; et al. Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles. Nutrients 2020, 12, 3303. https://doi.org/10.3390/nu12113303
L. D. Santos L, D. D. Custódio I, Silva ATF, C. C. Ferreira I, C. Marinho E, C. Caixeta D, V. Souza A, R. Teixeira R, Araújo TG, Shivappa N, et al. Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles. Nutrients. 2020; 12(11):3303. https://doi.org/10.3390/nu12113303
Chicago/Turabian StyleL. D. Santos, Letícia, Isis D. D. Custódio, Alinne T. F. Silva, Izabella C. C. Ferreira, Eduarda C. Marinho, Douglas C. Caixeta, Adriele V. Souza, Renata R. Teixeira, Thaise G. Araújo, Nitin Shivappa, and et al. 2020. "Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles" Nutrients 12, no. 11: 3303. https://doi.org/10.3390/nu12113303
APA StyleL. D. Santos, L., D. D. Custódio, I., Silva, A. T. F., C. C. Ferreira, I., C. Marinho, E., C. Caixeta, D., V. Souza, A., R. Teixeira, R., Araújo, T. G., Shivappa, N., R. Hébert, J., Paiva, C. E., S. Espíndola, F., Goulart, L. R., & C. P. Maia, Y. (2020). Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles. Nutrients, 12(11), 3303. https://doi.org/10.3390/nu12113303