The Visceral Adipose Index in Relation to Incidence of Hypertension in Chinese Adults: China Health and Nutrition Survey (CHNS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometric Measurements and Serum Biochemical Parameters
2.3. Physical Activity, Dietary intake, and Other Covariates
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Subjects from the 2009 CHNS
3.2. Associations of VAI with Blood Pressure Levels in the 2009 CHNS
3.3. Associations of VAI with Risk of Hypertension in the 2009 CHNS
3.4. Associations of VAI with Incidence of Hypertension from 2009 to 2011
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Licher, S.; Heshmatollah, A.; van der Willik, K.D.; Stricker, B.; Ruiter, R.; de Roos, E.W.; Lahousse, L.; Koudstaal, P.J.; Hofman, A.; Fani, L.; et al. Lifetime risk and multimorbidity of non-communicable diseases and disease-free life expectancy in the general population: A population-based cohort study. PLoS Med. 2019, 16, e1002741. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, K.; Emdin, C.A.; MacMahon, S. The epidemiology of blood pressure and its worldwide management. Circ. Res. 2015, 116, 925–936. [Google Scholar] [CrossRef] [Green Version]
- Poulter, N.R.; Prabhakaran, D.; Caulfield, M. Hypertension. Lancet 2015, 386, 801–812. [Google Scholar] [CrossRef]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.M.; Stevens-Fabry, S. Prehypertension--prevalence, health risks, and management strategies. Nat. Rev. Cardiol. 2015, 12, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Gnatiuc, L.; Alegre-Diaz, J.; Halsey, J.; Herrington, W.G.; Lopez-Cervantes, M.; Lewington, S.; Collins, R.; Tapia-Conyer, R.; Peto, R.; Emberson, J.R.; et al. Adiposity and blood pressure in 110 000 Mexican adults. Hypertension 2017, 69, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zeng, X.; Chen, Z.; Wang, X.; Zhang, L.; Zhu, M.; Yi, D. Association of visceral and total body fat with hypertension and prehypertension in a middle-aged Chinese population. J. Hypertens. 2015, 33, 1555–1562. [Google Scholar] [CrossRef]
- Ding, Y.; Gu, D.; Zhang, Y.; Han, W.; Liu, H.; Qu, Q. Significantly increased visceral adiposity index in prehypertension. PLoS ONE 2015, 10, e123414. [Google Scholar] [CrossRef]
- Choukem, S.P.; Kengne, A.P.; Nguefack, M.L.; Mboue-Djieka, Y.; Nebongo, D.; Guimezap, J.T.; Mbanya, J.C. Four-year trends in adiposity and its association with hypertension in serial groups of young adult university students in urban Cameroon: A time-series study. BMC Public Health 2017, 17, 499. [Google Scholar] [CrossRef]
