Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation
Abstract
:1. Introduction: Pandemics and Public Health
2. Criteria for Public Health Regulation
- Abuse (why can’t you stop?)
- Toxicity (why do you get sick?)
- Ubiquity (why can’t you escape it?)
- Externalities (why does your consumption harm me?)
3. Obesity Is a ‘Marker’, Not a Cause of Non-Communicable Diseases (NCDs)
4. Ultraprocessed Food Is the Cause of NCDs
5. Added Sugar Is Abused
5.1. ‘Food Addiction’ versus ‘Eating Addiction’
5.2. Addictive Potential of Food Components
5.2.1. Salt
5.2.2. Fat
5.2.3. Caffeine
5.2.4. Sugar
5.3. Correlates of Addiction in Animals Exposed to Sucrose
5.4. Differential Effects of Fructose vs. Glucose vs. Fat on the Human Brain
5.5. ‘Food’ Addiction Is Really ‘Food Additive’ Addiction, and ‘Added Sugar’ Is a Food Additive
- Craving or a strong desire to use;
- Recurrent use resulting in a failure to fulfill major role obligations (work, school, home);
- Recurrent use in physically hazardous situations (e.g., driving);
- Use despite social or interpersonal problems caused or exacerbated by use;
- Taking the substance or engaging in the behavior in larger amounts or over a longer period than intended;
- Attempts to quit or cut down;
- Time spent seeking or recovering from use;
- Interference with life activities;
- Use despite negative consequences.
6. Added Sugar Is Toxic
6.1. Detrimental Effects of Fructose on Liver Metabolism
6.1.1. De Novo Lipogenesis
6.1.2. Carbonyl Stress—The Maillard Reaction
6.1.3. Tying Two Pathophysiologic Mechanisms Together—Methylglyoxal
6.2. Dissociating Added Sugar from Its Calories and Effects on Weight
6.2.1. Prospective Association Studies
6.2.2. Econometric Analyses
6.2.3. Interventional Starch-for-Sugar Exchange
7. Added Sugar Is Ubiquitous
8. Added Sugar Exerts Externalities
9. Food Industry Counters
9.1. Personal Responsibility
9.1.1. Knowledge
9.1.2. Access
9.1.3. Affordability
9.1.4. Non-Anarchy
9.2. Is Added Sugar ‘Food’?
10. Possible Societal Interventions
10.1. Public Education
10.2. Pricing Strategies-Taxation
10.3. Pricing Strategies-Subsidies
10.4. Restriction of Access-Workplace Bans
10.5. Restriction of Access-Stipends
10.6. Combination Strategies-Differential Subsidization
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benziger, C.P.; Roth, G.A.; Moran, A.E. The Global Burden of Disease Study and the Preventable Burden of NCD. Glob. Heart 2016, 11, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef] [Green Version]
- Vreman, R.A.; Goodell, A.J.; Rodriguez, L.A.; Porco, T.C.; Lustig, R.H.; Kahn, J.G. Health and economic benefits of reducing sugar intake in the United States, including effects via non-alcoholic fatty liver disease: A microsimulation model. BMJ Open 2017, 7, e103543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press, A. Medicare will Become Insolvent in 2026, U.S. Government Says. Los Angeles Times. 5 June 2018. Available online: https://www.latimes.com/nation/nationnow/la-na-pol-medicare-finances-20180605-story.html (accessed on 27 September 2020).
- Yach, D.; Hawkes, C.; Gould, C.L.; Hofman, K.J. The global burden of chronic diseases: Overcoming impediments to prevention and control. JAMA 2004, 291, 2616–2622. [Google Scholar] [CrossRef]
- U.N. General Assembly. Prevention and control of non-communicable diseases. In U.N. General Assembly; U.N. General Assembly: New York, NY, USA, 2010. [Google Scholar]
- Johnston, L.D.; Miech, R.A.; O’Malley, P.M.; Bachman, J.G.; Schulenberg, J.E.; Patrick, M.E. Monitoring the Future National Survey Results on Drug Use 1975–2018: Overview, Key Findings on Adolescent Drug Use; University of Michigan: Ann Arbor, MI, USA, 2019. [Google Scholar]
- Room, R. International control of alcohol: Alternative paths forward. Drug Alcohol Rev. 2006, 25, 581–595. [Google Scholar] [CrossRef]
- Room, R.; Babor, T.; Rehm, J. Alcohol and public health. Lancet 2005, 365, 519–530. [Google Scholar] [CrossRef]
- Room, R.; Schmidt, L.A.; Rehm, J.; Mäkela, P. International regulation of alcohol. Br. Med. J. 2008, 337, a2364. [Google Scholar] [CrossRef] [Green Version]
- Lustig, R.H. Sickeningly sweet: Does sugar cause diabetes? Yes. Can. J. Diabetes 2016, 40, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Yoffe, P.; Hills, N.; Lustig, R.H. The relationship of sugar to population-level diabetes prevalence: An econometric analysis of repeated cross-sectional data. PLoS ONE 2013, 8, e57873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepúlveda, J.; Murray, C. The state of global health in 2014. Science 2014, 345, 1275–1278. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.M.; Rimm, E.B.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994, 17, 961–969. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G.M. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Int. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef]
