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Abstract: The current climate changes have increased the prevalence and intensity of heat stress
(HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial
barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in
a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic
bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential
lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium,
which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal
integrity, and increased production of pro-inflammatory cytokines. This review summarizes the
possible resilience mechanisms based on in vitro and in vivo data and the potential interventions
with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal
integrity disruption and maintain intestinal homeostasis.

Keywords: heat stress (HS); intestinal integrity; nutritional supplements; resilience pathways; reactive
oxygen species (ROS)

1. Introduction

The gastrointestinal (GI) tract is the largest surface of the body that is in contact with the outside
environment. The intestinal epithelium is regarded as a physical and biochemical barrier between
the luminal commensal and pathogenic microbial communities and the mucosal immune system [1].
Dysfunction of this barrier is caused by various pathological, toxicological, and physical stressors,
including heat stress (HS), leading to local or systemic inflammatory reactions. Severe intestinal
epithelial damage is considered as a major factor involved in HS-associated mortality [2–6]. The GI
tract is affected by HS due to the thermoregulatory mechanism of the body shifting visceral blood
flow towards the peripheral circulation to facilitate heat dissipation. This leads to visceral ischemia,
followed by hypoxia, in visceral organs such as the intestines. Recent investigations unraveled
the susceptibility of different organs to high body temperatures, demonstrating that the observed
multi-organ failure is induced by a combination of heat-induced cytotoxicity, coagulopathies, and a
systemic inflammation that affects not only the GI tract, but also other key organs and tissues, including
the central nervous system [7], the kidneys [8], the liver [9], and the muscle tissue [10]. HS-induced

Nutrients 2020, 12, 734; doi:10.3390/nu12030734 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-8030-7090
http://dx.doi.org/10.3390/nu12030734
http://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/12/3/734?type=check_update&version=2


Nutrients 2020, 12, 734 2 of 31

hypoxic conditions in the intestine result in disturbance of the balance between the production of
reactive oxygen species (ROS) and the antioxidant defense system, leading to epithelial damage and
an inflammatory response [11] (Figure 1). Intestinal hypoxia can also induce local inflammation via
barrier-independent pathways, involving cellular acidification by glycolysis, activation of autophagy
and protective innate immune responses elicited by hypoxia-inducible factor (HIF)-1α [12–14].
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splanchnic blood flow to the peripheral blood circulation, resulting in hypoxia in intestines and 
intestinal barrier dysfunction. (b) At the cellular level, hyperthermia leads to disruption of intestinal 
epithelial integrity, mainly by affecting the tight junctions (TJs) and adherens junctions (AJs), which 
are responsible for sealing the paracellular space between adjacent cells. Damage to TJs and AJs 
facilitates the transfer of luminal toxins and pathogens (light blue bodies) through the epithelial 
barrier into the lamina propria, harboring numerous immune cells that are activated and contribute 
to the exaggeration of the inflammatory reactions, which may further worsen the intestinal damage. 
ZO: zonula occludens protein. 

HS has also been reported to negatively impact on production animal physiology, in particular 
poultry [15]. Modern poultry genotypes allow rapid growth but is also linked to higher metabolic 
activity and reduced heat tolerance [16,17]. This increased susceptibility of chickens to HS leads to 
multiple pathophysiological alterations also seen in humans, for example, intestinal barrier 
disruption and inflammation, oxidative stress responses and microbiome changes [18,19]. 
Considering the relevance of HS-induced cellular oxidative stress, disruption of intestinal integrity 
and the local and systemic inflammatory responses in humans and animals (poultry), the main aim 
of this review is to discuss promising nutritional intervention strategies, which may increase HS 
tolerance and to discuss their mechanisms of action, possibly explaining their beneficial effects in 
maintaining and supporting the intestinal homeostasis. 

2. Stress Adaptation Signaling Pathways 

2.1. Heat Shock Response (HSR) 

Figure 1. The sequence of events leading to heat stress-induced intestinal barrier damage. Hyperthermia
induced by environmental or exertional heat stress (HS) stimulates the thermoregulatory mechanisms.
(a) In the whole body, the thermoregulatory response shifts the splanchnic blood flow to the peripheral
blood circulation, resulting in hypoxia in intestines and intestinal barrier dysfunction. (b) At the cellular
level, hyperthermia leads to disruption of intestinal epithelial integrity, mainly by affecting the tight
junctions (TJs) and adherens junctions (AJs), which are responsible for sealing the paracellular space
between adjacent cells. Damage to TJs and AJs facilitates the transfer of luminal toxins and pathogens
(light blue bodies) through the epithelial barrier into the lamina propria, harboring numerous immune
cells that are activated and contribute to the exaggeration of the inflammatory reactions, which may
further worsen the intestinal damage. ZO: zonula occludens protein.

HS has also been reported to negatively impact on production animal physiology, in particular
poultry [15]. Modern poultry genotypes allow rapid growth but is also linked to higher metabolic
activity and reduced heat tolerance [16,17]. This increased susceptibility of chickens to HS leads to
multiple pathophysiological alterations also seen in humans, for example, intestinal barrier disruption
and inflammation, oxidative stress responses and microbiome changes [18,19]. Considering the
relevance of HS-induced cellular oxidative stress, disruption of intestinal integrity and the local and
systemic inflammatory responses in humans and animals (poultry), the main aim of this review is to
discuss promising nutritional intervention strategies, which may increase HS tolerance and to discuss
their mechanisms of action, possibly explaining their beneficial effects in maintaining and supporting
the intestinal homeostasis.
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2. Stress Adaptation Signaling Pathways

2.1. Heat Shock Response (HSR)

The heat shock response was initially described as a specific molecular response of cells to adapt
to elevated temperature. Later, various environmental and pathophysiological stressors, which cause
protein aggregation or misfolding, were found to induce a similar reaction [20]. HSR is regulated
by the activation of a family of interacting transcription factors, the so-called “heat shock factors
(HSF)”, of which HSF1 is the best-characterized factor that is essential for the HSR [20]. Under
physiological conditions, HSF1 is bound to heat shock proteins (HSP) in a monomeric form. Upon
activation by cellular stressors, this complex of HSF1 and HSP dissociates and leads to trimerization
and translocation of HSF1 into the nucleus and initiates the transcription of more HSP (Figure 2a). HSP
fulfil an important role in binding to and protecting misfolded cellular proteins, a typical sign of HS.
Among the variety of HSP family members [21], HSP70 is considered as the most stress-responsive
protein, which is usually expressed at low basal levels and increases in response to stressors to protect
the cells from proteotoxic damages by binding to damaged proteins and contributing to the refolding
of unfolded or misfolded proteins. Subsequently, HSP inhibit apoptosis and even more important, the
inflammatory response [20,22,23].
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Figure 2. Schematic illustration of the heat stress (HS)-induced heat shock response and oxidative
stress response. (a) Cells under HS conditions activate the heat shock response pathway, which is
initiated by translocation and trimerization of heat shock factor-1 (HSF1) into the nucleus, where it
binds to the regulatory heat shock elements (HSE) in the promoter regions of heat shock protein (HSP)
genes. (b) Oxidative stress induced by HS results in the liberation of nuclear factor erythroid 2 related
factor 2 (Nrf2) from Kelch-like ECH-associated protein 1 (Keap1) and the translocation of Nrf2 into the
nucleus where it binds to the antioxidant response element (ARE) in the promotor region of antioxidant
target genes, driving their expression.