- de Oliveira, C.M.; Ulbrich, A.Z.; Neves, F.S.; Dias, F.; Horimoto, A.; Krieger, J.E.; Alvim, R.O.; Pereira, A. Association between anthropometric indicators of adiposity and hypertension in a Brazilian population: Baependi Heart Study. PLoS ONE 2017, 12, e185225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, F.G.; Juvanhol, L.L.; Da, S.D.; Longo, G.Z. Visceral adiposity index is a better predictor of unhealthy metabolic phenotype than traditional adiposity measures: Results from a population-based study. Public Health Nutr. 2019, 22, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.C.; Giordano, C. Visceral adiposity index: An indicator of adipose tissue dysfunction. Int. J. Endocrinol. 2014, 2014, 730827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouli, G.M.; Panagiotakos, D.B.; Kyrou, I.; Georgousopoulou, E.N.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Visceral adiposity index and 10-year cardiovascular disease incidence: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 881–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciresi, A.; Radellini, S.; Guarnotta, V.; Giordano, C. The visceral adiposity index is associated with insulin sensitivity and IGF-I levels in adults with growth hormone deficiency. Endocrine 2017, 56, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.Y.; Sung, Y.A.; Lee, H.J. The visceral adiposity index as a predictor of insulin resistance in young women with polycystic ovary syndrome. Obesity (Silver Spring) 2013, 21, 1690–1694. [Google Scholar] [CrossRef]
- Gu, D.; Ding, Y.; Zhao, Y.; Qu, Q. Visceral adiposity index was a useful predictor of prediabetes. Exp. Clin Endocrinol. Diabetes 2018, 126, 596–603. [Google Scholar] [CrossRef]
- Liu, P.J.; Ma, F.; Lou, H.P.; Chen, Y. Visceral adiposity index is associated with pre-diabetes and type 2 diabetes mellitus in Chinese adults aged 20–50. Ann. Nutr. Metab. 2016, 68, 235–243. [Google Scholar] [CrossRef]
- Wu, J.; Gong, L.; Li, Q.; Hu, J.; Zhang, S.; Wang, Y.; Zhou, H.; Yang, S.; Wang, Z. A novel visceral adiposity index for prediction of type 2 diabetes and pre-diabetes in Chinese adults: A 5-year prospective study. Sci. Rep. 2017, 7, 13784. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Ding, Y.; Zhao, Y.; Miao, S.; Qu, Q. Positively increased visceral adiposity index in hyperuricemia free of metabolic syndrome. Lipids Health Dis. 2018, 17, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Ma, Z.; Wang, Y.; Liu, X.; Tao, L.; Zheng, D.; Guo, X.; Yang, X. Visceral adiposity index as a predictor of NAFLD: A prospective study with 4-year follow-up. Liver Int. 2018, 38, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shi, D.; Zhang, Q.; Wang, S.; Liu, K.; Meng, Q.; Chen, X. Visceral adiposity index (VAI), a powerful predictor of incident hypertension in prehypertensives. Intern. Emerg. Med. 2018, 13, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Boyko, E.J.; Leonetti, D.L.; McNeely, M.J.; Newell-Morris, L.; Kahn, S.E.; Fujimoto, W.Y. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann. Intern. Med. 2004, 140, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.; Prud’Homme, D.; Despres, J.P.; Nadeau, A.; Tremblay, A.; Bouchard, C. Relation of abdominal obesity to hyperinsulinemia and high blood pressure in men. Int. J. Obes. Relat. Metab. Disord. 1992, 16, 881–890. [Google Scholar]