- Chen, D.L.; Liess, C.; Poljak, A.; Xu, A.; Zhang, J.; Thoma, C.; Trenell, M.; Milner, B.; Jenkins, A.B.; Chisholm, D.J.; et al. Phenotypic characterization of insulin-resistant and insulin-sensitive obesity. J. Clin. Endocrinol. Metab. 2015, 100, 4082–4091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, F.; Chu, J.W.; Lamendola, C.; McLaughlin, T.; Hayden, J.; Reaven, G.M.; Reaven, P.D. Discrimination between obesity and insulin resistance in the relationship with adiponectin. Diabetes 2004, 53, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Voulgari, C.; Tentolouris, N.; Dilaveris, P.; Tousoulis, D.; Katsilambros, N.; Stefanadis, C. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J. Am. Coll. Cardiol. 2011, 58, 1343–1350. [Google Scholar] [CrossRef]
- Araújo, J.; Cai, J.; Stevens, J. Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016. Metab. Syndr. Relat. Disord. 2019, 17, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, A.L.; Guevara Aguirre, J.; Rosenfeld, R.G.; Fielder, P.J. The little women of Loja-growth hormone-receptor deficiency in an inbred population of southern Ecuador. N. Engl. J. Med. 1990, 323, 1367–1374. [Google Scholar] [CrossRef]
- Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 2015, 314, 1052–1062. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, S.; Maikowski, U.; Blankenstein, O.; Biebermann, H.; Tarnow, P.; Gruters, A. Type 2 diabetes and impaired glucose tolerance in European children and adolescents with obesity—A problem that is no longer restricted to minority groups. Eur. J. Endocrinol. 2004, 151, 199–206. [Google Scholar] [CrossRef]
- Biltoft, C.A.; Muir, A. The metabolic syndrome in children and adolescents: A clinician’s guide. Adolesc. Med. State Art Rev. 2009, 20, 109–120. [Google Scholar]
- Gibney, M.J. Ultra-Processed Foods: Definitions and Policy Issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef] [Green Version]
- Moubarac, J.C.; Parra, D.; Cannon, G.; Monteiro, C.A. Food classification systems based on food processing: Significance and implications for policies and actions. A systematic literature review and assessment. Curr. Obes. Rep. 2014, 3, 256–272. [Google Scholar] [CrossRef]
- Juul, F.; Martinez-Steele, E.; Parekh, N.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption and excess weight among US adults. Br. J. Nutr. 2018, 120, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Moubarac, J.C.; Levy, R.B.; Canella, D.S.; Louzada, M.L.D.C.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2020, 180, 283–291. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef] [Green Version]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- De Vogli, R.; Kouvonen, A.; Gimeno, D. The influence of market deregulation on fast food consumption and body mass index: A cross-national time series analysis. Bull. World Health Organ. 2014, 92, 99–107. [Google Scholar] [CrossRef] [PubMed]
- GBD Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Ziauddeen, H.; Farooqi, I.S.; Fletcher, P.C. Obesity and the brain: How convincing is the addiction model? Nat. Rev. Neurosci. 2012, 13, 279–286. [Google Scholar] [CrossRef]
- Avena, N.M.; Gearhardt, A.N.; Gold, M.S.; Wang, G.J.; Potenza, M.N. Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data. Nat. Rev. Neurosci. 2012, 13, 514. [Google Scholar] [CrossRef] [Green Version]
- Ziauddeen, H.; Farooqi, I.S.; Fletcher, P.C. Food addiction: Is there a baby in the bathwater? Nat. Rev. Neurosci. 2012, 13, 514. [Google Scholar] [CrossRef] [Green Version]
- Moss, M. Salt, Sugar, Fat: How the Food Giants Hooked Us; Random House: New York, NY, USA, 2013. [Google Scholar]
- Kessler, D.A. The End of Overeating: Taking Control of the Insatiable American Appetite; Rodale: New York, NY, USA, 2010. [Google Scholar]
- Volkow, N.D.; Wise, R.A. How can drug addiction help us understand obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, J.L. The obesity epidemic and food addiction: Clinical similarities to drug dependence. J. Psychoact. Drugs 2012, 44, 56–63. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Thanos, P.K.; Fowler, J.S. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. J. Addict. Res. 2004, 23, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.K.; Lustig, R.H. Is fast food addictive? Curr. Drug Abuse Rev. 2011, 4, 146–162. [Google Scholar] [CrossRef]
- Avena, N.M.; Bocarsly, M.E.; Hoebel, B.G.; Gold, M.S. Overlaps in the nosology of substance abuse and overeating: The translational implications of “food addiction”. Curr. Drug Abuse Rev. 2011, 4, 133–139. [Google Scholar] [CrossRef]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef] [PubMed]
- Richmond, R.L.; Roberto, C.A.; Gearhardt, A.N. The association of addictive-like eating with food intake in children. Appetite 2017, 117, 82–90. [Google Scholar] [CrossRef]
- Hebebrand, J.; Albayrak, O.; Adan, R.; Antel, J.; Dieguez, C.; de Jong, J.; Leng, G.; Menzies, J.; Mercer, J.G.; Murphy, M.; et al. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci. Biobehav. Rev. 2014, 47, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Ruddock, H.K.; Christiansen, P.; Halford, J.C.G.; Hardman, C.A. The development and validation of the Addiction-like Eating Behaviour Scale. Int. J. Obes. 2017, 41, 1710–1717. [Google Scholar] [CrossRef] [Green Version]
- NeuroFAST. NeuroFAST Consensus Opinion on Food Addiction. 2014. Available online: http://www.neurofast.eu/consensus (accessed on 27 September 2020).