Nutrients 2020, 12, 734 4 of 31

2.2. HSR and Oxidative Stress Response

Cell survival largely depends on the balance between ROS and cellular antioxidant mechanisms.
The high reactivity of ROS can modify several cellular macromolecules, such as nucleic acids, proteins,
and lipids [23]. HS is a potent inducer of ROS production, which leads to tissue damages as soon as
the cellular redox defense system, consisting of glutathione (GSH), glutathione peroxidase, superoxide
dismutase (SOD), and haem oxygenase 1 (HO-1), is exhausted [24]. Hyperthermia can provoke ROS
production by adversely affecting mitochondrial membrane integrity and their electron transport
chains [25,26], but is also able to hamper the antioxidant defense system directly [27]. The expression of
the antioxidant system is mainly regulated by nuclear factor erythroid 2 related factor 2 (Nrf2), which
is repressed in the cytoplasm by the regulatory protein Kelch-like ECH-associated protein 1 (Keap1)
under physiological conditions. Dissociation of Nrf2 from Keap-1 upon oxidative stress, leads to
translocation of Nrf2 to the nucleus where it binds to the ARE to induce the transcription of antioxidant
proteins improving cell survival under stress conditions (Figure 2b) [28,29].

Local hypoxia caused by HS-induced changes in blood flow (from visceral to peripheral circulation)
is identified as another major cause of ROS production. The main cellular response to hypoxia
is triggered by HIF. Under normal conditions, the α subunit of HIF is rapidly hydroxylated by
oxygen-sensitive prolyl hydroxylases (PHD) and then degraded in the proteasome [30]. However,
under hypoxic conditions, PHD activity is inhibited, leading to HIF-1α stabilization and transcriptional
activity so that cells can adapt to the hypoxic stress. One consequence of hypoxic signaling is the
abnormal accumulation of ROS by complex III of the mitochondrial electron transport chain [31]. ROS
generated under hypoxic conditions in turn contribute to HIF-1α stabilization [32] and activate the
oxidative stress response via Nrf2, as previously discussed.

2.3. Resilience Pathways and Intestinal Barrier Integrity

Expression of HSP, in particular HSP70, is associated with the stabilization of the actin cytoskeleton
of intestinal cells, preventing their aggregation under stress conditions [33]. Elevated levels of HSF1
and HSP70 are crucial in increasing the expression of actin fibers in epithelial cells of the GI tract. Upon
activation under HS conditions, HSF1 binds to the occludin promoter region mediating the upregulation
of the expression and improving the participation of occludin in junctional complexes [34]. Exogenous
HSP70 added to cell cultures prevents HS-induced alteration in permeability. We recently showed
that one of the possible mechanisms by which the antioxidant α-lipoic acid (ALA) and the amino acid
arginine preserve the intestinal integrity under HS conditions could be related to the enhancement
of HSP70 expression [35]. A possible mechanism by which HSP70 attenuates the epithelial barrier
dysfunction under stress conditions will be through preventing the activation of conventional protein
kinase C (cPKC), thereby reducing the myosin light chain (MLC) protein phosphorylation of the
actin cytoskeleton [36,37]. Another member of the HSP family, the Apg-2 (a member of the HSP110
subfamily), interacts directly with zonula occludens protein-1 (ZO-1), regulating the transcriptional
activity of ZO-1-associated nucleic acid binding protein [38]. The upregulation of HSP70 in Caco-2
cells (human epithelial colorectal adenocarcinoma cell line) following exposure to gliadin is associated
with a redistribution of HSP70 towards the cytoskeleton, which improves the action of HSP70 in the
maintenance of intestinal barrier function by allowing direct interaction with junctional proteins such
as ezrin and E-cadherin [39].

Nrf2-Keap1 regulation is also linked with preserving intestinal barrier integrity. Jin et al. [40]
observed higher intestinal permeability and plasma levels of endotoxin in the Nrf2-/- mice compared
with wild-type mice in a traumatic brain injury-induced intestinal mucosa damage model. The
upregulation of AhR-Nrf2 pathway and its target gene HO-1 (also known as HSP32) expression enhances
the barrier function in the mice with inflammatory bowel diseases (IBD) [41]. Moreover, the extracellular
signal-regulated kinase (ERK)/Nrf2/HO-1 signaling pathway can prevent the intestinal barrier damage
by mediating mitophagy and increasing the expression of tight junctions (TJ) proteins under hypoxic
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conditions [42]. Interestingly, Nrf2 has two binding sites on the upstream of claudin-4 DNA sequence
in the esophageal epithelium, highlighting the importance of Nrf2 in the TJ regulation [43].

2.4. Resilience Pathways and Immune System

Translocation of xenobiotics and bacterial products, following intestinal epithelial damage under
HS conditions, may evoke an inflammatory response, which results in exaggeration of intestinal
barrier dysfunction [36]. The anti-inflammatory properties of HSP70 have been studied extensively
in chronic inflammatory disorders, such as IBD and celiac disease, as well as under conditions of
hyperthermia [44–46]. The upregulation of HSP70 in response to HS is involved in the inhibition of
pro-inflammatory cytokine expression [47]. HSP block the production of pro-inflammatory cytokines
by inhibiting the translocation of Nuclear Factor-κB (NF-κB) to the nucleus [46]. Van Eden [48]
reviewed the effect of HSP on expansion of anti-inflammatory regulatory T cells (Treg) and concluded
that the introduction of HSP inducers into the diet can be considered as a therapeutic approach
against inflammatory disorders. This specificity of HSP is not limited to endogenous (self) HSP,
since administration of bacterial HSP is also an effective strategy in treatment of immune-challenging
disorders [49–51]. Anti-inflammatory mechanisms of HSP are beyond the scope of this review and a
more complete description of these mechanisms is presented in different review articles [52,53].

The crosstalk between ROS and Nrf2 and/or NF-κB, which activates the inflammatory cascade, is
very complex and not yet fully elucidated [54]. Nrf2 and HSF1 regulate overlapping target genes and
may compensate for each other [55]. HO-1 is considered as the most important Nrf2 target gene in
facilitating NF-κB inhibition, which can be regulated by HSF1 as well. Additionally, exposure of HSF1
mutant cells to HS stimulates (although with delay) the upregulation of HSP70 and HO-1, which is
mediated by Nrf2 [56].

Nrf2 also regulates intestinal immune function by affecting T cell polarization. The activation of
Nrf2 inhibits the secretion of the Th1 cytokine IFNγ and interleukin (IL)-2 in early events, thereafter
promoting CD4+ Th2 differentiation [57,58]. Moreover, Keap1 itself seems to be involved as a positive
regulator of NF-κB in inflammatory signaling [59].

In conclusion, activation of both the heat shock and oxidative stress responses contribute to an
increased resilience to heat stress conditions and may help to mitigate the stressful effects of increased
body temperature and decreased oxygen accessibility by regulating the expression of protective
proteins, such as HSP, Nrf2, and HO-1. HSP, Nrf2 and HO-1 in the intestinal epithelia can interact
with junctional complexes and components of the immune system resulting in the restoration of local
homeostasis following hyperthermia and hypoxia.

3. Intervention Strategies against HS

As mentioned earlier, hyperthermia and subsequent hypoxia not only provoke ROS production,
but also directly hamper the antioxidant defence system [27].

Independent from these direct effects on cells of the intestinal barrier system, the gut microbiota is
a common target of HS conditions [60,61]. Alterations in the composition of the gut microbiota, together
with the HS-induced impairment of the barrier function, increase the likelihood of opportunistic
intestinal infections. In turn, pre- and probiotics have gained recent interest, as they are able to stabilize
the intestinal microbiota under stress conditions. A variety of antioxidant substances, fatty acids,
and selected amino acids are also commonly recommended to mitigate disease conditions closely
associated with cellular oxidative stress, as will be discussed below.