- Foy, C.G.; Hsu, F.C.; Haffner, S.M.; Norris, J.M.; Rotter, J.I.; Henkin, L.F.; Bryer-Ash, M.; Chen, Y.D.; Wagenknecht, L.E. Visceral fat and prevalence of hypertension among African Americans and Hispanic Americans: Findings from the IRAS family study. Am. J. Hypertens. 2008, 21, 910–916. [Google Scholar] [CrossRef]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15 (Suppl. 1), 2–7. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey—Monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Wang, M.; Tian, Z.; Zhang, J.; Liu, Y.; Zhang, Y.; Wang, P.; Xue, Y. Sex-dependent difference in the association between frequency of spicy food consumption and risk of hypertension in Chinese adults. Eur. J. Nutr. 2018, 58, 2449–2461. [Google Scholar] [CrossRef]
- He, K.; Du, S.; Xun, P.; Sharma, S.; Wang, H.; Zhai, F.; Popkin, B. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am. J. Clin. Nutr. 2011, 93, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; He, T.; Yu, K.; Lu, Q.; Alkasir, R.; Guo, G.; Xue, Y. Markers of iron status are associated with risk of hyperuricemia among Chinese adults: Nationwide population-based study. Nutrients 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhang, L.; Liu, Z.; Zhou, X.; Yuan, G. Sleep duration and apolipoprotein B in metabolically healthy and unhealthy overweight/obese phenotypes: A cross-sectional study in Chinese adults. BMJ Open 2019, 9, e23817. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.; Shi, Z.; Yuan, B.; Dai, Y.; Hu, G.; Wu, G.; Hussain, A. Interaction between physical activity and sleep duration in relation to insulin resistance among non-diabetic Chinese adults. BMC Public Health 2012, 12, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.J.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Hall, J.; Byles, J.; Shi, Z. Dietary pattern is associated with obesity in older people in China: Data from China Health and Nutrition Survey (CHNS). Nutrients 2015, 7, 8170–8188. [Google Scholar] [CrossRef] [Green Version]
- Janghorbani, M.; Salamat, M.R.; Aminorroaya, A.; Amini, M. Utility of the visceral adiposity index and hypertriglyceridemic waist phenotype for predicting incident hypertension. Endocrinol. Metab. (Seoul) 2017, 32, 221–229. [Google Scholar] [CrossRef]
- Seravalle, G.; Grassi, G. Obesity and hypertension. Pharmacol. Res. 2017, 122, 1–7. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Kahn, S.E.; Fujimoto, W.Y.; Hayashi, T.; Leonetti, D.L.; Boyko, E.J. Change in intra-abdominal fat predicts the risk of hypertension in Japanese Americans. Hypertension 2015, 66, 134–140. [Google Scholar] [CrossRef] [Green Version]
Variable | Q1 (<0.7339) | Q2 (0.7340–1.2613) | Q3 (1.2614–2.3037) | Q4 (≥2.3038) | Total | p |