- Pesis, E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Markus, C.R.; Rogers, P.J.; Brouns, F.; Schepers, R. Eating dependence and weight gain; no human evidence for a ‘sugar-addiction’ model of overweight. Appetite 2017, 114, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Mason, A.E.; Lustig, R.H.; Brown, R.R.; Acree, M.; Bacchetti, P.; Moran, P.J.; Dallman, M.; Laraia, B.; Adler, N.; Hecht, F.M.; et al. Acute responses to opioidergic blockade as a biomarker of hedonic eating among obese women enrolled in a mindfulness-based weight loss intervention trial. Appetite 2015, 91, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Mason, A.E.; Laraia, B.; Daubenmier, J.; Hecht, F.M.; Lustig, R.H.; Puterman, E.; Adler, N.; Dallman, M.; Kiernan, M.; Gearhardt, A.N.; et al. Putting the brakes on the “drive to eat”: Pilot effects of naltrexone and reward-based eating on food cravings among obese women. Eat Behav. 2015, 19, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Mason, A.E.; Epel, E.S.; Aschbacher, K.; Lustig, R.H.; Acree, M.; Kristeller, J.; Cohn, M.; Dallman, M.; Moran, P.J.; Bacchetti, P.; et al. Reduced reward-driven eating accounts for the impact of a mindfulness-based diet and exercise intervention on weight loss: Data from the SHINE randomized controlled trial. Appetite 2016, 100, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Rudenga, K.J.; Small, D.M. Ventromedial prefrontal cortex response to concentrated sucrose reflects liking rather than sweet quality coding. Chem. Senses 2013, 38, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Mattes, R.D. The taste for salt in humans. Am. J. Clin. Nutr. 1997, 65, 692S–697S. [Google Scholar] [CrossRef] [Green Version]
- Harris, G.; Booth, D.A. Infants’ preference for salt in food: Its dependence upon recent dietary experience. J. Reprod. Infant Psychol. 1987, 5, 94–104. [Google Scholar] [CrossRef]
- Dietary Guidelines Advisory Committee. Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2015; Agricultural Research Division, U.S. Department of Agriculture: Washington, DC, USA, 2016. Available online: http://www.cnpp.usda.gov/DGAs2010-DGACReport.htm (accessed on 27 September 2020).
- Kim, G.H.; Lee, H.M. Frequent consumption of certain fast foods may be associated with an enhanced preference for salt taste. J. Hum. Nutr. Diet. 2009, 22, 475–480. [Google Scholar] [CrossRef]
- Cocores, J.A.; Gold, M.S. The salted food addiction hypothesis may explain overeating and the obesity epidemic. Med. Hypotheses 2009, 73, 892–899. [Google Scholar] [CrossRef]
- Kochli, A.; Tenenbaum-Rakover, Y.; Leshem, M. Increased salt appetite in patients with congenital adrenal hyperplasia 21-hydroxylase deficiency. Am. J. Physiol. Reg. Integr. Comp. Physiol. 2005, 288, R1673–R1681. [Google Scholar] [CrossRef] [Green Version]
- McCarron, D.A.; Geerling, J.C.; Kazaks, A.G.; Stern, J.S. Can dietary sodium intake be modified by public policy? Clin. J. Am. Soc. Nephrol. 2009, 4, 1878–1882. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; Pombo-Rodrigues, S.; Macgregor, G.A. Salt reduction in England from 2003 to 2011: Its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 2014, 4, e004549. [Google Scholar] [CrossRef] [Green Version]
- Blundell, J.E.; Stubbs, R.J.; Golding, C.; Croden, F.; Alam, R.; Whybrow, S.; Le Noury, J.; Lawton, C.L. Resistance and susceptibility to weight gain: Individual variability in response to a high-fat diet. Physiol. Behav. 2005, 86, 614–622. [Google Scholar] [CrossRef]
- Drewnowski, A.; Greewood, M.R. Cream and sugar: Human preferences for high-fat foods. Physiol. Behav. 1983, 30, 629–633. [Google Scholar] [CrossRef]
- Hu, T.; Mills, K.T.; Yao, L.; Demanelis, K.; Eloustaz, M.; Yancy, W.S.; Kelly, T.N.; He, J.; Bazzano, L.A. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 2012, 176 (Suppl. 7), S44–S54. [Google Scholar] [CrossRef] [Green Version]
- Paoli, A.; Rubini, A.; Volek, J.S.; Grimaldi, K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013, 67, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.R.; Chausmer, A.L. Caffeine as a model drug of dependence: Recent developments in understanding caffeine withdrawal, the caffeine dependence syndrome, and caffeine negative reinforcement. Nihon Shinkei Seishin Yakurigaku Zasshi 2000, 20, 223–231. [Google Scholar]
- Bernstein, G.A.; Carroll, M.E.; Walters, D.N.; Crosby, R.D.; Perwien, A.R.; Benowitz, N.L. Caffeine withdrawal in normal school-age children. J. Am. Acad. Child Adolesc. Psychiatry 1998, 37, 858–865. [Google Scholar] [CrossRef]
- Bernstein, G.A.; Carroll, M.E.; Thuras, P.D.; Cosgrove, K.P.; Roth, M.E. Caffeine dependence in teenagers. Drug Alcohol Depend. 2002, 66, 1–6. [Google Scholar] [CrossRef]