3.1. Microbiota Modulation

The gut microbiota, which comprises a vast array of microorganisms, has a key effect on
the regulation of host nutrition and metabolism, as well as on the stimulation of gut maturation,
development, proliferation, and immune homeostasis [60,62]. A variety of host conditions, including
diet, immune reactions, infections, and usage of antibiotics influences the gut microbiota. Stress
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conditions, including HS, induce alterations in the microbiota balance, which may result in the
colonization of enteric pathogens [63], and intestinal inflammatory responses [64]. Stabilization of the
gut microbiota composition by pro-, pre-, syn-, and postbiotics is considered as an effective strategy to
improve gut health and to protect the intestines against stress conditions [65–68].

3.1.1. Probiotics

Probiotic bacteria are defined as “living microorganisms which exert health promoting benefits
when administered in adequate amounts” [69]. A large range of bacteria are considered as probiotics,
while the most common strains belong to Lactobacillus and Bifidobacterium species [70]. While probiotics
were initially identified based on the competitive displacement of pathogens, they have also shown to
be protective against non-infective disorders, such as dextran sodium sulfate (DSS)-induced colitis in
mice, and influence the morphology and the immunological homeostasis in the GI tracts of animals
and humans [70,71]. Furthermore, the beneficial effects of probiotics are related to the improvement of
different components of the gut barrier system, including the regulation of immune reactions, and
enhancement of intestinal epithelial cell integrity [72,73].

A clinical study showed that four weeks of daily supplementation with a probiotic mixture
containing strains of Lactobacillus, Bifidobacterium, and Streptococcus species maintains the intestinal
integrity and reduces the penetration of LPS into the blood in male runners affected by intense
exercise-induced HS [70]. Furthermore, supplementation with a matrix and six probiotic strains
(B. bifidum, B. lactis, E. faecium, L. acidophilus, L. brevis, and L. lactis) for 14 weeks reduced the
concentration of zonulin in feces of athletes, and improved intestinal barrier integrity [74]. It is known
that increased zonulin concentration in feces is related to enhanced gut permeability and changes in
tight junction competency. Moreover, in vitro evidence demonstrated that a mixture of three different
strains of Lactobacillus species increased trans-epithelial electrical resistance (TEER) values, occludin
mRNA expression, and mucus production in Caco-2:HT29–MTX epithelial co-cultures [75]. Model
experiments in broiler chickens indicate that probiotics successfully alleviate the detrimental effects of
HS on the microstructures of the small intestine, such as reduced villus height and density [76,77]. An
ex vivo study from Song et al. [77] showed that 42-day treatment with a L. plantarum, B. licheniformis,
and B. subtilis mixture could restore the decreased trans-epithelial electrical resistance (TEER) levels and
subsequently increased the paracellular permeability in the jejunal segment of HS-exposed chickens.
The beneficial effects of this probiotic mixture was associated with an increase in occludin and ZO-1
protein expression [77].

Bacilli are also commonly used as human probiotics for their multi-bioactivity and high
bio-safety [78]. Feed supplementation with B. subtilis for 42 days improves the intestinal integrity in
chickens by increasing the expression of occludin, claudin-2, and claudin-3 in the jejunum and the
ileum [79]. Similarly, pretreatment of B. subtilis for two days diminishes the intestinal morphological
changes and bacterial translocation as well as lipopolysaccharides (LPS) penetration to the blood flow
in rats exposed to HS [80].

Probiotics do not only interact with the bacterial populations in the intestine, but there is also
an interplay between microbiota and the host’s defense system. For example, probiotics directly
and/or indirectly modulate different signaling pathways that regulate the intestinal integrity, including
Rho family GTPases, protein kinase C (PKC), and mitogen-activated protein kinase (MAPK). The
protective effect of a Gram-negative E. coli Nissle probiotic on intestinal integrity of T84 cells (colonic
adenocarcinoma epithelial cells) challenged by enteropathogenic E. coli, is related to the stabilization
of ζ isotype of protein kinase C (PKCζ), thereby preventing the phosphorylation and dissociation
of ZO-2 from the TJ network [81]. In agreement with these findings, the epithelial barrier function
in T84 cells is enhanced by the four strains of Gram-positive probiotic Lactobacillus species via their
effect on adherens junctions (AJs), including E-cadherin and β-catenin, by reducing the abundance of δ
isotype of protein kinase C (PKCδ) in membrane junctional complexes [82], highlighting the notion that
probiotics with different Gram-staining status target distinct signaling pathways regulating different
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intercellular junctions. L. brevis produces a bioactive molecule, polyphosphate, through activation
of the integrin–p38 MAPK pathway, which leads to increased HSP expression at protein level and
prevention of oxidant-induced intestinal barrier disruption [83]. In addition, the protective effects of the
probiotic strains of S. thermophiles and L. acidophilus on occludin phosphorylation in human intestinal
epithelial cells challenged with enteroinvasive E. coli, can be inhibited by a Rho kinase inhibitor [84].

The probiotic B. licheniformis supports the gut mucosal immunity in broiler chickens exposed to
HS, by preventing HS-induced increase in pro-inflammatory cytokines and decrease in intraepithelial
lymphocytes, the IgA secreting plasma cells and mucin production [85]. B. subtilis B10 stimulates
the mucosal immunity development in broiler chickens by increasing IgA secretion and mRNA
expression of the anti-inflammatory cytokine IL-10 [79]. Furthermore, clinical studies showed that
dietary supplementation with a probiotic mixture increases the post-exercise plasma concentrations of
IL-10 in exercise-induced HS [70].

The immune-regulatory properties of probiotics have been studied extensively in treatment of
diseases affecting the intestinal mucosal immunity, such as IBD [86,87]. It seems that the mechanism
by which probiotics exert anti-inflammatory properties, is through inhibition of NF-κB [88]. Moreover,
probiotics stimulate CD103+ dendritic cells to produce IL-10 and IL-27 via the toll-like receptors
(TLR)-2/MyD88 pathway [89].

Overall, probiotics modulate both the innate system (via natural killer cells, dendritic cells,
macrophages, epithelial cells, and granulocytes) and the adaptive system (Th1, Th2, Th17, Treg,
Tc, and B cells) [90,91]. The activation of an innate immune response by probiotics is mainly
facilitated by microbe-associated molecular patterns, including bacterial cell wall polysaccharides and
peptidoglycan [92], which interact with TLR, C-type lectin receptors, and nucleotide oligomerization
domain-like receptors [93]. However, it should be taken into account that as yet no single probiotic is
found to exert all the above-mentioned effects.

3.1.2. Prebiotics

Dietary prebiotics are described as “selectively fermented ingredients that result in specific
changes in the composition and/or activity of the GI microbiota, thus conferring benefit(s) upon
host health” [94]. Human milk oligosaccharides (HMO), a major component of colostrum, represent
the first prebiotic in the human diet. A recent study confirmed the protective action of HMO by
supplementing neonatal mice formula and media for Caco-2 cells, and found an improved response
against hypoxia-induced injuries [95]. Various attempts have been made to design alternative prebiotic
oligosaccharides that mimic the health promoting effects of HMO, including galacto-oligosaccharides
(GOS) and fructo-oligosaccharides (FOS), which are widely used in infant formulas [96]. These
non-digestible oligosaccharides are not hydrolyzed by mammalian digestive enzymes and reach the
distal intestines, where they modify the autochthonous microbiota and exert a beneficial effect on the
gut microbiota [97]. Selective stimulation of beneficial bacteria, such as Lactobacillus and Bifidobacterium
species, can induce immunomodulatory effects, enhance the intestinal integrity and preserve the
intestinal micro-structures [98,99]. The gut microbiome targets different intracellular pathways via
fermentation of non-digestible oligosaccharides and the subsequent production of short chain fatty
acids (SCFA), such as acetate, propionate, or butyrate [100]. The postbiotic, butyrate, increases the
antioxidant glutathione and decreases ROS production when applied directly to the human colon
cells [101,102], which would probably modulate the HS-induced intestinal damage by ROS [103].
Moreover, SCFA, such as propionate and butyrate, activate free fatty acid receptor (FFAR) 2 [also
known as G-protein-coupled receptor (GPR) 43] and FFAR3 (GPR41) to stimulate the mucus secretion
and facilitate the production of anti-inflammatory cytokine IL-10 [104,105].