---|---|---|---|---|---|---|
No. participants | 978 | 978 | 977 | 978 | 3911 | |
Han nationality (%) | 848 (86.7) | 866 (88.5) | 891 (91.2) | 868 (88.8) | 3473 (88.8) | 0.018 |
Countryside (%) | 697 (71.3) | 694 (71.0) | 637 (65.2) | 612 (62.6) | 2640 (67.5) | <0.001 |
Age (years) | 51.9 ± 16.2 | 50.6 ± 15.6 | 50.3 ± 14.7 | 49.5 ± 13.9 | 50.6 ± 15.1 | 0.007 |
BMI (kg/m2) | 21.4 ± 2.8 | 22.7 ± 3.0 | 23.9 ± 3.2 | 25.2 ± 3.4 | 23.3 ± 3.4 | <0.001 |
Educational level | 0.516 | |||||
Middle school or below | 935 (83.5) | 706 (72.2) | 662 (67.8) | 635 (64.9) | 2780 (71.1) | |
High school | 158 (14.1) | 202 (20.7) | 247 (25.3) | 245 (25.1) | 848 (21.7) | |
College or above | 27 (2.4) | 70 (7.2) | 68 (7.0) | 98 (10.0) | 283 (7.2) | |
WC (cm) | 78.4 ± 8.9 | 82.6 ± 9.2 | 86.3 ± 9.6 | 90.2 ± 9.3 | 84.4 ± 10.2 | <0.001 |
SBP (mmHg) | 124.6 ± 18.0 | 124.9 ± 17.3 | 126.4 ± 16.9 | 128.9 ± 17.8 | 126.2 ± 17.6 | <0.001 |
DBP (mmHg) | 80.2 ± 11.0 | 81.1 ± 11.1 | 82.5 ± 10.9 | 84.8 ± 11.0 | 82.2 ± 11.1 | <0.001 |
FBG (mmol/L) | 5.1 ± 0.9 | 5.2 ± 1.2 | 5.5 ± 1.5 | 6.2 ± 2.3 | 5.5 ± 1.6 | <0.001 |
TG (mmol/L) | 0.7 ± 0.3 | 1.1 ± 0.3 | 1.7 ± 0.4 | 3.8 ± 2.4 | 1.8 ± 1.7 | <0.001 |
TC (mmol/L) | 4.5 ± 0.8 | 4.7 ± 0.9 | 4.9 ± 1.0 | 5.1 ± 1.0 | 4.8 ± 1.0 | <0.001 |
HDL-C (mmol/L) | 1.8 ± 0.8 | 1.4 ± 0.3 | 1.3 ± 0.2 | 1.1 ± 0.2 | 1.4 ± 0.5 | <0.001 |
LDL-C (mmol/L) | 2.7 ± 0.8 | 3.0 ± 0.9 | 3.2 ± 1.0 | 2.8 ± 1.0 | 2.9 ± 1.0 | <0.001 |
Total energy intake (kcal/day) | 0.153 | |||||
Median | 2311.5 | 2300.3 | 2271.2 | 2248.8 | 2282.4 | |
IQR | 1850.7–2796.4 | 1890.3–2739.6 | 1894.1–2683.8 | 1855.2–2660.5 | 1875.7–2721.5 | |
Salt intake (g/day) | 0.646 | |||||
Median | 7.4 | 7.6 | 7.4 | 7.2 | 7.4 | |
IQR | 5.3–10.7 | 5.3–10.6 | 5.3–10.8 | 5.1–10.3 | 5.3–10.6 | |
Current smoker (%) | 590 (60.3) | 607 (62.1) | 593 (60.7) | 619 (63.3) | 2409 (61.6) | 0.516 |
Alcohol consumption (%) | 596 (60.9) | 574 (58.7) | 573 (58.6) | 594 (60.7) | 2337 (59.8) | 0.589 |
Physical activity (MET-h/week) | 0.021 | |||||
Median | 65.4 | 60.3 | 60.0 | 60.1 | 60.5 | |
IQR | 13.1–198.9 | 10.5–168.4 | 8.9–160.7 | 10.4–146.2 | 10.6–170.5 | |
Antihypertensive medication (%) | 59 (6.0) | 77 (7.9) | 99 (10.1) | 147 (15.0) | 382 (9.8) | <0.001 |
Variable | Q1 (< 0.9833) | Q2 (0.9834–1.5854) | Q3 (1.5855–2.7290) | Q4 (≥2.7290) | Total | p |
---|---|---|---|---|---|---|
No. participants | 1120 | 1122 | 1121 | 1120 | 4483 | |
Han nationality (%) | 998 (89.1) | 968 (86.3) | 1006 (89.7) | 992 (88.6) | 3964 (88.4) | 0.058 |
Countryside (%) | 771 (68.8) | 747 (66.6) | 750 (66.9) | 734 (65.5) | 3002 (67.0) | 0.409 |
Age (years) | 45.3 ± 15.3 | 49.7 ± 15.0 | 52.5 ± 14.8 | 54.4 ± 13.4 | 50.5 ± 15.0 | <0.001 |
BMI (kg/m2) | 21.8 ± 2.9 | 22.8 ± 3.4 | 23.9 ± 2.4 | 25.2 ± 3.5 | 23.4 ± 3.5 | <0.001 |
Educational level | <0.001 | |||||
Middle school or below | 835 (74.6) | 897 (79.9) | 911 (81.3) | 935 (83.5) | 3578 (79.8) | |