- Couturier, E.G.; Laman, D.M.; van Duijn, M.A.; van Duijn, H. Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities. Cephalalgia 1997, 17, 188–190. [Google Scholar] [CrossRef]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef]
- Huang, C.; Dumanovsky, T.; Silver, L.D.; Nonas, C.; Bassett, M.T. Calories from beverages purchased at 2 major coffee chains in New York City, 2007. Prev. Chronic Dis. 2009, 6, A118. [Google Scholar] [PubMed]
- Griffiths, R.R.; Vernotica, E.M. Is caffeine a flavoring agent in cola soft drinks? Arch. Fam. Med. 2000, 9, 727–734. [Google Scholar] [CrossRef]
- Dumanovsky, T.; Nonas, C.A.; Huang, C.Y.; Silver, L.D.; Bassett, M.T. What people buy from fast-food restaurants: Caloric content and menu item selection, New York City 2007. Obesity 2007, 17, 1369–1374. [Google Scholar] [CrossRef]
- Vartanian, L.R.; Schwartz, M.B.; Brownell, K.D. Effects of soft drink consumption on nutrition and health: A systematic review and meta-analysis. Am. J. Public Health 2007, 97, 667–675. [Google Scholar] [CrossRef]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Yamada, J.; Ohlsson, A.; Haliburton, S.; Shorkey, A. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst. Rev. 2016, 7, CD001069. [Google Scholar] [CrossRef]
- Ifland, J.R.; Preuss, H.G.; Marcus, M.T.; Rourke, K.M.; Taylor, W.C.; Burau, K.; Jacobs, W.S.; Kadish, W.; Manso, G. Refined food addiction: A classic substance use disorder. Med. Hypotheses 2009, 72, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Corsica, J.A.; Spring, B.J. Carbohydrate craving: A double-blind, placebo-controlled test of the self-medication hypothesis. Eat. Behav. 2008, 9, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, D. The plausibility of sugar addiction and its role in obesity and eating disorders. Clin. Nutr. 2010, 29, 288–303. [Google Scholar] [CrossRef]
- Ventura, E.E.; Davis, J.N.; Goran, M.I. Sugar content of popular sweetened beverages based on objective laboratory analysis: Focus on fructose content. Obesity 2010, 19, 668–674. [Google Scholar] [CrossRef]
- Dela Cruz, J.A.; Coke, T.; Bodnar, R.J. Simultaneous detection of c-Fos activation from mesolimbic and mesocortical dopamine reward sites following naive sugar and fat ingestion in rats. J. Vis. Exp. 2016, 114. [Google Scholar] [CrossRef]
- Spangler, R.; Wittkowski, K.M.; Goddard, N.L.; Avena, N.M.; Hoebel, B.G.; Leibowitz, S.F. Opiate-like effects of sugar on gene expression in reward areas of the rat brain. Mol. Brain Res. 2004, 124, 134–142. [Google Scholar] [CrossRef]
- Pelchat, M.L.; Johnson, A.; Chan, R.; Valdez, J.; Ragland, J.D. Images of desire: Food-craving activation during fMRI. Neuroimage 2004, 23, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenoir, M.; Serre, F.; Cantin, L.; Ahmed, S.H. Intense sweetness surpasses cocaine reward. PLoS ONE 2007, 2, e698. [Google Scholar] [CrossRef] [Green Version]
- Lustig, R.H.; Mulligan, K.; Noworolski, S.M.; Gugliucci, A.; Erkin-Cakmak, A.; Wen, M.J.; Tai, V.W.; Schwarz, J.M. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity 2016, 24, 453–460. [Google Scholar] [CrossRef]
- Gugliucci, A.; Lustig, R.H.; Caccavello, R.; Erkin-Cakmak, A.; Noworolski, S.M.; Tai, V.W.; Wen, M.J.; Mulligan, K.; Schwarz, J.M. Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome. Atherosclerosis 2016, 253, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Noworolski, S.M.; Erkin-Cakmak, A.; Korn, N.J.; Wen, M.J.; Tai, V.W.; Jones, G.M.; Palii, S.P.; Velasco-Alin, M.; Pan, K.; et al. Impact of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology 2017, 153, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teff, K.L.; Grudziak, J.; Townsend, R.R.; Dunn, T.N.; Grant, R.W.; Adams, S.H.; Keim, N.L.; Cummings, B.P.; Stanhope, K.L.; Havel, P.J. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses. J. Clin. Endocrinol. Metab. 2009, 94, 1562–1569. [Google Scholar] [CrossRef]
- Banks, W.A.; Coon, A.B.; Robinson, S.M.; Moinuddin, A.; Shultz, J.M.; Nakaoke, R.; Morley, J.E. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 2004, 53, 1253–1260. [Google Scholar] [CrossRef] [Green Version]
- Hommel, J.D.; Trinko, R.; Sears, R.M.; Georgescu, D.; Liu, Z.W.; Gao, X.B.; Thurmon, J.J.; Marinelli, M.; DiLeone, R.J. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006, 51, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Jastreboff, A.M.; Sinha, R.; Lacadie, C.; Small, D.M.; Sherwin, R.S.; Potenza, M.N. Neural correlates of stress- and food cue-induced food craving in obesity: Association with insulin levels. Diabetes Care 2013, 36, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.W.; Williams, K.W.; Ye, C.; Luo, J.; Balthasar, N.; Coppari, R.; Cowley, M.A.; Cantley, L.C.; Lowell, B.B.; Elmquist, J.K. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Investig. 2008, 118, 1796–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teff, K.L.; Elliott, S.S.; Tschop, M.; Kieffer, T.J.; Rader, D.; Heiman, M.; Townsend, R.R.; Keim, N.L.; D’Alessio, D.; Havel, P.J. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab. 2004, 89, 2963–2972. [Google Scholar] [CrossRef]