In vivo investigations in chickens exposed to HS have shown that supplementation of the diet
with mannan-oligosaccharides (MOS) and cello-oligosaccharides (COS) mitigated the heat-induced
changes in intestinal morphology and intestinal barrier function [106,107]. Furthermore, MOS enhance
the intestinal integrity by increasing villus height, the number of goblet cells, and the populations of
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lactobacilli and bifidobacteria, while at the same time reducing the E. coli load in the ceca of chickens [108].
HMO incubated with B. longum infantis increased IL-10 expression and ZO-1, occludin and junctional
adhesion molecule (JAM)-A mRNA transcription in Caco-2 and HT-29 cells [109]. In turn, an in vitro
experiment reported that FOS improved the viability and heat tolerance capacity of two strains
of lactobacillus species: L. plantarum and L. acidophilus [110]. Chitosan oligosaccharides attenuate
inflammatory infiltrates and epithelial degeneration in mice colon, and increase TEER in T84 cells [111].
Our group showed that dietary GOS supplementation diminishes the disruption of intestinal integrity
by preventing the alterations in TJs and AJs in the jejunum of broiler chickens exposed to HS [112].
In addition, GOS increase the number of intestinal bifidobacteria in rats and play a key role in prevention
of intestinal integrity disruption by increasing the mRNA and protein expression of occludin [113].

Besides the effects on the gut microbiota, microbiota-independent effects and direct interactions of
these oligosaccharides with different (immune) cells have raised more attention in recent years [114].
FOS was found to directly promote barrier integrity by increasing ZO-1 and occludin expression,
through a protein kinase C (PKC) δ-dependent mechanism, in pathogen-challenged Caco-2Bbe1 cells
(a Caco-2 subclone) and human intestinal organoids [115]. Our in vitro investigations highlighted the
effect of GOS on direct regulation of the intestinal integrity and junctional complexes to prevent the
disruption of intestinal integrity induced by HS [116]. Moreover, pre-treatment with GOS prevents
the disruption of intestinal integrity by accelerating TJ reassembly and stabilizing the expression and
cellular distribution of claudin-3 TJ protein in Caco-2 cells [117]. The microbiota-independent effect
of non-digestible oligosaccharides on intestinal epithelial integrity depends on the oligosaccharide
structure, size, and concentration [118]. Although further research is needed to unravel the exact
mechanism involved in the direct regulation of intestinal integrity by oligosaccharides, an in vitro study
with T84 cells showed that chitosan oligosaccharides promote TJ assembly by activating 5' adenosine
monophosphate-activated protein kinase (AMPK) through calcium-sensing receptor-phospholipase
C-IP3 receptor channel-mediated calcium release [119].

We showed in broiler chickens that dietary GOS prevents the HS-induced mRNA upregulation of
IL-6 and IL-8 in the jejunum. This effect could be related to the GOS-preserved intestinal integrity [112].
In addition, GOS prevent the HS-induced TLR-4 upregulation in the jejunum [112]. Disruption of
intestinal integrity followed by translocation of luminal antigens and pathogens through the intestinal
epithelium exaggerates TLR signaling, facilitates immune responses, and eventually leads to the
development of intestinal inflammation and intestinal injury [120–122]. Another study from Wang et al.
also showed that by reducing the expression of TLR-4 and NF-κB, and accelerating the turnover of crypt
cells, HMO protect intestinal epithelial cells from necrotizing enterocolitis (NCE) injury in mice [123].
Additionally, TLR-4 is described as a stress-related biosensor in the initial injury responses [124] and
may contribute to the intestinal barrier disruption, since it is demonstrated that TLR-4 knockout mice
are protected from HS-induced intestinal hyper-permeability and microvascular endothelial barrier
dysfunction [121,125].

In recent years, the immune-regulatory effects of prebiotics to prevent intestinal disorders, such
as IBD and NCE, (food) allergy, or intestinal damage related to mycotoxin exposure are extensively
studied [111,126–133]. GOS suppress the mycotoxin-induced increase in CXCL8 in Caco-2 cells as
well as the murine CXCL8 analogues (CXCL1 and CXCL2) in the intestine [117]. Moreover, dietary
GOS mitigate the inflammation-induced expression of the alarmin IL-33 in two different murine
models [134]. Jeurink et al. [98] reviewed the different mechanisms which can underlie the immune
effects of dietary oligosaccharides.

In summary, pro- and pre-biotics exert their therapeutic and prophylactic effects on HS-induced
intestinal integrity disruption by modulating immune function, improving gut barrier integrity by
stimulating mucus production and modulating junctional proteins, increasing antioxidative capacity,
and supporting the resident microbiota. The effects of pro- and pre-biotics on intestinal integrity and
immunomodulation are summarized in Table 1.
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Table 1. The effects of pro-/prebiotics on intestinal integrity and immunomodulation.

Name Integrity Immunomodulation Other Effect(s) Reference

Pro-
biotics

Lactobacillus
species

TEER↑ IL-10↑ Integrin-p38
MAPK activation↑

[77,82–84,88,89,135]

Intestinal
permeability↓ IL-27↑ HSP expression↑

ZO-1↑ IL-1↓ Antioxidative
capacity↑

occludin↑ IL-6↓ Nutrient
transporters↑E-cadherin↑ TNF-α↓

claudin-2↑ NF-κB activation↓

Bifidobacterium
species

claudin-3↑ Corticosterone↓ Mucin genes
transcription and

protein
production↑

[77,88,89]
Morphological

damage↓ IgA secreting cells↑

β-catenin↑ Intraepithelial
lymphocytes↓

Bacillus species [79,80,85,88,89]

E. coli Nissle ZO-2
dissociation↓ - [81,88,89]

Streptococcus
thermophiles

occludin
delocalization↓ - [84,88,89]

HMO

ZO-1↑ IL-10↑ Mucus
production↑

[109,123,130,136]

occludin↑ TLR-4↓ HIF-1α↓

JAM-A↑ NF-κB
translocation↓

Cleaved
caspase-3↓

Crypt
proliferation↑

p38 MAPK
activation↓ EGFR activation↑

Intestinal
permeability↓

Pre-
biotics

GOS

TEER↑ IL-6 mRNA↓ HSP expression↓

[99,100,102,103,119]

Intestinal
permeability↓ IL-8 mRNA↓ Populations of

probiotics↑
occludin↑ TLR-4↓ HO-1 expression↓
claudin-3↑ IL-33↓

E-cadherin↑ CXCL-8↓
CXCL-1↓
CXCL-2↓

MOS

Intestinal
permeability↓ -

Goblet cells↑

[106–108]
permeability↓ Populations of

probiotics↑
Villus height↑ E. coli load↑

COS
Intestinal

permeability↓ - - [106,107]
Morphological

damage↓

FOS

TEER↑ Colonic SCFA
concentration↑

[110,115,137]Intestinal
permeability↓ - Mucosal damage↓

occludin↑
ZO-1↑
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Table 1. Cont.