High school | 207 (18.5) | 181 (16.1) | 169 (15.1) | 158 (14.1) | 715 (15.9) | |
College or above | 78 (7.0) | 44 (3.9) | 41 (3.7) | 27 (2.4) | 190 (4.2) | |
WC (cm) | 75.7 ± 8.7 | 79.4 ± 9.6 | 83.1 ± 9.5 | 87.0 ± 9.7 | 81.3 ± 10.3 | <0.001 |
SBP (mmHg) | 116.4 ± 16.4 | 122.2 ± 19.5 | 125.6 ± 20.6 | 130.6 ± 21.3 | 123.7± 20.2 | <0.001 |
DBP (mmHg) | 75.7 ± 10.3 | 78.2 ± 11.7 | 79.6 ± 10.8 | 82.9 ± 11.6 | 79.1 ±11.4 | <0.001 |
FBG (mmol/L) | 5.0 ± 0.8 | 5.1 ± 0.8 | 5.4 ±1.4 | 5.9 ± 1.8 | 5.3 ± 1.3 | <0.001 |
TG (mmol/L) | 0.7 ± 0.2 | 1.0 ± 0.2 | 1.5 ± 0.3 | 3.0 ± 1.7 | 1.6 ± 1.2 | <0.001 |
TC (mmol/L) | 4.6 ± 0.9 | 4.8 ± 1.0 | 5.0 ± 1.0 | 5.2 ± 1.1 | 4.9 ± 1.0 | <0.001 |
HDL-C (mmol/L) | 1.8 ± 0.6 | 1.5 ± 0.3 | 1.4 ± 0.3 | 1.2 ± 0.3 | 1.5 ± 0.5 | <0.001 |
LDL-C (mmol/L) | 2.8 ± 0.8 | 3.1 ± 0.9 | 3.3 ± 0.9 | 3.1 ± 1.1 | 3.0 ± 1.0 | <0.001 |
Total energy intake (kcal/day) | ||||||
Median | 1969.9 | 1910.7 | 1902.0 | 1877.1 | 1914.0 | |
IQR | 1584.2–2347.9 | 1564.3–2273.1 | 1565.2–2262.3 | 1546.8–2255.3 | 1567.8–2288.1 | |
Salt intake (g/day) | ||||||
Median | 6.2 | 6.5 | 6.5 | 6.4 | 6.4 | |
IQR | 4.5 – 9.0 | 4.5 – 9.6 | 4.6–9.4 | 4.3–9.2 | 4.5–9.3 | |
Current smoker (%) | 37 (3.3) | 40 (3.6) | 45 (4.0) | 60 (5.4) | 182 (4.1) | 0.066 |
Alcohol consumption (%) | 131 (11.7) | 93 (8.3) | 86 (7.7) | 87 (7.8) | 397 (8.9) | 0.002 |
Physical activity (MET-h/week) | <0.001 | |||||
Median | 77.9 | 70.8 | 60.9 | 60.3 | 65.7 | |
IQR | 37.2–156.0 | 40.5–158.4 | 35.1–133.6 | 38.3–115.4 | 37.9–143.1 | |
Antihypertensive medication (%) | 49 (4.4) | 105 (9.4) | 128 (11.4) | 219 (19.6) | 501 (11.2) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p-trend | |
---|---|---|---|---|---|
SBP | |||||
Total | |||||
β (95% CI) 1 | Ref | 3.296 (2.161, 4.431) | 5.742 (4.607, 6.878) | 9.632 (8.496, 10.767) | <0.001 |
Adjusted β (95% CI) 2 | Ref | 2.364 (1.353, 3.375) | 4.047 (3.033, 5.062) | 7.642 (6.627, 8.658) | <0.001 |
Adjusted β (95% CI) 3 | Ref | 1.863 (0.890, 2.835) | 3.461 (2.484, 5.085) | 5.963 (4.977, 6.949) | <0.001 |
Adjusted β (95% CI) 4 | Ref | 1.663 (0.693, 2.634) | 2.974 (1.993, 3.955) | 5.197 (4.196, 6.199) | <0.001 |
Male | |||||
β (95% CI) 1 | Ref | 0.341 (-1.212, 1.894) | 1.775 (0.222, 3.329) | 4.335 (2.781, 5.888) | <0.001 |
Adjusted β (95% CI) 5 | Ref | 0.928 (-0.492, 2.347) | 2.513 (1.087, 3.938) | 5.561 (4.132, 6.989) | <0.001 |
Adjusted β (95% CI) 6 | Ref | 0.563 (-0.814, 1.941) | 1.879 (0.493, 3.265) | 4.258 (2.858, 5.658) | <0.001 |
Adjusted β (95% CI) 7 | Ref | 0.320 (-1.053, 1.639) | 1.302 (-0.090, 2.694) | 3.315 (1.889, 4.740) | <0.001 |
Female | |||||
β (95% CI) 1 | Ref | 5.879 (4.260, 7.498) | 9.207 (7.588, 10.826) | 14.257 (12.637, 15.877) | <0.001 |
Adjusted β (95% CI) 5 | Ref | 3.125 (1.690, 6.107) | 4.659 (3.212, 6.107) | 8.512 (7.051, 9.974) | <0.001 |