- Lindqvist, A.; Baelemans, A.; Erlanson-Albertsson, C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regul. Pept. 2008, 150, 26–32. [Google Scholar] [CrossRef]
- Rorabaugh, J.M.; Stratford, J.M.; Zahniser, N.R. Differences in bingeing behavior and cocaine reward following intermittent access to sucrose, glucose or fructose solutions. Neuroscience 2015, 301, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Purnell, J.Q.; Klopfenstein, B.A.; Stevens, A.A.; Havel, P.J.; Adams, S.H.; Dunn, T.N.; Krisky, C.; Rooney, W.D. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans. Diabetes Obes. Metab. 2011, 13, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Page, K.A.; Chan, O.; Arora, J.; Belfort-Deaguiar, R.; Dzuira, J.; Roehmholdt, B.; Cline, G.W.; Naik, S.; Sinha, R.; Constable, R.T.; et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 2013, 309, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Wölnerhanssen, B.K.; Meyer-Gerspach, A.C.; Schmidt, A.; Zimak, N.; Peterli, R.; Beglinger, C.; Borgwardt, S. Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: A pilot study. PLoS ONE 2015, 10, e0130280. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Sinha, R.; Arora, J.; Giannini, C.; Kuba, T.J.; Malik, S.; Van Name, M.A.; Santoro, N.; Savoye, M.; Duran, E.J.; et al. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes 2016, 65, 1929–1939. [Google Scholar] [CrossRef] [Green Version]
- Stice, E.; Burger, K.S.; Yokum, S. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am. J. Clin. Nutr. 2013, 98, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- American Psychatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Gordon, E.L.; Ariel-Donges, A.H.; Bauman, V.; Merlo, L.J. What Is the Evidence for “Food Addiction?” A Systematic Review. Nutrients 2018, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Lustig, R.H. Fructose: It’s alcohol without the “buzz”. Adv. Nutr. 2013, 4, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.W.; Slining, M.M.; Popkin, B.M. Use of caloric and noncaloric sweeteners in US consumer packaged foods, 2005–2009. J. Acad. Nutr. Diet. 2012, 112, 1828–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreyeva, T.; Long, M.W.; Brownell, K.D. The impact of food prices on consumption: A systematic review of research on the price elasticity of demand for food. Am. J. Public Health 2010, 100, 216–222. [Google Scholar] [CrossRef]
- Wayne, G.F.; Carpenter, C.M. Tobacco industry manipulation of nicotine dosing. Handb. Exp. Pharmacol. 2009, 192, 457–485. [Google Scholar]
- Segal, T. Profit Margin for Food and Beverage Sector. Available online: https://www.investopedia.com/ask/answers/071015/what-profit-margin-usual-company-food-and-beverage-sector.asp (accessed on 27 September 2020).
- Chayka, K. Why coffee shortages won’t change the price of your Frappucino. Pacific Standard, 30 July 2014. [Google Scholar]
- Colchero, M.A.; Rivera-Dommarco, J.; Popkin, B.M.; Ng, S.W. In Mexico, evidence of sustained consumer response two years after implementing a sugar-sweetened beverage tax. Health Aff. 2017, 36, 564–571. [Google Scholar] [CrossRef]
- Lustig, R.H. Fructose: Metabolic, hedonic, and societal parallels with ethanol. J. Am. Diet. Assoc. 2010, 110, 1307–1321. [Google Scholar] [CrossRef]
- Onishi, Y.; Honda, M.; Ogihara, T.; Sakoda, H.; Anai, M.; Fujishiro, M.; Ono, H.; Shojima, N.; Fukushima, Y.; Inukai, K.; et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem. Biophys. Res. Commun. 2003, 303, 788–794. [Google Scholar] [CrossRef]
- Softic, S.; Cohen, D.E.; Kahn, C.R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 2016, 61, 1282–1293. [Google Scholar] [CrossRef] [Green Version]
- Stanhope, K.L.; Schwarz, J.M.; Havel, P.J. Adverse metabolic effects of dietary fructose: Results from recent epidemiological, clinical, and mechanistic studies. Curr. Opin. Lipidol. 2013, 24, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J.M.; Lustig, R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 251–264. [Google Scholar] [CrossRef]
- Dills, W.L. Protein fructosylation: Fructose and the Maillard reaction. Am. J. Clin. Nutr. 1993, 58, 779S–787S. [Google Scholar] [CrossRef] [PubMed]