Name Integrity Immunomodulation Other Effect(s) Reference

Pre-
biotics

Chitosan
oligosaccharides

TEER↑ IL-6↓ GST↑

[111,119,132,133]

Epithelial
degeneration↓ TNF-α↓

TJ proteins
redistribution and

distortion↓
COX-2 activation↓

iNOS↓
NO production↓

NF-κB
translocation↓

Upwards arrow: Increase or enhancement; downwards arrow: Decrease or inhibition. TEER: trans-epithelial
electrical resistance; IL: interleukin; TNF: tumor necrosis factor; NF-κB: nuclear factor κ-light-chain-enhancer of
activated B cells; IgA: immunoglobulin A; MAPK: mitogen-activated protein kinase; JAM: junctional adhesion
molecule; TLR: toll-like receptor; HMO: human milk oligosaccharides; HIF: hypoxia-inducible factor; EGFR:
epidermal growth factor receptor; GOS: galacto-oligosaccharides; CXCL: C-X-C motif chemokine ligand; HO-1:
haem oxygenase 1; MOS: mannan-oligosaccharides; COS: cello-oligosaccharides; FOS: fructo-oligosaccharides;
SCFA: short chain fatty acids; GST: glutathione S-transferase; COX: cyclooxygenase; iNOS: inducible isoform of
NOS; NO: nitric oxide.

3.2. Antioxidants

Preserving the redox balance, by the participation of Nrf2 and Keap1, is crucial to control the
overproduction of ROS and maintain intestinal integrity under HS conditions [138].

ROS are signaling molecules in physiological levels but are also responsible, at a high concentration,
for intracellular damage [139]. Under physiological ROS production levels, proteinaceous antioxidants
act as a defence mechanism to neutralize ROS production [140]. However, conditions such as HS are
associated with excessive ROS generation [141,142]. Therefore, supplementation with oral exogenous
antioxidant components or pro-oxidants, which can beneficially trigger the Nrf2-Keap1 pathway, may
help to alleviate oxidative stress and its contribution to the pathogenesis of HS in the intestine.

3.2.1. α-Lipoic Acid (ALA), a Fatty Acid with Antioxidant Properties

ALA is synthesized from octanoic acid in the mitochondria and is present in pro- and eukaryotic
cells, being identified as a potent cellular antioxidant. Both reduced and oxidized forms of ALA
retain the antioxidant potency by scavenging free radicals, exhibiting metal chelating activity, and
through their involvement in redox regeneration of other antioxidants (vitamin C and E) [143,144].
ALA is used as treatment for diverse pathologies associated with redox imbalances, including diabetes,
ischemia-reperfusion injury, and heavy metal poisoning. However, ALA may act as mild pro-oxidant
by slightly increasing ROS concentrations to activate Nrf2 and HSF, and therefore increasing the
resilience to stress conditions [144]. In addition to redox-regulating effects, ALA may enhance gut
integrity and exert anti-inflammatory properties [145–147]. ALA hampers the disruption of intestinal
integrity and modulates the intestinal inflammation in models of HS, post-weaning diarrhea and
ulcerative colitis [145–147].

Although the intestinal integrity-associated effects of ALA are not extensively studied under
HS conditions, investigations in Caco-2 cell monolayers exposed to HS showed that ALA prevents
the disruption of intestinal integrity by maintaining protein expression and distribution of the AJ,
E-cadherin [147]. Furthermore, ALA stimulates proliferation of intestinal epithelial monolayers and
facilitates the reassembly of TJs [147].

ALA supplementation preserves the intestinal integrity in oxidative and inflammatory disorders
associated with intestinal damage [145,146,148]. ALA stimulates the recovery of the intestinal epithelial
architecture by increasing transcription and translation of occludin and ZO-1 TJ proteins in a rat model
for post-weaning diarrhea. These findings are confirmed by in vitro studies with IEC-6 intestinal
epithelial cells [146]. ALA mitigates the intestinal morphological damage by preventing the decrease
in villus height and increase in crypt depth in glycinin-induced anaphylactic reactions in rats [148].
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Additionally, ALA co- and post-treatment decreases ulcerative colitis-induced gut permeability by
maintaining the expression of occludin in mice [145]. These effects are, at least in part, related to the
regulation of the redox balance since oxidative stress induces a tyrosine-kinase-dependent dissociation
of E-cadherin-β-catenin and occludin-ZO1 complexes, which leads to their cellular redistribution
and a loss of barrier integrity [149]. Additionally, the pro-oxidant activity of ALA stimulates the
transcriptional activity of HSF1 to induce the expression of HSP70. HSP70 may be involved in
the maintenance of barrier integrity through direct interaction with TJ proteins and stabilizing the
junctional complexes [39].

The anti-inflammatory effects of ALA are closely related to its antioxidant properties. As mentioned
before, activation of the NRF2 transcription factor by ALA results in the induction of HO-1, which
exerts anti-inflammatory effects by degrading intracellular haem to free ion, carbon monoxide and
biliverdin [150,151]. In the last decade, the effect of ALA in the transcriptional regulation of genes
associated with inflammatory pathways were highlighted [144,152,153]. Exposure of Caco-2 cells to
HS increases cyclooxygenase-2 (COX-2) mRNA expression, the inducible COX, which is attenuated
by ALA pre-incubation [147]. COX-2 catalyses the rate-limiting step in the conversion of arachidonic
acid into inflammatory prostaglandins. Interestingly, inhibition of COX-2 by ALA is speculated to be
important in the prevention of ulcerative colitis in rats [154]. ALA, co- and post-treatment in mice with
ulcerative colitis, not only prevents the transcription of COX-2, but also significantly reduces various
inflammatory markers, such as myeloperoxidase, IL-17, IL-6, and TNF-α in the colon [145].

These findings support the hypothesis that the anti-inflammatory and protective effects of ALA
under stress conditions are mainly attributable to the inhibition of IκB/NF-κB phosphorylation, hence
preventing the activation of NF-κB [153].

3.2.2. Resveratrol, a Plant Polyphenol Compound

The polyphenolic compound resveratrol (3,5,4′-trihydroxytrans-stilbene) is present in grape
skin, grape seeds, and peanuts. Resveratrol is an important bioactive compound, which displays a
strong antioxidant and anti-inflammatory capacity. The significance of resveratrol in ameliorating
the deleterious effects of HS has been reviewed previously [155]. Indeed, enhancing resilience to
oxidative stress via administration of antioxidants or pro-oxidants (compounds which moderately
induce the ROS just enough to activate the antioxidant defence system) has been introduced as an
effective strategy in preventing HS-induced gut-associated dysfunction.

Although the exact underlying mechanism between the antioxidant capacity of resveratrol and the
protective effect on gut homeostasis is not fully understood, the induction of HSP, in particular HSP70,
HSP90, and HO-1, is one of the major effects of resveratrol to preserve cellular homeostasis under stress
conditions [156–158]. Resveratrol-induced HSP70 expression reduces the temperature threshold of the
heat-shock response and preconditions the cells to cope with more severe or lethal stress levels [159].
Resveratrol reduces glutathione disulphide (GSSG) formation, maintaining GSH in its reduced form
to prevent ROS-induced cellular damage [160] and, in addition, inhibits the H2O2-induced lipid
peroxidation by reducing malondialdehyde (MDA) formation, while increasing SOD activity and
inhibiting the elevated intracellular expression of ROS in Caco-2 cells [161]. Resveratrol-induced
HO-1 signaling is crucial in common expression of TJ proteins by inhibiting the PKC activity and P38
phosphorylation [161].

Resveratrol alleviates the HS-induced intestinal damage by preserving villus height to crypt depth
ratio in chickens [162]. In vitro investigations using IPEC-J2 intestinal epithelial cells showed that
resveratrol ameliorates intestinal epithelial integrity breakdown by increasing TEER values, reducing
bacterial translocation, and decreasing the paracellular permeability. These effects were mainly
associated by enhancement of claudin-4 TJ protein assembly [163]. Moreover, in vitro and in vivo
studies indicated that pre-treatment with resveratrol significantly hampered H2O2-induced damage
to occludin and ZO-1 proteins in a concentration- and time-dependent manner in Caco-2 cells by
upregulating HO-1 expression. In models of intestinal integrity disruption in rats, resveratrol treatment
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attenuated the gut hyperpermeability resulting from oxidative stress [161]. Recent investigations
by Mayangsari and Suzuki [164] pointed out that resveratrol ameliorated DSS-induced ZO-1, ZO-2,
occludin, JAM-A, claudin-2, claudin-3, claudin-4, and claudin-7 suppression.