Adjusted β (95% CI) 6 | Ref | 2.533 (1.163, 3.902) | 4.221 (2.839, 5.603) | 6.627 (5.221, 8.033) | <0.001 |
Adjusted β (95% CI) 7 | Ref | 2.430 (1.063, 3.798) | 3.922 (2.536, 5.308) | 6.157 (4.737, 7.577) | <0.001 |
DBP | |||||
Total | |||||
β (95% CI) 1 | Ref | 1.708 (1.032, 2.384) | 3.134 (2.457, 3.810) | 5.927 (5.251, 6.604) | <0.001 |
Adjusted β (95% CI) 2 | Ref | 1.448 (0.795, 2.100) | 2.612 (1.958, 3.267) | 5.345 (4.690, 6.000) | <0.001 |
Adjusted β (95% CI) 3 | Ref | 1.261 (0.623, 1.899) | 2.348 (1.707, 2.989) | 4.579 (3.931, 5.226) | <0.001 |
Adjusted β (95% CI) 4 | Ref | 1.105 (0.469, 1.740) | 1.966 (1.323, 2.609) | 3.978 (3.321, 4.634) | <0.001 |
Male | |||||
β (95% CI) 1 | Ref | 0.881 (-0.904, 1.855) | 2.268 (1.293, 3.243) | 4.520 (3.545, 5.495) | <0.001 |
Adjusted β (95% CI) 5 | Ref | 1.036 (0.075, 1.997) | 2.441 (1.476, 3.406) | 4.858 (3.891, 5.825) | <0.001 |
Adjusted β (95% CI) 6 | Ref | 0.978 (0.039, 1.918) | 2.270 (1.324, 3.216) | 4.270 (3.315, 5.226) | <0.001 |
Adjusted β (95% CI) 7 | Ref | 0.784 (-0.151, 1.719) | 1.809 (0.861, 2.757) | 3.516 (2.546, 4.487) | <0.001 |
Female | |||||
β (95% CI) 1 | Ref | 2.433 (1.512, 3.354) | 3.892 (2.971, 4.814) | 7.156 (6.235, 8.078) | <0.001 |
Adjusted β (95% CI) 5 | Ref | 1.584 (-0.270, 1.347) | 2.429 (1.528, 3.330) | 5.324 (4.414, 6.234) | <0.001 |
Adjusted β (95% CI) 6 | Ref | 1.277 (0.403, 2.151) | 2.104 (1.222, 2.986) | 4.435 (3.538, 5.332) | <0.001 |
Adjusted β (95% CI) 7 | Ref | 1.193 (0.321, 2.065) | 1.859 (0.975, 2.742) | 4.409 (3.144, 4.954) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p-trend | |
---|---|---|---|---|---|
Total | |||||
OR (95% CI) 1 | Ref | 1.460 (1.266, 1.683) | 1.827 (1.588, 2.101) | 2.903 (2.533, 3.327) | <0.001 |
Adjusted OR (95% CI) 2 | Ref | 1.457 (1.248, 1.700) | 1.749 (1.502, 2.036) | 2.944 (2.537, 3.417) | <0.001 |
Adjusted OR (95% CI) 3 | Ref | 1.331 (1.121, 1.581) | 1.614 (1.362, 1.911) | 2.454 (2.076, 2.901) | <0.001 |
Adjusted OR (95% CI) 4 | Ref | 1.308 (1.101, 1.554) | 1.546 (1.304, 1.834) | 2.299 (1.939, 2.726) | <0.001 |
Male | |||||
OR (95% CI) 1 | Ref | 1.078 (0.886, 1.311) | 1.293 (1.066, 1.567) | 1.910 (1.582, 2.306) | <0.001 |
Adjusted OR (95% CI) 5 | Ref | 1.175 (0.953, 1.447) | 1.472 (1.197, 1.811) | 2.439 (1.988, 2.994) | <0.001 |
Adjusted OR (95% CI) 6 | Ref | 1.094 (0.871, 1.373) | 1.321 (1.052, 1.658) | 2.036 (1.625, 2.550) | <0.001 |
Adjusted OR (95% CI) 7 | Ref | 1.067 (0.849, 1.340) | 1.245 (0.989, 1.566) | 1.849 (1.467, 2.329) | <0.001 |
Female | |||||
OR (95% CI) 1 | Ref | 2.091 (1.688, 2.591) | 2.724 (2.209, 3.359) | 4.616 (3.761, 5.666) | <0.001 |
Adjusted OR (95% CI) 5 | Ref | 1.781 (1.409, 2.252) | 2.004 (1.593, 2.521) | 3.350 (2.694, 4.221) | <0.001 |
Adjusted OR (95% CI) 6 | Ref | 1.640 (1.253, 2.146) | 1.925 (1.481, 2.502) | 2.847 (2.198, 3.689) | <0.001 |
Adjusted OR (95% CI) 7 | Ref | 1.631 (1.247, 2.135) | 1.896 (1.457, 2.467) | 2.781 (2.141, 3.612) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p-trend | |