- Bremer, A.A.; Mietus-Snyder, M.L.; Lustig, R.H. Toward a unifying hypothesis of metabolic syndrome. Pediatrics 2012, 129, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Mortera, R.R.; Bains, Y.; Gugliucci, A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front. Biosci. 2019, 24, 186–211. [Google Scholar]
- Rodríguez-Mortera, R.; Luevano-Contreras, C.; Solorio-Meza, S.; Caccavello, R.; Bains, Y.; Garay-Sevilla, M.E.; Gugliucci, A. Higher D-lactate levels are associated with higher prevalence of small dense low-density lipoprotein in obese adolescents. Clin. Chem. Lab. Med. 2018, 56, 1100–1108. [Google Scholar] [CrossRef]
- Erkin-Cakmak, A.; Bains, Y.; Caccavello, R.; Noworolski, S.M.; Schwarz, J.M.; Mulligan, K.; Lustig, R.H.; Gugliucci, A. Isocaloric Fructose Restriction Reduces Serum d-Lactate Concentration in Children With Obesity and Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 3003–3011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Buul, V.J.; Tappy, L.; Brouns, F.J. Misconceptions about fructose-containing sugars and their role in the obesity epidemic. Nutr. Res. Rev. 2014, 27, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [Green Version]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2013, 346, e7492. [Google Scholar] [CrossRef] [Green Version]
- Bentley, R.A.; Ruck, D.J.; Fouts, H.N. U.S. obesity as delayed effect of excess sugar. Econ. Hum. Biol. 2020, 36, 100818. [Google Scholar] [CrossRef]
- Gulati, S.; Misra, A. Sugar intake, obesity, and diabetes in India. Nutrients 2014, 6, 5955–5974. [Google Scholar] [CrossRef]
- Deshpande, G.; Mapanga, R.F.; Essop, M.F. Frequent sugar-sweetened beverage consumption and the onset of cardiometabolic diseases: Cause for concern? J. Endocr. Soc. 2017, 1, 1372–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef]
- Bray, G.A. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv. Nutr. 2013, 4, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Ruff, J.S.; Suchy, A.K.; Hugentobler, S.A.; Sosa, M.M.; Schwartz, B.L.; Morrison, L.C.; Gieng, S.H.; Shigenaga, M.K.; Potts, W.K. Human-relevant levels of added sugar consumption increase female mortality and lower male fitness in mice. Nat. Commun. 2013, 4, 2245. [Google Scholar] [CrossRef] [PubMed]
- Bremer, A.A.; Stanhope, K.L.; Graham, J.L.; Cummings, B.P.; Wang, W.; Saville, B.R.; Havel, P.J. Fructose-fed rhesus monkeys: A nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin. Transl. Sci. 2011, 4, 243–252. [Google Scholar] [CrossRef]
- EPIC-Interact Consortium. Consumption of sweet beverages and type 2 diabetes incidence in European adults: Results from EPIC-InterAct. Diabetologia 2013, 56, 1520–1530. [Google Scholar] [CrossRef]
- Rodriguez, L.A.; Madsen, K.A.; Cotterman, C.; Lustig, R.H. Added sugar intake and metabolic syndrome in US adolescents: Cross-sectional analysis of NHANES 2005–2012. Public Health Nutr. 2016, 19, 2424–2434. [Google Scholar] [CrossRef] [Green Version]
- Castro, V. Pure, white and deadly … expensive: A bitter sweetness in health care expenditure. Health Econ. 2017, 26, 1644–1666. [Google Scholar] [CrossRef] [Green Version]
- Barker, F.G. What is medical evidence? Clin. Neurosurg. 2009, 56, 24–33. [Google Scholar]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-, not glucose-sweetened beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [Green Version]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef]
- Bray, G.A. How bad is fructose? Am. J. Clin. Nutr. 2007, 86, 895–896. [Google Scholar] [CrossRef]
- Vos, M.B.; Kimmons, J.E.; Gillespie, C.; Welsh, J.; Blanck, H.M. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination Survey. Medscape J. Med. 2008, 10, 160. [Google Scholar]
- Popkin, B.M.; Hawkes, C. Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabetes Endccrinol. 2016, 4, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Kuchler, F.; Stewart, H. Price Trends Are Similar for Fruits, Vegetables, and Snack Foods; U.S. Department of Agriculture: Washington, DC, USA, 2008. Available online: https://www.ers.usda.gov/webdocs/publications/45951/12368_err55.pdf?v=7164.8 (accessed on 27 September 2020).
- Food and Nutrition Board, Institute of Medicine. Food Marketing to Children and Youth: Threat or Opportunity? National Academies Press: Washington, DC, USA, 2006; Available online: https://www.nap.edu/catalog/11514/food-marketing-to-children-and-youth-threat-or-opportunity (accessed on 27 September 2020).
- Moodie, R.; Stuckler, D.; Monteiro, C.; Sheron, N.; Neal, B.; Thamarangsi, T.; Lincoln, P.; Casswell, S.; Lancet NCD Action Group. Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 2013, 381, 670–679. [Google Scholar] [CrossRef]
- Altria Group Inc. v. Good. 555 U.S. 70; 2008; pp. 70–71. Available online: https://en.wikipedia.org/wiki/Altria_Group,_Inc._v._Good (accessed on 27 September 2020).