Oxy-resveratrol, an isomer of hydroxylated resveratrol, effectively decreases fluorescein
isothiocyanate (FITC)-Dextran transport through the Caco-2 monolayer in a concentration-dependent
manner [165]. Occludin, ZO-1 and claudin-1 expression was significantly increased in oxy-resveratrol-
treated Caco-2 cells compared to untreated cells, which might improve TJ integrity via PKC and
MAPK-mediated pathways.

Besides preserving the intestinal integrity, the induction of HSP by resveratrol induces
immune-regulatory effects, since HSP are activators of anti-inflammatory regulatory T cells and
HSP induction blocks the NF-κB activation by stabilizing IκB-α [166]. Resveratrol treatment prevents
the HS-induced transcription of NF-κB [155,162]. In turn, resveratrol exerts an anti-inflammatory
capacity by inhibiting COX-2 expression. COX-2 is a heat-responsive gene, upregulated as a HSF1
target gene under HS conditions [167,168]. In addition, resveratrol reduces the transcription of
pro-inflammatory cytokines, such as IL-6 and IL-1β, as well as COX-1 in Caco-2 cells, induced by
LPS in combination with a cytokine cocktail [169]. This underlines their safe use as preventative
anti-inflammatory agent. As importantly, the immune-related cellular mechanisms modulated by
resveratrol are associated with the stress-activated protein kinases/c-Jun N-terminal kinase (SAPK/JNK),
ERK 1/2, p38 MAPK and spleen tyrosine kinase (Syk) signaling pathways [164].

In conclusion, to restore the imbalance of the antioxidative system, quenching of excessive ROS
by antioxidants, such as α-lipoic acid and resveratrol, is key. This process involves the improvement of
the antioxidative enzyme system, activation of oxidative stress-modulating proteins, and inhibition
of the inflammatory response. The effects of α-lipoic acid and resveratrol on intestinal integrity and
immunomodulation are summarized in Table 2.

Table 2. The effects of α-lipoic acid and resveratrol on intestinal integrity and immunomodulation.

Compound Integrity Immunomodulation Other Effect(s) Reference

α-lipoic acid

Intestinal
permeability↓ COX-2 activation↓ Epithelial

proliferation↑

[144–148,150–154]ZO-1↑ IL-17↓ HSP70 expression↑
occludin↑ IL-6↓ HO-1 activation↑

E-cadherin↑ TNF-α↓
Morphological

damage↓ IκB activation↑

Resveratrol

ZO-1↑ IL-6 mRNA↓ MDA↓

[155,156,160–163,
165,168,169]

occludin↑ IL-1β mRNA↓ SOD↑
TEER↑ PTGS1 mRNA↓ GSH↓

Intestinal
permeability↓ COX-2 activation↓ ROS↓

claudin-1↑ NF-κB activation↓ HO-1 activation↑
claudin-4↑ HSP70↑

Crypt depth↓ HSP90↑
Villus height↑

Upwards arrow: Increase or enhancement; downwards arrow: Decrease or inhibition. PTGS1: prostaglandin G/H
synthase 1; MDA: malondialdehyde; SOD: superoxide dismutase; GSH: glutathione; ROS: reactive oxygen species.

3.3. Polyunsaturated Fatty Acids (PUFA)

Polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are
members of the omega-3 fatty acid family. In the human diet, these fatty acids are mainly derived
from fish and fish oil with high fat content. The importance of adequate EPA and DHA intake for the
development of the fetal nervous system has been demonstrated [170]. The effects of fatty acid intake
on chronic diseases, including obesity, diabetes, cancer, arthritis, asthma, and cardiovascular diseases,
are widely recognized [171]. In addition, low doses of PUFA exert antioxidant activities [172] and
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are cellular antioxidants that might positively modulate important physiological functions such as
antioxidant capacity and enzymatic activities [173]. The modulation mechanism involves quenching
of intracellular ROS generation and direct inhibition of Nox4 [172]. Low dose EPA/DHA-fed rats
displayed a higher activity of the antioxidant machinery, including an enhanced SOD and catalase
(CAT) activity in addition to a reduction in total nitrate/nitrite content [174].

EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in
HRP flux induced by heat exposure [175]. EPA significantly elevated the expression of occludin
and ZO-1 in CaCo-2 cells. The distortion and redistribution of TJ proteins, and disruption of
morphology were also effectively prevented by pre-treatment with EPA [175]. A significant reduction
in mucosal damage in the gut of rats was observed after an EPA/DHA supplemented diet, as reflected
by the maintenance of total protein content [174]. In Caco-2 cells, upon an acute inflammatory
stimulus, DHA partially restored the occludin intensity in tight junction complexes, and preserved
the ZO-1 localization and function by increasing TEER values and decreasing Lucifer Yellow (LY)
flux in a concentration-dependent manner [176]. DHA and EPA counteracted chronic stress-induced
dysfunctions, such as the downregulation in ZO-1, occluding, and E-cadherin, and aberrant microbiota
composition and their metabolites, mainly acetic acid, propionic acid, and butyric acid [177].

DHA and EPA have anti-inflammatory activities and are used as “immunonutrients” [178]. DHA
and EPA decreased pro-inflammatory cytokines interferon (IFN)-γ, TNF-α, IL-1β, and IL-6 production
in the intestine of mice exposed to chronic stress [177]. This effect was mediated by up-regulating
GPR120 and down-regulating TAK1/NF-κB p65 signaling. Zhao et al. [179] reported that in colonic
mucosa, DHA pre-treatment decreased immune cell infiltration, down-regulated IL-17, TNF-α, and
INF-γ levels, and improved intestinal epithelial barrier function. In human colon cancer HT-29
cells, DHA and EPA inhibited ERK-1 and -2 phosphorylation and HIF-1α protein over-expression by
reducing COX-2 expression and prostaglandin (PGE)2 levels [180]. Furthermore, the other cellular
mechanisms accounting for immunomodulatory effects also included down-regulation of inducible
isoform of NOS (iNOS) and cyclic guanosine monophosphate (cGMP) [181]. In addition, EPA and
DHA are able to increase cytokeratin 20 and mucin 2 gene and protein expression, which can enhance
the intestinal immunological barrier by providing binding sites for antibacterial peptides [177,182].

In summary, PUFA exert protective effects on the intestinal epithelial cell monolayer by protecting
the barrier function and by anti-inflammatory activity. However, PUFA seem to have distinct effects at
different concentration ranges in different disease models and in different cell lines. More in vivo studies
are needed to determine the precise beneficial effects of PUFA on (HS-induced) intestinal disorders. The
effects of DHA and EPA on intestinal integrity and immunomodulation are summarized in Table 3.

Table 3. The effects of polyunsaturated fatty acids (PUFA) on intestinal integrity and
immunomodulation.