---|---|---|---|---|---|
Total | |||||
Patient / total participants | 117 / 1198 | 154 / 1122 | 147/1052 | 169/903 | |
Person-years | 1.97 ± 0.08 | 1.97 ± 0.08 | 1.98 ± 0.08 | 1.97 ± 0.08 | |
Crude HR (95% CI) 1 | Ref | 1.398 (1.099, 1.777) | 1.341 (1.052, 1.710) | 1.692 (1.337, 2.143) | <0.001 |
Adjusted HR (95% CI) 2 | Ref | 1.302 (1.023, 1.658) | 1.218 (0.955, 1.554) | 1.624 (1.282, 2.057) | 0.001 |
Adjusted HR (95% CI) 3 | Ref | 1.306 (1.024, 1.665) | 1.193 (0.932, 1.526) | 1.641 (1.292, 2.083) | 0.001 |
Adjusted HR (95% CI) 4 | Ref | 1.283 (1.006, 1.637) | 1.141 (0.890, 1.464) | 1.526 (1.194, 1.952) | 0.005 |
Male | |||||
Patient / total participants | 64 / 492 | 85 / 500 | 66 / 471 | 88 / 413 | |
Person-years | 1.97 ± 0.08 | 1.97 ± 0.08 | 1.98 ± 0.08 | 1.98 ± 0.08 | |
Crude HR (95% CI) 1 | Ref | 1.219 (0.881, 1.687) | 0.885 (0.627, 1.251) | 1.367 (0.990, 1.887) | 0.036 |
Adjusted HR (95% CI) 5 | Ref | 1.200 (0.864, 1.665) | 0.948 (0.670, 1.342) | 1.600 (1.154, 2.219) | 0.005 |
Adjusted HR (95% CI) 6 | Ref | 1.195 (0.858, 1.663) | 0.926 (0.653, 1.315) | 1.601 (1.152, 2.224) | 0.004 |
Adjusted HR (95% CI) 7 | Ref | 1.171 (0.841, 1.632) | 0.889 (0.624, 1.266) | 1.497 (1.067, 2.101) | 0.010 |
Female | |||||
Patient / total participants | 53 / 1198 | 69 / 622 | 81 / 581 | 81 / 490 | |
Person-years | 1.98 ± 0.08 | 1.98 ± 0.08 | 1.97 ± 0.08 | 1.98 ± 0.08 | |
Crude HR (95% CI) 1 | Ref | 1.537 (1.074, 2.199) | 1.915 (1.355, 2.708) | 2.025 (1.432, 2.863) | <0.001 |
Adjusted HR (95% CI) 5 | Ref | 1.379 (0.963, 1.976) | 1.462 (1.032, 2.072) | 1.497 (1.055, 2.123) | 0.108 |
Adjusted HR (95% CI) 6 | Ref | 1.469 (1.020, 2.115) | 1.463 (1.025, 2.088) | 1.574 (1.102, 2.246) | 0.071 |
Adjusted HR (95% CI) 7 | Ref | 1.457 (1.011, 2.099) | 1.418 (0.990, 2.031) | 1.498 (1.041, 2.157) | 0.124 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Shen, Q.; Li, C.; Dai, Z.; He, T. The Visceral Adipose Index in Relation to Incidence of Hypertension in Chinese Adults: China Health and Nutrition Survey (CHNS). Nutrients 2020, 12, 805. https://doi.org/10.3390/nu12030805
Xue Y, Shen Q, Li C, Dai Z, He T. The Visceral Adipose Index in Relation to Incidence of Hypertension in Chinese Adults: China Health and Nutrition Survey (CHNS). Nutrients. 2020; 12(3):805. https://doi.org/10.3390/nu12030805
Chicago/Turabian StyleXue, Yong, Qun Shen, Chang Li, Zijian Dai, and Tingchao He. 2020. "The Visceral Adipose Index in Relation to Incidence of Hypertension in Chinese Adults: China Health and Nutrition Survey (CHNS)" Nutrients 12, no. 3: 805. https://doi.org/10.3390/nu12030805
APA StyleXue, Y., Shen, Q., Li, C., Dai, Z., & He, T. (2020). The Visceral Adipose Index in Relation to Incidence of Hypertension in Chinese Adults: China Health and Nutrition Survey (CHNS). Nutrients, 12(3), 805. https://doi.org/10.3390/nu12030805