- FTC v. Sugar Information, Inc.; 1972; Volume 81, F.T.C. 711; Available online: https://en.wikipedia.org/wiki/Altria_Group,_Inc._v._Good (accessed on 27 September 2020).
- Small v. Lorillard Tobacco Co. 94 N.Y.2d 43, 894; 1999; pp. 894–895. Available online: https://en.wikipedia.org/wiki/Altria_Group,_Inc._v._Good (accessed on 27 September 2020).
- Pelman ex rel. Pelman v. McDonald’s Corp. 396 F.3d 508; 2005; pp. 508–509. Available online: https://en.wikipedia.org/wiki/Altria_Group,_Inc._v._Good (accessed on 27 September 2020).
- Jarl, J.; Johansson, P.; Eriksson, A.; Eriksson, M.; Gerdtham, U.G.; Hemström, O.; Selin, K.H.; Lenke, L.; Ramstedt, M.; Room, R. The societal cost of alcohol consumption: An estimation of the economic and human cost including health effects in Sweden, 2002. Eur. J. Health Econ. 2008, 9, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Lim, S.; Ezzati, M.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Estimated global, regional, and national disease burdens related to sugar-sweetened beverage consumption in 2010. Circulation 2015, 132, 639–666. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, E.A.; DiBonaventura, M.; Burgess, S.M.; Hale, B.C. The costs of obesity in the workplace. J. Occup. Environ. Med. 2010, 52, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Strong, K.; Mathers, C.; Leeder, S.; Beaglehole, R. Preventing chronic diseases: How many lives can we save? Lancet 2005, 366, 1578–1582. [Google Scholar] [CrossRef]
- Christeson, W.; Taggart, A.D.; Messner-Zidell, S.; Kiernan, M.; Cusick, J.; Day, R. Still too Fat to Fight. 2018. Available online: https://en.wikipedia.org/wiki/Altria_Group,_Inc._v._Good (accessed on 27 September 2020).
- Mongeau, S.W. USAF Dental readiness classifications and caries-risk assessment. Mil. Med. 2008, 173, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Morgan Stanley Research. The Bittersweet Aftertaste of Sugar. 2015. Available online: http://static.latribune.fr/463077/etude-morgan-stanley-impact-diabete-sur-l-economie-mondiale.pdf (accessed on 27 September 2020).
- Engelhard, C.L.; Garson, A.; Dorn, S. Reducing Obesity: Policy Strategies from the Tobacco Wars; Urban Institute: Washington, DC, USA, 2009. [Google Scholar]
- Seabrook, J. Snacks for a fat planet. New Yorker, 16 May 2011. [Google Scholar]
- Proctor, R.N. Golden Holocaust: Origins of the Cigarette Catastrophe and the Case for Abolition; University of California Press: Berkeley, CA, USA, 2011. [Google Scholar]
- Pomeranz, J.L. The bittersweet truth about sugar labeling regulations: They are achievable and overdue. Am. J. Public Health 2012, 102, e14–e20. [Google Scholar] [CrossRef]
- Epel, E.S.; Hartman, A.; Jacobs, L.M.; Leung, C.; Cohn, M.A.; Jensen, L.; Ishkanian, L.; Wojcicki, J.; Mason, A.E.; Lustig, R.H.; et al. Association of a workplace sales ban on sugar-sweetened beverages with employee consumption of sugar sweetened beverages and health. JAMA Int. Med. 2020, 180, 1–8. [Google Scholar] [CrossRef]
- Jones, N.R.; Conklin, A.I.; Suhrcke, M.; Monsivais, P. The growing price gap between more and less healthy foods: Analysis of a novel longitudinal UK dataset. PLoS ONE 2014, 9, e109343. [Google Scholar] [CrossRef]
- Cubanski, J.; Neuman, T. The Facts on Medicare Spending and Financing; Henry, J., Ed.; Kaiser Family Foundation: Washington, DC, USA, 2017; Available online: https://www.kff.org/medicare/issue-brief/the-facts-on-medicare-spending-and-financing/ (accessed on 27 September 2020).
- Credit Suisse Research Institute. Sugar: Consumption at a Crossroads; Credit Suisse Research Institute: New York, NY, USA, 2013; Available online: http://wphna.org/wp-content/uploads/2014/01/13-09_Credit_Suisse_Sugar_crossroads.pdf (accessed on 27 September 2020).
- Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar] [CrossRef]
- Triggle, N. NHS Ranked ‘Number One’ Health System. Available online: http://www.bbc.com/news/health-40608253 (accessed on 27 September 2020).
- Hypoglycemia Support Foundation. Added Sugar Repository. Available online: https://hypoglycemia.org/added-sugar-repository/ (accessed on 27 September 2020).
- U.S. Congress. Nutrition Labeling and Education Act. In Public Law 101–535; U.S. Congress: Washington, DC, USA, 1990. Available online: http://thomas.loc.gov/cgi-bin/bdquery/z?d101:H.R.3562 (accessed on 27 September 2020).
- Lustig, R.H. Defusing the healthcare time bomb. San Francisco Chronicle. 6 January 2013. Available online: http://www.sfgate.com/opinion/article/Defusing-the-health-care-time-bomb-4168827.php (accessed on 27 September 2020).