Compound Integrity Immunomodulation Other Effect(s) Reference

EPA and DHA

TEER↑ Acute inflammation↓ Mucosal damage↓

[172,174–177,
179–182]

Intestinal
permeability↓ IL-1β↓ ROS production↓

occludin↑ IL-6↓ SOD↑
ZO-1↑ IL-17↓ CAT↑

E-cadherin↑ TNF-α↓ Total nitrate/nitrite
ratio↓

TJ proteins
redistribution and

distortion↓
INF-γ↓

Microbiota
composition

restore↑
COX-2 activation↓ MUC-2 gene↑

iNOS↓ Cytokeratin gene↑
cGMP↓

Upwards arrow: Increase or enhancement; downwards arrow: Decrease or inhibition. EPA: eicosapentaenoic acid;
DHA: docosahexaenoic acid; CAT: catalase; cGMP: cyclic guanosine monophosphate.
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3.4. Amino Acids

Nutrition deprivation experiments proved that amino acids are critical to the gut barrier and the
gut microbiota [183,184]. In the last decade, awareness of the nutritional relevance of some amino
acids has been broadened from nutritional-only to therapeutically-important agents, due to their
ability to modify cell signaling and to modulate gut-associated disorders [185–187]. Functional amino
acids, including arginine and glutamine enhance intestinal mucosal immunity, abolish the oxidative
damage, trigger proliferation of enterocytes and enhance gut barrier function. Glutamine is not only
the main fuel for enterocytes, but also plays a key role in mitogenesis, cytoprotection and barrier
function [188,189]. In addition, arginine through activation of focal adhesion kinase (FAK), mammalian
target of rapamycin (mTOR), as well as nitric oxide (NO) cascades, actively participates in wound
healing, and mucosal repair in intestinal epithelium [190].

3.4.1. Arginine

Arginine supplementation attenuates the adverse effects of heat stroke in in vivo models [191,192].
Therapeutic administration of arginine in mice and rats exposed to HS reduces the adverse effects
of multi-organ failure, such as circulatory shock and cerebral ischemia, leading to improved
survival [191–193]. Arginine supplementation is also involved in the maintenance of intestinal
homeostasis. Oral administration of arginine significantly enhances the intestinal recovery and
accelerates the mucosal repair following ischemia-reperfusion injury in rats [194]. In vitro, arginine
suppresses apoptosis and cell death induced by LPS in porcine small intestinal cell line IPEC-1
cells [195]. However, arginine in intestinal inflammation is a “double-edged sword”, because
supra-physiological concentrations of arginine (>10 mM) may inhibit cell migration in intestinal
wound edges and play a deleterious role in the pathogenesis of inflammation [196,197]. Similarly,
supra-physiological concentrations of arginine worsen the mucosal damage and gut barrier function
after ischemia/reperfusion injury in rats [198]. However, arginine supplementation in a physiological
range plays an important role in the metabolic synthesis pathways, like the polyamine and NO
production, which are involved in multiple cellular signaling pathways in enterocytes, including
intestinal protein synthesis, blood flow, healing processes and intestinal immunity [199,200].

HS blocks the physiological NO production [201], which, hence, will significantly increase the body
heating rate, reduce the heat dissipation and increase the intestinal epithelial permeability [202,203].
Therefore, basal NO level is a key factor in the enhancement of resilience to stress conditions [204].
Physiological NO production enhances the tolerance to HS by reducing O2 costs under extensive
exercise [205,206].

Dietary arginine supplementation is important in attenuating the intestinal integrity disruption
caused by exertional hyperthermia [202]. Pre-treatment of Caco-2 cells with non-toxic arginine
concentrations prevents the disruption of intestinal integrity [35]. Arginine supplementation improves
the intestinal integrity and preservation of TJs in experimental models of IBD and hypoxia [207,208].
Arginine supplementation increases the mucus production as well as fluid secretion and inhibits
intestinal hyper-motility in rats [209]. Additionally, in vitro and in vivo studies showed that
supplementation with arginine prevents bacterial translocation by reducing intestinal necrosis,
increasing villus height, and attenuating gut mucosal injury [200,210].

Different mechanisms may be involved in the arginine-induced tolerance of intestinal epithelial
cells to HS, including:

1. The NO synthesis pathway: Arginine, as a precursor of NO production, stimulates the enzyme
NO synthase (NOS) isoforms to facilitate the synthesis and bioavailability of NO [211]. The
constitutive form of NOS (cNOS), which includes endothelial NOS (eNOS) and neuronal NOS
(nNOS), generates relatively small amounts of NO, while iNOS produces a quantitatively larger
amount of NO and is expressed in cells of the immune system as well as in intestinal epithelial
cells [186,212,213].
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Although the precise mechanisms through which NO protects intestinal integrity is not fully
understood, NO regulates the intestinal integrity by modulating intracellular signaling pathways
related to protein tyrosine phosphorylation in epithelial cells [214]. Protein tyrosine phosphorylation
of TJ and AJ proteins, which can be induced by diverse oxidation-related stimuli including HS, is
involved in barrier disruption under oxidative stress conditions [215,216]. Additionally, NO signaling
plays a key role in intestinal re-epithelialization and maintenance of intestinal integrity following
mucosal injury [208,217].

2. Mammalian target of rapamycin (mTOR) pathway: Maintaining the intestinal epithelial function
by arginine can also be related to activation of the mTOR pathway [196,218]. Arginine induces
the downstream mTOR pathway by phosphorylation and activation of the protein synthesis
regulator 70-kDa ribosomal protein S6 kinase (p70S6k) [219]. Activation of p70S6k by arginine
increases protein synthesis, proliferation, and migration in disease conditions that induce intestinal
epithelial injury [200]. For instance, oral administration of arginine in a porcine model of enteritis
augments intestinal protein synthesis and attenuates intestinal permeability via mTOR signaling
and p70S6k activation [218].

3. Arginase pathway: Metabolism of arginine via the arginase pathway results in the production of
ornithine and polyamine, which promote intestinal epithelial repair and restitution processes [196].
Polyamines are involved in the regulation of cell-cell interactions and E-cadherin expression,
being critically important for the maintenance of intestinal epithelial integrity [220]. Additionally,
polyamines are important stress-responsive molecules, which facilitate the activation of HSF1 to
induce HSP expression [221,222].

NO synthesis from arginine and the subsequent production of intestinal secretory immunoglobulin
A (sIgA), modulate the expression of Th1/Th2 cytokines and prevent the exaggerated inflammatory
responses followed by intestinal damage [209,223]. One of the beneficial effects of arginine
supplementation in preventing the intestinal inflammation in rats exposed to HS, may be mainly
attributable to these immune-regulatory effects [202]. Arginine supplementation reduces the
expression of pro-inflammatory cytokines in the colon of mice with an experimental sodium dextran
sulphate-induced colitis [207].

It is likely that the main mechanism of action by which arginine modulates the inflammatory
responses is the iNOS-induced NO production, which inhibits NF-κB [224], since inhibition of iNOS
leads to the loss of all clinical benefits of arginine in the intestines [207].

3.4.2. Glutamine

Nutritionally supplementary glutamine is traditionally classified as a non-essential amino acid.
Glutamine is considered as an important precursor for the synthesis of nucleotides and proteins.
Glutamine availability is effective in the maturation of rapidly proliferating intestinal epithelial cells
in the gastrointestinal tract [225]. Glutamine is a critically important fuel for the intestinal epithelial
cells and is essential for preserving the intestinal mucosal barrier in humans and animals [226,227].
In addition, circulating or luminal glutamine improves the gut function and mucosal integrity [228].
Glutamine is important in regulating many key metabolic processes, such as protein synthesis, regulation
of cellular redox status, and immune responses [229–231]. One of the most described characteristics of
glutamine is the enhancement of cell survival by inducing the expression of HSP [232–234].