- Babor, T.; Caetano, R.; Casswell, S.; Edwards, G.; Giesbrecht, N.; Graham, K.; Grube, J.; Gruenewald, P.; Hill, L.; Holder, H.; et al. Alcohol: No Ordinary Commodity—Research and Public Policy; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Lustig, R.H.; Schmidt, L.A.; Brindis, C.D. The toxic truth about sugar. Nature 2012, 487, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Tong, X.; Li, L.; Cao, S.; Yin, X.; Gao, C.; Herath, C.; Li, W.; Jin, Z.; Chen, Y.; et al. Consumption of fruit and vegetable and risk of coronary heart disease: A meta-analysis of prospective cohort studies. Int. J. Cardiol. 2015, 183, 129–137. [Google Scholar] [CrossRef]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Mintz, S. Sweetness and Power, The Place of Sugar in Modern History; Penguin: New York, NY, USA, 1985. [Google Scholar]
- Perheentupa, J.; Raivio, K. Fructose-induced hyperuricaemia. Lancet 1967, 2, 528–531. [Google Scholar] [CrossRef]
- Tupala, E.; Tiihonen, J. Dopamine and alcoholism: Neurobiological basis of ethanol abuse. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 1221–1247. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.; Anderson, P.; Babor, T.F.; Casswell, S.; Ferrence, R.; Giesbrecht, N.; Godfrey, C.; Holder, H.D.; Lemmens, P.H.; Mäkelä, K.; et al. Retail price influences on alcohol consumption, and taxation on alcohol as a prevention strategy. In Alcohol Policy and the Public Good; Edwards, G., Ed.; Oxford University Press: New York, NY, USA, 1994; pp. 109–213. [Google Scholar]
- Greenfield, T.K.; Graves, K.L.; Kaskutas, L.A. Alcohol warning labels for prevention: National survey results. Alcohol Health Res. World 1993, 17, 67–75. [Google Scholar]
- Walls, H.L.; Peeters, A.; Proietto, J.; McNeil, J.J. Public health campaigns and obesity—A critique. BMC Public Health 2011, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Suarez, C.; Worley, A.; Grimmer-Somers, K.; Dones, V. School-based interventions on childhood obesity: A meta-analysis. Am. J. Prev. Med. 2009, 37, 418–427. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Iemal, A. Cancer statistics, 2020. CA 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Briggs, A.D.M.; Mytton, O.T.; Kehlbacher, A.; Tiffin, R.; Elhussein, A.; Rayner, M.; Jebb, S.A.; Blakely, T.; Scarborough, P. Health impact assessment of the UK soft drinks industry levy: A comparative risk assessment modelling study. Lancet Public Health 2016, 2, e15–e22. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Mozaffarian, D.; Sy, S.; Liu, J.; Wilde, P.E.; Marklund, M.; Abrahams-Gessel, S.; Gaziano, T.A.; Micha, R. Health Impact and Cost-Effectiveness of Volume, Tiered, and Absolute Sugar Content Sugar-Sweetened Beverage Tax Policies in the United States: A Microsimulation Study. Circulation 2020, 142, 523–534. [Google Scholar] [CrossRef]
- Amadeo, K. Farm Subsidies with Pros, Cons, and Impact How Farm Subsidies Affect You. Available online: https://www.thebalance.com/farm-subsidies-4173885 (accessed on 4 July 2019).
- Alston, J.M.; Sumner, D.A.; Vosti, S.A. Farm Subsidies and Obesity in the United States; University of California: Berkeley, CA, USA, 2007; Available online: http://giannini.ucop.edu/media/are-update/files/articles/v11n2_1.pdf (accessed on 27 September 2020).
- Menzel, P. Hungry Planet: What the World Eats—In pictures. The Guardian. 6 May 2019. Available online: https://www.theguardian.com/lifeandstyle/gallery/2013/may/06/hungry-planet-what-world-eats (accessed on 27 September 2020).
- Crossley, D. 10 Reasons to Take “Our Future in the Land” Seriously. Available online: https://www.foodethicscouncil.org/10-reasons-to-take-our-future-in-the-land-seriously/ (accessed on 27 September 2020).
- Schmidt, L.A.; Patel, A.; Brindis, C.D.; Lustig, R.H. Towards evidence-based policies for reduction of dietary sugars: Lessons from the alcohol experience. In Dietary Sugars and Health; Goran, M.I., Tappy, L., Le, K.A., Eds.; Taylor and Francis: Milton Park, UK, 2014; pp. 371–390. [Google Scholar]
- Room, R. The Effects of Nordic Alcohol Policies: What Happens to Drinking and Harm When Alcohol Controls Change? Nordic Council for Alcohol and Drug Research: Helsinki, Finland, 2002. [Google Scholar]
- Lima, J.M.; Galea, S. Corporate practices and health: A framework and mechanisms. Glob. Health 2018, 14, 21. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lustig, R.H. Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation. Nutrients 2020, 12, 3401. https://doi.org/10.3390/nu12113401
Lustig RH. Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation. Nutrients. 2020; 12(11):3401. https://doi.org/10.3390/nu12113401
Chicago/Turabian StyleLustig, Robert H. 2020. "Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation" Nutrients 12, no. 11: 3401. https://doi.org/10.3390/nu12113401
APA StyleLustig, R. H. (2020). Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation. Nutrients, 12(11), 3401. https://doi.org/10.3390/nu12113401