Animal research and clinical studies revealed that insufficient intake of glutamine is associated
with the development of intestinal diseases and mucosal barrier breakdown, which can be
reversed by glutamine supplementation [235–237]. The effect of glutamine supplementation on
gut micro-structures, such as amelioration of villus atrophy, has been previously described in different
in vivo studies [238,239]. Glutamine is essential to preserve the intestinal epithelial integrity, since the
depletion of glutamine leads to the loss of TJ proteins and increased intestinal paracellular permeability
as observed in epithelial cells [240,241]. Incubation with L-glutamine significantly enhanced epithelial
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barrier function in primary porcine jejunal enterocytes by increasing occludin, claudin-4, JAM-A,
ZO-1, ZO-2, ZO-3 protein expression [188]. The glutamine-induced upregulation of HSP70 in the
intestine prevents intestinal mucosal injury by improving the intestinal antioxidant capacity, such as
elevating the superoxide dismutase, glutathione peroxidase, and total antioxidant capacity inhibiting
lipid peroxidation [242]. Interestingly, the glutamine-induced HSF-1 and HSP70 gene expressions
are associated with a prevention of TJs disruption (ZO-1 and occludin), and thereby with protecting
the intestinal epithelial cells from injuries caused by HS [243,244]. Another mechanism by which
glutamine exerts protective effects against intestinal oxidative stress is related to the up-regulation of
HO-1. Inhibition of HO-1 abolishes the preventive effect of glutamine against intestinal damage caused
by radiation in colon epithelial cells [245]. Glutamine attenuates the disruption of intestinal epithelial
tight junctions (ZO-1, claudin-1, occludin) and adherens junctions (E-cadherin and β-catenin) caused
by acetaldehyde in Caco-2 cell monolayer [246]. Glutamine is possibly involved in the regulation of
apical junction complexes via tyrosine phosphorylation of the epidermal growth factor (EGF) receptor,
since the protective effect of glutamine was eliminated by a specific inhibitor of EGF receptor tyrosine
kinase [246]. Glutamine can also regulate junctional proteins through the PI3-Kinase/Akt pathway [247].
Differently, glutamine would hamper the methotrexate-induced disruption of tight junction proteins
through JNK and ERK [248]. In addition, AMPK could also be involved as a downstream target
regulated by calcium/CaMKK2 signaling in response to glutamine supplementation [188].

Food-supplemented glutamine upregulated the HSP70 levels in peripheral blood mononuclear
cells (PBMC) of human exercise-induced HS [243]. This can result in a reduction of pro-inflammatory
cytokine secretion and thus an increased anti-inflammatory capacity and prevention of intestinal
integrity disruption [243]. Another human study has supported the role of glutamine in reducing
pro-inflammatory cytokine secretion, such as IL-6 and IL-8, while increasing the anti-inflammatory
cytokine IL-10 in the exercise-induced “leaky” intestines [249] Moreover, feed supplementation with
glutamine is associated with a reduction in LPS-induced intestinal inflammation in infant rats [250].
A review summarized that glutamine can reduce inflammatory responses observed in different
animal IBD models [251]. Calves provided with alanyl-glutamine displayed an improvement in gain
performance and health status concurrent with increases in blood CD2+ and CD4+ lymphocytes, the
ratio of CD4+/CD8+, serum IgA and IgG, intestinal mucosal s-IgA, while decreasing the occurrence of
diarrhea [252]. Dietary glutamine supplementation decreased TNF-α levels, D-lactate, serum diamine
oxidase (DAO) activity and soluble intercellular adhesion molecule (sICAM)-1 concentration, and
increased IL-10 levels in the intestinal mucosa of broilers [253]. The signaling pathway by which
glutamine protects against inflammatory conditions is at least in part through stimulation of IκBα by
HSP70 and associated suppression of NF-κB cascade [243,254].

In conclusion, amino acids like arginine and glutamine play an important role in protein
biosynthesis, but also exert physiological effects on signal transduction pathways that regulate
immunity, preserve epithelial integrity, and regulate antioxidation and energy metabolism. Beneficial
effects of arginine and glutamine in experimental models of intestinal disorders have been frequently
reported. Despite promising data in experimental models, further studies are needed to evaluate
amino acid supplementation in clinical practice. The effects of arginine and glutamine on intestinal
integrity and immunomodulation are summarized in Table 4.
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Table 4. The effects of arginine and glutamine on intestinal integrity and immunomodulation.

Compound Integrity Immunomodulation Other Effect(s) Reference

Arginine

Intestinal
permeability↓ iNOS↑ Intestinal necrosis↓

[35,207–209,218,
223,224]

TEER↑ Intestinal s-IgA↑ Mucus production
and fluid secretion↑

ZO-1↑ NF-κB activation↓

E-cadherin↑
Pro-inflammatory

cytokines↓
pro-inflammatory

chemokines↓
Villus height↑

Glutamine

Intestinal
permeability↓ NF-κB activation↑ Mucus production↑

[188,235–243,245,
246,249–254]

Villus atrophy↓
CD2+ and CD4+

lymphocytes↑ HSP70 expression↑

CD4+/CD8+↑ HSF-1 expression↑
occludin↑ Serum IgA and IgG↑ HO-1 expression↑

claudin-1↑ Intestinal mucosal
s-IgA↑

Cell viability and
antioxidant capacity↑

claudin-4↑ TNF-α↓ Hyperthermia↓
JAM-A↑ D-lactate↓ Diarrhea occurrence↓

ZO-1, ZO-2 and
ZO-3↑ DAO activity↓

E-cadherin↑ sICAM-1↓
β-catenin↑ IL-6↓

IL-8↓
IL-10↑

Upwards arrow: Increase or enhancement; downwards arrow: Decrease or inhibition. IgG: immunoglobulin G;
DAO: diamine oxidase; sICAM: soluble intercellular adhesion molecule.

4. Concluding Remarks

HS is considered as an important environmental stressor that is of increasing public health concern.
Intervention strategies that can prevent, control, and reduce the pathologies (and even mortality) due
to HS in humans and animals are therefore gaining increasing attention. Accumulating evidence
suggests that the disruption of intestinal integrity followed by a generalized inflammatory response
is a key event in human and animal pathologies under HS conditions. Subsequently, an increasing
number of studies focus on the understanding of the molecular mechanisms involved in HS-induced
inflammation and intestinal barrier disruption with the aim to introduce efficient strategies to preserve
the physiologic performance of the gut (Figure 3). Future research needs to focus on the cellular and
molecular pathways that act behind hyperthermia and hypoxia-induced pathologies. Currently, only
a few classic cellular mechanisms, such as the heat shock and oxidative stress response, are clearly
described. Furthermore, there are several gaps within the existing knowledge related to the effect of
HS on junctional proteins.

More than 40 tight junction proteins and more than 20 cadherin proteins have been identified,
yet none of the junctional proteins studied have been found to be exclusively responsible for barrier
homeostasis under hyperthermia or hypoxia conditions. It has been documented that HSP can
bind to TJ proteins, such as ZO-1 and occludin, however, the causality between upregulation of
specific HSP and restoration of TJ proteins still needs to be clarified. In addition, apart from a study
by Bidmon-Fliegenschnee et al. [39], and some “non-intestinal” studies suggesting a link between
HSP/HSF and the catenin/cadherin family [255,256], our understanding about the interaction of HSP
and AJ proteins is limited.
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As depicted in Figure 3, the described nutritional substances have a broad range of effects
on HS-induced intestinal integrity disruption, inflammation, and oxidative stress. Nutritional
substances, which have the potency to preserve not only cellular homeostasis by enhancing non-specific
cellular defense systems, but also maintain intestinal integrity, are considered as promising feed/food
supplements to protect animals and humans against the adverse effects of HS.

Accumulating evidence indicates that provision of a combination of nutritional substances
is more effective than treatment with a single dietary component. Synbiotics, a combination of
probiotics and prebiotics, have been shown to exert synergistic effects in the intestinal tract [62,257].
Microbiota-stabilizing compounds in combination with other nutritional substances can also enhance
beneficial health effects and can possibly be used in a broader range of clinical conditions. For example,
a prebiotic fiber diet combining with resveratrol and DHA was effective in lessening brain injury in
rats [258]. It will be a promising approach in the future to investigate the combination of different
nutritional substances in (HS-associated) intestinal problems, offering innumerable possibilities to
therapeutic practice.
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